中文版 | English
题名

Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events

作者
通讯作者Lyu,Mingzhe
发表日期
2024-07-01
DOI
发表期刊
ISSN
0956-540X
EISSN
1365-246X
卷号238期号:1页码:91-108
摘要
Rapid and accurate characterization of earthquake sources is crucial for mitigating seismic hazards. In this study, based on 18 000 scenario ruptures ranging from M 6.4 to M 8.3 and corresponding synthetic high-rate Global Navigation Satellite System (HR-GNSS) waveforms, we developed a multibranch neural network framework, the continental large earthquake agile response (CLEAR), to simultaneously determine the magnitude and slip distributions. We apply CLEAR to recent large strike-slip events, including the 2021 M 7.4 Maduo earthquake and the 2023 M 7.8 and M 7.6 Turkey doublet. The model generally estimates the magnitudes successfully at 32 s with errors of less than 0.15, and predicts the slip distributions acceptably at 64 s, requiring only approximately 30 ms on a single CPU (Central Processing Unit). With optimal azimuthal coverage of stations, the system is relatively robust to the number of stations and the time length of the received data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20242016098694
EI主题词
Deep learning ; Earthquakes ; Global positioning system
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Seismology:484
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85192939922
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761014
专题理学院_地球与空间科学系
作者单位
1.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology,Southern University of Science and Technology,Shenzhen,518055,China
3.Institute of Geophysics,Department of Earth Sciences,Eth Zürich,Zürich,8092,Switzerland
4.Asian School of the Environment,Nanyang Technological University,Singapore,639798,Singapore
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Cui,Wenfeng,Chen,Kejie,Wei,Guoguang,et al. Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events[J]. Geophysical Journal International,2024,238(1):91-108.
APA
Cui,Wenfeng,Chen,Kejie,Wei,Guoguang,Lyu,Mingzhe,&Zhu,Feng.(2024).Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events.Geophysical Journal International,238(1),91-108.
MLA
Cui,Wenfeng,et al."Simultaneous magnitude and slip distribution characterization from high-rate GNSS using deep learning: case studies of the 2021 Mw 7.4 Maduo and 2023 Turkey doublet events".Geophysical Journal International 238.1(2024):91-108.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cui,Wenfeng]的文章
[Chen,Kejie]的文章
[Wei,Guoguang]的文章
百度学术
百度学术中相似的文章
[Cui,Wenfeng]的文章
[Chen,Kejie]的文章
[Wei,Guoguang]的文章
必应学术
必应学术中相似的文章
[Cui,Wenfeng]的文章
[Chen,Kejie]的文章
[Wei,Guoguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。