中文版 | English
题名

Enhancing UAV tracking: a focus on discriminative representations using contrastive instances

作者
通讯作者Li,Shuiwang
发表日期
2024-05-01
DOI
发表期刊
ISSN
1861-8200
EISSN
1861-8219
卷号21期号:3
摘要
Addressing the core challenges of achieving both high efficiency and precision in UAV tracking is crucial due to limitations in computing resources, battery capacity, and maximum load capacity on UAVs. Discriminative correlation filter (DCF)-based trackers excel in efficiency on a single CPU but lag in precision. In contrast, many lightweight deep learning (DL)-based trackers based on model compression strike a better balance between efficiency and precision. However, higher compression rates can hinder performance by diminishing discriminative representations. Given these challenges, our paper aims to enhance feature representations’ discriminative abilities through an innovative feature-learning approach. We specifically emphasize leveraging contrasting instances to achieve more distinct representations for effective UAV tracking. Our method eliminates the need for manual annotations and facilitates the creation and deployment of lightweight models. As far as our knowledge goes, we are the pioneers in exploring the possibilities of contrastive learning in UAV tracking applications. Through extensive experimentation across four UAV benchmarks, namely, UAVDT, DTB70, UAV123@10fps and VisDrone2018, We have shown that our DRCI (discriminative representation with contrastive instances) tracker outperforms current state-of-the-art UAV tracking methods, underscoring its potential to effectively tackle the persistent challenges in this field.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
Scopus记录号
2-s2.0-85190891226
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/761179
专题南方科技大学
作者单位
1.College of Computer Science and Engineering,Guilin University of Technology,Guilin,541000,China
2.Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518000,China
3.College of Computer Science,Sichuan University,Chengdu,30332,China
推荐引用方式
GB/T 7714
Wang,Xucheng,Zeng,Dan,Li,Yongxin,et al. Enhancing UAV tracking: a focus on discriminative representations using contrastive instances[J]. Journal of Real-Time Image Processing,2024,21(3).
APA
Wang,Xucheng,Zeng,Dan,Li,Yongxin,Zou,Mingliang,Zhao,Qijun,&Li,Shuiwang.(2024).Enhancing UAV tracking: a focus on discriminative representations using contrastive instances.Journal of Real-Time Image Processing,21(3).
MLA
Wang,Xucheng,et al."Enhancing UAV tracking: a focus on discriminative representations using contrastive instances".Journal of Real-Time Image Processing 21.3(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Xucheng]的文章
[Zeng,Dan]的文章
[Li,Yongxin]的文章
百度学术
百度学术中相似的文章
[Wang,Xucheng]的文章
[Zeng,Dan]的文章
[Li,Yongxin]的文章
必应学术
必应学术中相似的文章
[Wang,Xucheng]的文章
[Zeng,Dan]的文章
[Li,Yongxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。