题名 | Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events |
作者 | |
通讯作者 | Lyu,Mingzhe |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
ISSN | 0956-540X
|
EISSN | 1365-246X
|
卷号 | 238期号:1页码:91-108 |
摘要 | Rapid and accurate characterization of earthquake sources is crucial for mitigating seismic hazards. In this study, based on 18 000 scenario ruptures ranging from M 6.4 to M 8.3 and corresponding synthetic high-rate Global Navigation Satellite System (HR-GNSS) waveforms, we developed a multibranch neural network framework, the continental large earthquake agile response (CLEAR), to simultaneously determine the magnitude and slip distributions. We apply CLEAR to recent large strike-slip events, including the 2021 M 7.4 Maduo earthquake and the 2023 M 7.8 and M 7.6 Turkey doublet. The model generally estimates the magnitudes successfully at 32 s with errors of less than 0.15, and predicts the slip distributions acceptably at 64 s, requiring only approximately 30 ms on a single CPU (Central Processing Unit). With optimal azimuthal coverage of stations, the system is relatively robust to the number of stations and the time length of the received data. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20242016098694
|
EI主题词 | Deep learning
; Earthquakes
; Global positioning system
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Seismology:484
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85192939922
|
来源库 | Scopus
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/761014 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China 2.Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology,Southern University of Science and Technology,Shenzhen,518055,China 3.Institute of Geophysics,Department of Earth Sciences,Eth Zürich,Zürich,8092,Switzerland 4.Asian School of the Environment,Nanyang Technological University,Singapore,639798,Singapore |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Cui,Wenfeng,Chen,Kejie,Wei,Guoguang,et al. Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events[J]. Geophysical Journal International,2024,238(1):91-108.
|
APA |
Cui,Wenfeng,Chen,Kejie,Wei,Guoguang,Lyu,Mingzhe,&Zhu,Feng.(2024).Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events.Geophysical Journal International,238(1),91-108.
|
MLA |
Cui,Wenfeng,et al."Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events".Geophysical Journal International 238.1(2024):91-108.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论