中文版 | English
题名

State-of-charge estimation of sodium-ion batteries: A fusion deep learning approach

作者
通讯作者Yao,Wenjiao
发表日期
2024-06-30
DOI
发表期刊
EISSN
2352-152X
卷号91
摘要
Sodium-ion batteries (SIBs) have shown great promise as an alternative to lithium-ion batteries (LIBs) due to abundant sodium resources. Accurate and universal state of charge (SOC) estimation is essential for building an effective battery management system (BMS) for these emerging batteries. However, traditional SOC estimation methods for LIBs cannot be directly applied to SIBs due to significant differences in charge–discharge mechanisms and electrochemical characteristics. To address challenges with SIBs, this study proposes a novel framework integrating deep learning models. The BiLSTM is implemented to learn patterns from current and voltage time series. Additionally, the N-BEATS network extracts high-level features without manual feature engineering to mitigate the low sensitivity of SOC to voltage. By combining strengths of both networks, the fused model enhances SOC prediction robustness. Specifically, the proposed model is trained under various operating conditions and evaluated on both training and untrained datasets. Experiments demonstrate the fused model reduces root mean square error (RMSE) by 11.24% and 74.44% compared to individual N-BEATS and BiLSTM networks. The SOC estimation achieves mean absolute error (MAE) and RMSE below 0.30% and 0.39%, respectively. This research can inform the development of effective BMS for practical applications of SIBs, paving the way to the application of the new battery type.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
EI入藏号
20242116138377
EI主题词
Battery management systems ; Charging (batteries) ; Deep learning ; Electric discharges ; Learning systems ; Lithium-ion batteries ; Mean square error ; Metal ions ; Time series ; Time series analysis
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Metallurgy:531.1 ; Electricity: Basic Concepts and Phenomena:701.1 ; Secondary Batteries:702.1.2 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85193777910
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761037
专题南方科技大学
作者单位
1.Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
2.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,Guangdong,518055,China
3.Advanced Energy Storage Technology Research Center,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,Guangdong,518055,China
4.Guangdong Institute of Carbon Neutrality(Shaoguan),Shaoguan,Guangdong,512000,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Sun,Wenjie,Xu,Huan,Zhou,Bangyu,et al. State-of-charge estimation of sodium-ion batteries: A fusion deep learning approach[J]. Journal of Energy Storage,2024,91.
APA
Sun,Wenjie.,Xu,Huan.,Zhou,Bangyu.,Guo,Yuanjun.,Tang,Yongbing.,...&Yang,Zhile.(2024).State-of-charge estimation of sodium-ion batteries: A fusion deep learning approach.Journal of Energy Storage,91.
MLA
Sun,Wenjie,et al."State-of-charge estimation of sodium-ion batteries: A fusion deep learning approach".Journal of Energy Storage 91(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun,Wenjie]的文章
[Xu,Huan]的文章
[Zhou,Bangyu]的文章
百度学术
百度学术中相似的文章
[Sun,Wenjie]的文章
[Xu,Huan]的文章
[Zhou,Bangyu]的文章
必应学术
必应学术中相似的文章
[Sun,Wenjie]的文章
[Xu,Huan]的文章
[Zhou,Bangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。