题名 | DeepSS2GO: protein function prediction from secondary structure |
作者 | |
通讯作者 | Song,Fu V.; Ni,Ming; Liao,Maofu |
发表日期 | 2024-05-01
|
DOI | |
发表期刊 | |
ISSN | 1467-5463
|
EISSN | 1477-4054
|
卷号 | 25期号:3 |
摘要 | Predicting protein function is crucial for understanding biological life processes, preventing diseases and developing new drug targets. In recent years, methods based on sequence, structure and biological networks for protein function annotation have been extensively researched. Although obtaining a protein in three-dimensional structure through experimental or computational methods enhances the accuracy of function prediction, the sheer volume of proteins sequenced by high-throughput technologies presents a significant challenge. To address this issue, we introduce a deep neural network model DeepSS2GO (Secondary Structure to Gene Ontology). It is a predictor incorporating secondary structure features along with primary sequence and homology information. The algorithm expertly combines the speed of sequence-based information with the accuracy of structure-based features while streamlining the redundant data in primary sequences and bypassing the time-consuming challenges of tertiary structure analysis. The results show that the prediction performance surpasses state-of-the-art algorithms. It has the ability to predict key functions by effectively utilizing secondary structure information, rather than broadly predicting general Gene Ontology terms. Additionally, DeepSS2GO predicts five times faster than advanced algorithms, making it highly applicable to massive sequencing data. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85192130702
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/761165 |
专题 | 生命科学学院_化学生物学系 生命科学学院 |
作者单位 | 1.Department of Chemical Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,Xueyuan Avenue,518055,China 2.Gemini Data Japan,Tokyo,Kitaku Oujikamiya 1-11-11,115-0043,Japan 3.Queen Mary University of London,London,Mile End Road,E1 4NS,United Kingdom 4.MGI Tech,Shenzhen,Beishan Industrial Zone,518083,China 5.Institute for Biological Electron Microscopy,Southern University of Science and Technology,Shenzhen,Xueyuan Avenue,518055,China |
第一作者单位 | 化学生物学系; 生命科学学院 |
通讯作者单位 | 化学生物学系; 生命科学学院; 南方科技大学 |
第一作者的第一单位 | 化学生物学系; 生命科学学院 |
推荐引用方式 GB/T 7714 |
Song,Fu V.,Su,Jiaqi,Huang,Sixing,et al. DeepSS2GO: protein function prediction from secondary structure[J]. Briefings in Bioinformatics,2024,25(3).
|
APA |
Song,Fu V..,Su,Jiaqi.,Huang,Sixing.,Zhang,Neng.,Li,Kaiyue.,...&Liao,Maofu.(2024).DeepSS2GO: protein function prediction from secondary structure.Briefings in Bioinformatics,25(3).
|
MLA |
Song,Fu V.,et al."DeepSS2GO: protein function prediction from secondary structure".Briefings in Bioinformatics 25.3(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论