中文版 | English
题名

ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network

作者
通讯作者Zhang,Shuyu
发表日期
2024-07-01
DOI
发表期刊
ISSN
0306-2619
卷号365
摘要
Accurate and timely prediction of power system states is one of the most important challenging tasks in modern power systems. Considering the integration of renewable energy sources, recent deep learning-based models have been well studied and found to have benefits in exploiting spatial–temporal relationships in power system data. However, the complexity of different power system topology structures is not substantially captured since the existing models did not fully consider the graph-based information retrieved from power networks. To resolve the problem, a spatial–temporal attention graph-based network (ST-AGNet), an adaptive power system state prediction approach that utilizes graph-based information data to account various typologies of complex power systems, is proposed. Initially, the power flow model is used for generating historical system state data. With the graph-based topology information, the input dataset with the spatial and temporal features is fed into the proposed network for the training and validating process. Meanwhile, the connectivity of the time-varying graph-based information are accounted in the proposed model. Case studies demonstrate the superiority of the ST-AGNet model over the existing baselines under four different scales of complex systems, which can significantly support dynamic power system analysis and operational tasks.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20241815995154
EI主题词
Complex networks ; Deep learning ; Electric load flow ; Flow graphs ; Graphic methods ; Renewable energy
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Energy Resources and Renewable Energy Issues:525.1 ; Electric Power Systems:706.1 ; Computer Systems and Equipment:722 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85191363712
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761030
专题工学院_计算机科学与工程系
作者单位
1.Research Institute for Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Computer Science,University of York,York,YO10 5GH,United Kingdom
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang,Shiyao,Zhang,Shuyu,Yu,James J.Q.,等. ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network[J]. Applied Energy,2024,365.
APA
Zhang,Shiyao,Zhang,Shuyu,Yu,James J.Q.,&Wei,Xuetao.(2024).ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network.Applied Energy,365.
MLA
Zhang,Shiyao,et al."ST-AGNet: Dynamic power system state prediction with spatial–temporal attention graph-based network".Applied Energy 365(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Shiyao]的文章
[Zhang,Shuyu]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Zhang,Shiyao]的文章
[Zhang,Shuyu]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Zhang,Shiyao]的文章
[Zhang,Shuyu]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。