中文版 | English
题名

A deep learning-based system for accurate detection of anatomical landmarks in colon environment

作者
通讯作者Wang,Jiankun
发表日期
2024-07-01
DOI
发表期刊
EISSN
2770-3541
卷号4期号:2页码:164-178
摘要
Colonoscopy is a standard imaging tool for examining the lower gastrointestinal tract of patients to capture lesion areas. However, if a lesion area is found during the colonoscopy process, it is difficult to record its location relative to the colon for subsequent therapy or recheck without any reference landmark. Thus, automatic detection of biological anatomical landmarks is highly demanded to improve clinical efficiency. In this article, we propose a novel deep learning-based approach to detect biological anatomical landmarks in colonoscopy videos. First, raw colonoscopy video sequences are pre-processed to reject interference frames. Second, a ResNet-101-based network is used to detect three biological anatomical landmarks separately to obtain the intermediate detection results. Third, to achieve more reliable localization, we propose to post-process the intermediate detection results by identifying the incorrectly predicted frames based on their temporal distribution and reassigning them back to the correct class. Finally, the average detection accuracy reaches 99.75%. Meanwhile, the average intersection over union of 0.91 shows a high degree of similarity between our predicted landmark periods and ground truth. The experimental results demonstrate that our proposed model can accurately detect and localize biological anatomical landmarks from colonoscopy videos.
关键词
相关链接[Scopus记录]
语种
英语
学校署名
通讯
Scopus记录号
2-s2.0-85193021399
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761012
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering,The Chinese University of Hong Kong,999077,Hong Kong
2.School of Electronic and Computer Engineering,Peking University,Beijing,100871,China
3.Peng Cheng Laboratory,Shenzhen,Guangdong,518000,China
4.Department of Oncology,Air Force Medical Center,PLA,Beijing,100142,China
5.College of Electronic & Information Engineering,Tongji University,Shanghai,201804,China
6.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
7.Shenzhen Research Institute of the Chinese,University of Hong Kong,Shenzhen,Guangdong,518057,China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Ye,Chengwei,Che,Kaiwei,Yao,Yibing,et al. A deep learning-based system for accurate detection of anatomical landmarks in colon environment[J]. Intelligence and Robotics,2024,4(2):164-178.
APA
Ye,Chengwei.,Che,Kaiwei.,Yao,Yibing.,Ma,Nachuan.,Zhang,Ruo.,...&Meng,Max Q.H..(2024).A deep learning-based system for accurate detection of anatomical landmarks in colon environment.Intelligence and Robotics,4(2),164-178.
MLA
Ye,Chengwei,et al."A deep learning-based system for accurate detection of anatomical landmarks in colon environment".Intelligence and Robotics 4.2(2024):164-178.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye,Chengwei]的文章
[Che,Kaiwei]的文章
[Yao,Yibing]的文章
百度学术
百度学术中相似的文章
[Ye,Chengwei]的文章
[Che,Kaiwei]的文章
[Yao,Yibing]的文章
必应学术
必应学术中相似的文章
[Ye,Chengwei]的文章
[Che,Kaiwei]的文章
[Yao,Yibing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。