中文版 | English
题名

DeepSS2GO: protein function prediction from secondary structure

作者
通讯作者Song,Fu V.; Ni,Ming; Liao,Maofu
发表日期
2024-05-01
DOI
发表期刊
ISSN
1467-5463
EISSN
1477-4054
卷号25期号:3
摘要

Predicting protein function is crucial for understanding biological life processes, preventing diseases and developing new drug targets. In recent years, methods based on sequence, structure and biological networks for protein function annotation have been extensively researched. Although obtaining a protein in three-dimensional structure through experimental or computational methods enhances the accuracy of function prediction, the sheer volume of proteins sequenced by high-throughput technologies presents a significant challenge. To address this issue, we introduce a deep neural network model DeepSS2GO (Secondary Structure to Gene Ontology). It is a predictor incorporating secondary structure features along with primary sequence and homology information. The algorithm expertly combines the speed of sequence-based information with the accuracy of structure-based features while streamlining the redundant data in primary sequences and bypassing the time-consuming challenges of tertiary structure analysis. The results show that the prediction performance surpasses state-of-the-art algorithms. It has the ability to predict key functions by effectively utilizing secondary structure information, rather than broadly predicting general Gene Ontology terms. Additionally, DeepSS2GO predicts five times faster than advanced algorithms, making it highly applicable to massive sequencing data.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85192130702
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761165
专题生命科学学院_化学生物学系
生命科学学院
作者单位
1.Department of Chemical Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,Xueyuan Avenue,518055,China
2.Gemini Data Japan,Tokyo,Kitaku Oujikamiya 1-11-11,115-0043,Japan
3.Queen Mary University of London,London,Mile End Road,E1 4NS,United Kingdom
4.MGI Tech,Shenzhen,Beishan Industrial Zone,518083,China
5.Institute for Biological Electron Microscopy,Southern University of Science and Technology,Shenzhen,Xueyuan Avenue,518055,China
第一作者单位化学生物学系;  生命科学学院
通讯作者单位化学生物学系;  生命科学学院;  南方科技大学
第一作者的第一单位化学生物学系;  生命科学学院
推荐引用方式
GB/T 7714
Song,Fu V.,Su,Jiaqi,Huang,Sixing,et al. DeepSS2GO: protein function prediction from secondary structure[J]. Briefings in Bioinformatics,2024,25(3).
APA
Song,Fu V..,Su,Jiaqi.,Huang,Sixing.,Zhang,Neng.,Li,Kaiyue.,...&Liao,Maofu.(2024).DeepSS2GO: protein function prediction from secondary structure.Briefings in Bioinformatics,25(3).
MLA
Song,Fu V.,et al."DeepSS2GO: protein function prediction from secondary structure".Briefings in Bioinformatics 25.3(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song,Fu V.]的文章
[Su,Jiaqi]的文章
[Huang,Sixing]的文章
百度学术
百度学术中相似的文章
[Song,Fu V.]的文章
[Su,Jiaqi]的文章
[Huang,Sixing]的文章
必应学术
必应学术中相似的文章
[Song,Fu V.]的文章
[Su,Jiaqi]的文章
[Huang,Sixing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。