中文版 | English
题名

The reliability analysis and experiment verification of pressure spherical model for deep sea submersible based on data BP and machine learning technology

作者
通讯作者Du,Qinghai
发表日期
2024-07-01
DOI
发表期刊
ISSN
0951-8339
卷号96
摘要
Spherical pressure-resistant shells, as a universal structural component of deep-sea submersibles, provide a safe and normal operating environment for personnel and internal equipment. In the paper it presented and optimized the BP neural network model based on a genetic algorithm (GA) accordingly, and the method and accuracy are validated through by a beam model. Simultaneously focusing on steel spherical shells, the study proposed a dataset that captures the influence of the primary dimension of the shell (radius-to-thickness ratio, R/t) on the critical pressure response. The genetic algorithm is employed to optimize the back propagation (BP) neural network model for predicting critical pressure. The structural reliability is adopted as a design criterion to determinate and optimize the geometric parameters and critical pressure of the spherical shell structure. Finally, an ultra-high-strength steel spherical model is designed, constructed and meanwhile collapse pressure tests are accomplished to verify the accuracy of the presented improved BP neural network model based on the computational reliability method. The results reveal that the machine learning optimization design method proposed in this paper can effectively enhance the accuracy of critical pressure predictions and the precision of reliability assessments for deep-sea spherical shells.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
EI入藏号
20241916067012
EI主题词
Deep neural networks ; Genetic algorithms ; High strength steel ; Intelligent systems ; Monte Carlo methods ; Reliability analysis ; Shells (structures) ; Spheres
EI分类号
Structural Members and Shapes:408.2 ; Ergonomics and Human Factors Engineering:461.4 ; Steel:545.3 ; Artificial Intelligence:723.4 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85192471767
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761018
专题工学院_海洋科学与工程系
作者单位
1.Shanghai Engineering Research Center of Hadal Science and Technology,College of Engineering Science and Technology,Shanghai Ocean University,Shanghai,China
2.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Du,Qinghai,Liu,Wei,Zou,Guang,et al. The reliability analysis and experiment verification of pressure spherical model for deep sea submersible based on data BP and machine learning technology[J]. Marine Structures,2024,96.
APA
Du,Qinghai,Liu,Wei,Zou,Guang,&Qiu,Xiangyu.(2024).The reliability analysis and experiment verification of pressure spherical model for deep sea submersible based on data BP and machine learning technology.Marine Structures,96.
MLA
Du,Qinghai,et al."The reliability analysis and experiment verification of pressure spherical model for deep sea submersible based on data BP and machine learning technology".Marine Structures 96(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Du,Qinghai]的文章
[Liu,Wei]的文章
[Zou,Guang]的文章
百度学术
百度学术中相似的文章
[Du,Qinghai]的文章
[Liu,Wei]的文章
[Zou,Guang]的文章
必应学术
必应学术中相似的文章
[Du,Qinghai]的文章
[Liu,Wei]的文章
[Zou,Guang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。