中文版 | English
题名

Fabrication of flexible polymer-based high-voltage solid-state lithium metal batteries

姓名
姓名拼音
WEI Zhenyao
学号
12068033
学位类型
博士
学位专业
哲学博士
导师
邓永红
导师单位
材料科学与工程系
外机构导师
Zheng Zijian
外机构导师单位
The Hong Kong Polytechnic University
论文答辩日期
2024-01-19
论文提交日期
2024-06-17
学位授予单位
香港理工大学
学位授予地点
香港
摘要

Commercial lithium-ion batteries have been widely applied in electric vehicles, portable electronics, and large-scale energy systems. The emergency of solid-state electrolytes could increase energy density and improve the safety concerns of batteries. However, many challenges must be addressed to meet the requirements of industrial applications. Firstly, the interfacial contact between solid-state electrolytes needs to be improved due to the solid-solid contact. Secondly, the electrochemical stability of polymer electrolytes restricts the further enhancement of energy density because of the poor compatibility with high-voltage cathodes. Impressively, the solid-state feature of solid-state electrolytes enables the realization of internal bipolar configuration once the compatibility of the current collector for lithium metal anode and cathodes are optimized.

 

Firstly, UV-cured polymer electrolyte is synthesized via photo-polymerization of poly (ethylene glycol) methyl ether methacrylate and poly (ethylene glycol) diacrylate. The obtained polymer electrolyte exhibits a high ionic conductivity of 2.95 × 10−5 S cm−1 at 30°C, a wide electrochemical stable window of up to 4.69 V (vs. Li/Li+), and excellent compatibility against lithium metal electrodes over 800 h. Besides, an integrated cathode/electrolyte interface is constructed by pouring the polymer electrolyte precursor onto the cathode layer. This integrated cell exhibits faster Li-ion diffusion in cathodic electrochemical reactions than conventional cells. Moreover, LiMn0.8Fe0.2PO4||Li cells with integrated cathode/electrolyte interface deliver a reversible capacity of 164.7 mAh g−1 at 0.1 C and retain a capacity of 134.4 mAh g−1 after 240 cycles at 0.2 C. Furthermore, the integrated cells perform satisfactorily under disastrous conditions, presenting high safety. The UV cross-linked polymer electrolyte is a promising candidate for high energy density all-solid-state lithium metal batteries.

 

Secondly, we designed and synthesized a fluorine-based polymer electrolyte with poly(ethylene glycol) diglycidyl ether copolymerizing with glycidyl 2,2,3,3-tetrafluoropropyl ether for safe and stable all-solid-state lithium batteries. Introducing TFE enhances the ionic conductivity, widens the electrochemical stable window, and improves the stability with the lithium metal anode. Moreover, the constructed LiF-rich solid electrolyte interface ensures the symmetric lithium metal cell cycling for 2000 h under 0.2 mA cm-2. The assembled all-solid-state lithium batteries paired with LiNi0.6Co0.2Mn0.2O2 demonstrate outstanding capacity retention after 300 cycles with coulombic efficiency of 99.95% and long-term charge/discharge stability with LiFePO4 for 700 cycles. Notably, the assembled pouch cell exhibits excellent flexibility with a capacity retention of 93.8% after 3000 bending cycles under a radius of 4 mm. Therefore, introducing fluorine-based components into the polymer structure effectively stabilizes high-voltage cathode during long-term operation.

 

Thirdly, nickel--coated PET (Ni-PET) fabric was fabricated through a polymer-assisted metal deposition method to support cathodic and anode materials. Ni-PET fabric shows excellent flexibility after bending 10000 cycles under a bending radius of 5.0 mm. The electrochemical performance of Ni-PET batteries is similar to those with Al current collectors, delivering capacity retention of 85.4% after 500 cycles at 0.5 C. In addition, Ni-PET can also act as a bipolar substrate due to the compatible stability of nickel metal and lithium metal. The polarization voltage of the internal bipolar battery is lower than the external bipolar configuration. The capacity retention of assembled bipolar batteries with Ni-PET is 95.4% after 250 cycles. Furthermore, the bending process decreases resistance, increasing capacity after 200 bending cycles. The coulombic efficiency of the bipolar battery is up to 99.8% during the dynamic bending test, showing great flexibility with PET-based current collectors.

 

In conclusion, this thesis offered effective strategies to improve the energy density of all-solid-state lithium metal batteries. The interfacial contact between the electrolyte and cathode was addressed by constructing the integrated structure. Fluorine-based polymer electrolytes enhanced the compatible stability with high-voltage cathodes. Moreover, the bipolar configuration of solid-state batteries was optimized by introducing a Ni-PET current collector. The proposed strategies provide a solid foundation for industrial applications in the future.

关键词
语种
英语
培养类别
联合培养
入学年份
2020
学位授予年份
2024-04
参考文献列表

1. Fu, K. K.; Cheng, J.; Li, T.; Hu, L., Flexible Batteries: From Mechanics to Devices. ACS Energy Lett. 2016, 1 (5), 1065-1079.
2. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451, 652-657.
3. Goodenough, J. B.; Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-1176.
4. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303-4418.
5. Yuan, M.; Liu, K., Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 2020, 43, 58-70.
6. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23 (8), 947-958.
7. Quartarone, E.; Mustarelli, P., Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 2011, 40 (5), 2525-2540.
8. Li, F.; Kitaura, H.; Zhou, H., The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 2013, 6 (8), 2302-2311.
9. Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O., Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Appl. Mater. Interfaces 2016, 8 (16), 10617-26.
10. Xu, X.; Wang, S.; Wang, H.; Hu, C.; Jin, Y.; Liu, J.; Yan, H., Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J. Energy Chem. 2018, 27 (2), 513-527.
11. Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; He, C.; Kaskel, S.; Zhang, Q., Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Lett. 2020, 5 (3), 833-843.
12. Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A., Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5 (3), 229-252.
13. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 2014, 43 (13), 4714-4727.
14. Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W., Solid Garnet Batteries. Joule 2019, 3 (5), 1190-1199.
15. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14 (5), 2577-2619.
16. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X., Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018, 14, 58-74.
17. Zhang, L.; Wang, S.; Wang, Q.; Shao, H.; Jin, Z., Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. Adv. Mater. n/a (n/a), 2303355.
18. Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G., Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Adv. Mater. 2019, 31 (50), 1902029.
19. Liu, T.; Yuan, Y.; Tao, X.; Lin, Z.; Lu, J., Bipolar Electrodes for Next-Generation Rechargeable Batteries. Adv. Sci. 2020, 7 (17), 2001207.

20. Wu, J.; Yuan, L.; Zhang, W.; Li, Z.; Xie, X.; Huang, Y., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14 (1), 12-36.
21. Um, H.-D.; Choi, K.-H.; Hwang, I.; Kim, S.-H.; Seo, K.; Lee, S.-Y., Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 2017, 10 (4), 931-940.
22. Kim, S.-H.; Choi, K.-H.; Cho, S.-J.; Yoo, J.; Lee, S.-S.; Lee, S.-Y., Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 2018, 11 (2), 321-330.
23. Janek, J.; Zeier, W. G., A solid future for battery development. Nat. Energy 2016, 1 (9), 16141.
24. Wei, Z.; Chen, S.; Wang, J.; Wang, Z.; Zhang, Z.; Yao, X.; Deng, Y.; Xu, X., Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J. Mater. Chem. A 2018, 6 (27), 13438-13447.
25. Shin, H.-S.; Ryu, M.-H.; Park, M.-S.; Kim, H.; Jung, K.-N.; Lee, J.-W., Tailoring percolative conduction networks and reaction interfaces via infusion of polymeric ionic conductor for high-performance solid-state batteries. Chem. Eng. J. 2021, 408, 127274.
26. Duan, H.; Yin, Y.-X.; Zeng, X.-X.; Li, J.-Y.; Shi, J.-L.; Shi, Y.; Wen, R.; Guo, Y.-G.; Wan, L.-J., In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85-91.
27. Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; Zhang, X.; Zong, L.; Wang, J.; Chen, L.-Q.; Qin, J.; Cui, Y., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14 (7), 705-711.
28. Liu, C.; Zhu, F.; Huang, Z.; Liao, W.; Guan, X.; Li, Y.; Chen, D.; Lu, Z., An integrate and ultra-flexible solid-state lithium battery enabled by in situ polymerized solid electrolyte. Chem. Eng. J. 2022, 434, 134644.
29. Wu, J.; Rao, Z.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y., Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2019, 9 (46), 1902767.
30. Wang, Z.; Shen, L.; Deng, S.; Cui, P.; Yao, X., 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Adv. Mater. 2021, 33 (25), 2100353.31. Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K. G.; Bucharsky, E. C.; Hoffmann, M. J.; Ehrenberg, H., Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor. Inorg. Chem. 2016, 55 (6), 2941-2945.32. Inaguma, Y.; Chen, L.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. J. S. S. C., High ionic conductivity in lithium lanthanum titanate. 1993, 86 (10), 689-693.33. Huggins, R. A. J. E. A., Recent results on lithium ion conductors. 1977, 22 (7), 773-781.34. Li, Y.; Chen, X.; Dolocan, A.; Cui, Z.; Xin, S.; Xue, L.; Xu, H.; Park, K.; Goodenough, J. B., Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. J Am Chem Soc 2018, 140 (20), 6448-6455.35. Zhao, Y.; Daemen, L. L., Superionic conductivity in lithium-rich anti-perovskites. J Am Chem Soc 2012, 134 (36), 15042-7.36. Ren, Y.; Chen, K.; Chen, R.; Liu, T.; Zhang, Y.; Nan, C.-W., Oxide Electrolytes for Lithium Batteries. J. Am. Ceram. Soc. 2015, 98 (12), 3603-3623.37. Bai, H.; Hu, J.; Li, X.; Duan, Y.; Shao, F.; Kozawa, T.; Naito, M.; Zhang, J., Influence of LiBO2 addition on the microstructure and lithium-ion conductivity of Li1+xAlxTi2−x(PO4)3(x = 0.3) ceramic electrolyte. Ceram. Int. 2018, 44 (6), 6558-6563.38. Cheng, L.; Park, J. S.; Hou, H.; Zorba, V.; Chen, G.; Richardson, T.; Cabana, J.; Russo, R.; Doeff, M., Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. J. Mater. Chem. A 2014, 2 (1), 172-181.39. Lan, W.; Fan, H.; Lau, V. W.-h.; Zhang, J.; Zhang, J.; Zhao, R.; Chen, H., Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications. Sustainable Energy Fuels 2020, 4 (4), 1812-1821.40. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 2009, 182 (8), 2046-2052.41. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W., Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg. Chem. 2011, 50 (3), 1089-1097.42. Kun, R.; Langer, F.; Delle Piane, M.; Ohno, S.; Zeier, W. G.; Gockeln, M.; Colombi Ciacchi, L.; Busse, M.; Fekete, I., Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic Li7La3Zr2O12. ACS Appl. Mater. Interfaces 2018, 10 (43), 37188-37197.43. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat. Mater. 2011, 10 (9), 682-686.44. Sun, Y.; Suzuki, K.; Hori, S.; Hirayama, M.; Kanno, R., Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary System. Chem. Mater. 2017, 29 (14), 5858-5864.45. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1 (4), 16030.46. Epp, V.; Gün, Ö.; Deiseroth, H.-J.; Wilkening, M., Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br. J. Phys. Chem. Letter. 2013, 4 (13), 2118-2123.47. Han, F.; Yue, J.; Fan, X.; Gao, T.; Luo, C.; Ma, Z.; Suo, L.; Wang, C., High-Performance All-Solid-State Lithium–Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Lett. 2016, 16 (7), 4521-4527.48. Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; Roslon, I.; van Eck, E. R. H.; Kentgens, A. P. M.; Wagemaker, M., Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl–Li2S All-Solid-State Li-Ion Battery. J. Am. Chem. Soc. 2016, 138 (35), 11192-11201.49. Yamauchi, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. J. Power Sources 2013, 244, 707-710.50. Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P., Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses. Mater. Res. Bull. 1983, 18 (2), 189-193.51. D. E. Fenton, J. M. P., P. V. Wright, Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589.52. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D., Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114-143.53. Li, Z.; Zhao, Y.; Tenhaeff, W. E., 5 V Stable Nitrile-Bearing Polymer Electrolyte with Aliphatic Segment as Internal Plasticizer. ACS Appl. Energy Mater. 2019, 2 (5), 3264-3273.54. Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y.-R., An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications. Adv. Mater. 2003, 15 (23), 2027-2032.55. Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q., Organic-inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. J. Mater. Chem. A 2017, 5 (34), 18012-18019.56. Borodin, O.; Smith, G. D., Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations. Macromolecules 2006, 39 (4), 1620-1629.57. Zhao, C.-Z.; Zhang, X.-Q.; Cheng, X.-B.; Zhang, R.; Xu, R.; Chen, P.-Y.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A., Early Ed. 2017, 114 (42), 11069-11074.58. Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M., Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. J. Am. Chem. Soc. 2011, 133 (33), 13121-13129.59. Faglioni, F.; Merinov, B. V.; Goddard, W. A.; Kozinsky, B., Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance. Phys. Chem. Chem. Phys. 2018, 20 (41), 26098-26104.60. Cabañero Martínez, M. A.; Boaretto, N.; Naylor, A. J.; Alcaide, F.; Salian, G. D.; Palombarini, F.; Ayerbe, E.; Borras, M.; Casas-Cabanas, M., Are Polymer-Based Electrolytes Ready for High-Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance. Adv. Energy Mater. 2022, 12 (32), 2201264.61. Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L., Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 2020, 5 (3), 826-832.62. Pandian, S.; Adiga, S. P.; Tagade, P.; Hariharan, K. S.; Mayya, K. S.; Lee, Y. G., Electrochemical stability of ether based salt-in-polymer based electrolytes: Computational investigation of the effect of substitution and the type of salt. J. Power Sources 2018, 393, 204-210.63. Xia, Y.; Fujieda, T.; Tatsumi, K.; Prosini, P. P.; Sakai, T., Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 2001, 92 (1), 234-243.64. Yang, Q.; Huang, J.; Li, Y.; Wang, Y.; Qiu, J.; Zhang, J.; Yu, H.; Yu, X.; Li, H.; Chen, L., Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J. Power Sources 2018, 388, 65-70.65. Wang, X.; Zhang, C.; Sawczyk, M.; Sun, J.; Yuan, Q.; Chen, F.; Mendes, T. C.; Howlett, P. C.; Fu, C.; Wang, Y.; Tan, X.; Searles, D. J.; Král, P.; Hawker, C. J.; Whittaker, A. K.; Forsyth, M., Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 2022, 21 (9), 1057-1065.66. Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X. W., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375 (6582), 739-745.67. Su, Y.; Rong, X.; Gao, A.; Liu, Y.; Li, J.; Mao, M.; Qi, X.; Chai, G.; Zhang, Q.; Suo, L.; Gu, L.; Li, H.; Huang, X.; Chen, L.; Liu, B.; Hu, Y.-S., Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 2022, 13 (1), 4181.68. Zhao, C.-Z.; Zhao, Q.; Liu, X.; Zheng, J.; Stalin, S.; Zhang, Q.; Archer, L. A., Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode. Adv. Mater. 2020, 32 (12), 1905629.69. Chen, F.; Yang, D.; Zha, W.; Zhu, B.; Zhang, Y.; Li, J.; Gu, Y.; Shen, Q.; Zhang, L.; Sadoway, D. R., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 2017, 258, 1106-1114.70. Wang, Y.; Ju, J.; Dong, S.; Yan, Y.; Jiang, F.; Cui, L.; Wang, Q.; Han, X.; Cui, G., Facile Design of Sulfide-Based all Solid-State Lithium Metal Battery: In Situ Polymerization within Self-Supported Porous Argyrodite Skeleton. Adv. Funct. Mater. 2021, 31 (28), 2101523.71. Zhou, W.; Wang, Z.; Pu, Y.; Li, Y.; Xin, S.; Li, X.; Chen, J.; Goodenough, J. B., Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries. Adv. Mater. 2019, 31 (4), 1805574.72. Yu, X.; Li, J.; Manthiram, A., Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. ACS Mater. Lett. 2020, 2 (4), 317-324.73. Liang, J.-Y.; Zeng, X.-X.; Zhang, X.-D.; Zuo, T.-T.; Yan, M.; Yin, Y.-X.; Shi, J.-L.; Wu, X.-W.; Guo, Y.-G.; Wan, L.-J., Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. J. Am. Chem. Soc. 2019, 141 (23), 9165-9169.74. Wang, L.-P.; Zhang, X.-D.; Wang, T.-S.; Yin, Y.-X.; Shi, J.-L.; Wang, C.-R.; Guo, Y.-G., Ameliorating the Interfacial Problems of Cathode and Solid-State Electrolytes by Interface Modification of Functional Polymers. Adv. Energy Mater. 2018, 8 (24), 1801528.75. Jung, K.-N.; Shin, H.-S.; Park, M.-S.; Lee, J.-W., Solid-State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry. ChemElectroChem 2019, 6 (15), 3842-3859.76. Saw, L. H.; Ye, Y.; Tay, A. A. O., Integration issues of lithium-ion battery into electric vehicles battery pack. J. Cleaner Prod. 2016, 113, 1032-1045.77. LaFollette, R. M.; Bennion, D. N., Design Fundamentals of High Power Density, Pulsed Discharge, Lead‐Acid Batteries: II . Modeling. J. Electrochem. Soc. 1990, 137 (12), 3701-3707.78. Braithwaite, J. W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S. J.; Peebles, D. E.; Ohlhausen, J. A.; Cieslak, W. R., Corrosion of Lithium‐Ion Battery Current Collectors. J. Electrochem. Soc. 1999, 146 (2), 448-456.79. Myung, S.-T.; Hitoshi, Y.; Sun, Y.-K., Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21 (27), 9891-9911.80. Ogihara, N.; Yasuda, T.; Kishida, Y.; Ohsuna, T.; Miyamoto, K.; Ohba, N., Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for High-Voltage Bipolar Batteries. Angew. Chem., Int. Ed. 2014, 53 (43), 11467-11472.81. Duduta, M.; de Rivaz, S.; Clarke, D. R.; Wood, R. J., Ultra-Lightweight, High Power Density Lithium-Ion Batteries. Batteries Supercaps 2018, 1 (4), 131-134.82. Yoshima, K.; Harada, Y.; Takami, N., Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. J. Power Sources 2016, 302, 283-290.83. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 513-537.84. Shin, H.-S.; Ryu, W.-G.; Park, M.-S.; Jung, K.-N.; Kim, H.; Lee, J.-W., Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte. ChemSusChem 2018, 11 (18), 3184-3190.85. Myung, S.-T.; Sasaki, Y.; Saito, T.; Sun, Y.-K.; Yashiro, H., Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt. Electrochim. Acta 2009, 54 (24), 5804-5812.86. Wei, Z.; Chen, S.; Wang, J.; Wang, Z.; Zhang, Z.; Yao, X.; Deng, Y.; Xu, X., A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J. Power Sources 2018, 394, 57-66.87. Kim, S.-H.; Kim, J.-H.; Cho, S.-J.; Lee, S.-Y., All-Solid-State Printed Bipolar Li–S Batteries. Adv. Energy Mater. 2019, 9 (40), 1901841.88. Zhang, F.; Ji, B.; Tong, X.; Sheng, M.; Zhang, X.; Lee, C.-S.; Tang, Y., A Dual-Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte. Adv. Mater. Interfaces 2016, 3 (23), 1600605.89. Gao, T.; Wang, B.; Fang, H.; Liu, C.; Wang, L.; Liu, G.; Liu, T.; Wang, D., Li3V2(PO4)3 as a cathode additive for the over-discharge protection of lithium ion batteries. RSC Adv. 2016, 6 (80), 76933-76937.90. Geoffroy, I.; Willmann, P.; Mesfar, K.; Carré, B.; Lemordant, D., Electrolytic characteristics of ethylene carbonate–diglyme-based electrolytes for lithium batteries. Electrochim. Acta 2000, 45 (13), 2019-2027.91. Chang, J.; Shang, J.; Sun, Y.; Ono, L. K.; Wang, D.; Ma, Z.; Huang, Q.; Chen, D.; Liu, G.; Cui, Y.; Qi, Y.; Zheng, Z., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 2018, 9 (1), 4480.92. Wang, D.; Chang, J.; Huang, Q.; Chen, D.; Li, P.; Yu, Y.-W. D.; Zheng, Z., Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles. Fundam. Res. 2021, 1 (4), 399-407.93. Wen, L.; Li, F.; Cheng, H.-M., Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Adv. Mater. 2016, 28 (22), 4306-4337.94. Chang, J.; Huang, Q.; Gao, Y.; Zheng, Z., Pathways of Developing High-Energy-Density Flexible Lithium Batteries. Adv. Mater. 2021, 33 (46), 2004419.95. Xu, S.; Zhang, Y.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H.; Cheng, H.; Lu, B.; Yu, C.; Chuang, C.; Kim, T.-i.; Song, T.; Shigeta, K.; Kang, S.; Dagdeviren, C.; Petrov, I.; Braun, P. V.; Huang, Y.; Paik, U.; Rogers, J. A., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4 (1), 1543.96. Koo, M.; Park, K.-I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Lett. 2012, 12 (9), 4810-4816.97. Gwon, H.; Kim, H.-S.; Lee, K. U.; Seo, D.-H.; Park, Y. C.; Lee, Y.-S.; Ahn, B. T.; Kang, K., Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4 (4), 1277-1283.98. Gao, Y.; Guo, Q.; Zhang, Q.; Cui, Y.; Zheng, Z., Fibrous Materials for Flexible Li–S Battery. Adv. Energy Mater. 2021, 11 (15), 2002580.99. Gao, Y.; Hu, H.; Chang, J.; Huang, Q.; Zhuang, Q.; Li, P.; Zheng, Z., Realizing High-Energy and Stable Wire-Type Batteries with Flexible Lithium–Metal Composite Yarns. Adv. Energy Mater. 2021, 11 (40), 2101809.100. Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L., Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8 (17), 1703012.101. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2 (4), 16103.102. Chen, Z.; Kim, G.-T.; Wang, Z.; Bresser, D.; Qin, B.; Geiger, D.; Kaiser, U.; Wang, X.; Shen, Z. X.; Passerini, S., 4-V flexible all-solid-state lithium polymer batteries. Nano Energy 2019, 64, 103986.103. Yu, S.; Xu, Q.; Tsai, C.-L.; Hoffmeyer, M.; Lu, X.; Ma, Q.; Tempel, H.; Kungl, H.; Wiemhöfer, H.-D.; Eichel, R.-A., Flexible All-Solid-State Li-Ion Battery Manufacturable in Ambient Atmosphere. ACS Appl. Mater. Interfaces 2020, 12 (33), 37067-37078.104. Judez, X.; Zhang, H.; Li, C.; Eshetu, G. G.; Zhang, Y.; González-Marcos, J. A.; Armand, M.; Rodriguez-Martinez, L. M., Polymer-Rich Composite Electrolytes for All-Solid-State Li–S Cells. J. Phys. Chem. Lett. 2017, 8 (15), 3473-3477.105. Tsai, C.-L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O., Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Appl. Mater. Interfaces 2016, 8 (16), 10617-10626.106. Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114-16120.107. Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K., Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources 2017, 353, 333-342.108. Goodenough, J. B.; Singh, P., Review—Solid Electrolytes in Rechargeable Electrochemical Cells. J. Electrochem. Soc. 2015, 162 (14), A2387-A2392.109. Keller, M.; Varzi, A.; Passerini, S., Hybrid electrolytes for lithium metal batteries. J. Power Sources 2018, 392, 206-225.110. Kim, S.; Harada, K.; Toyama, N.; Oguchi, H.; Kisu, K.; Orimo, S.-i., Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification. J. Energy Chem. 2020, 43, 47-51.111. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103-16118.112. Judez, X.; Eshetu, G. G.; Li, C.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M., Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule 2018, 2 (11), 2208-2224.113. Wei, Z.; Zhang, Z.; Chen, S.; Wang, Z.; Yao, X.; Deng, Y.; Xu, X., UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature. Energy Storage Mater. 2019, 22, 337-345.114. Chen, S.; Wang, J.; Zhang, Z.; Wu, L.; Yao, L.; Wei, Z.; Deng, Y.; Xie, D.; Yao, X.; Xu, X., In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 2018, 387, 72-80.115. Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; Li, Y.; Wachsman, E. D.; Hu, L., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (26), 7094-7099.116. Wang, Z.; Gu, H.; Wei, Z.; Wang, J.; Yao, X.; Chen, S., Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. Ionics 2019, 25 (3), 907-916.117. Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L., In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries. Adv. Sci. 2017, 4 (2), 1600377-1600385.118. Watanabe, T.; Inafune, Y.; Tanaka, M.; Mochizuki, Y.; Matsumoto, F.; Kawakami, H., Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework. J. Power Sources 2019, 423, 255-262.119. Cui, Y.; Liang, X.; Chai, J.; Cui, Z.; Wang, Q.; He, W.; Liu, X.; Liu, Z.; Cui, G.; Feng, J., High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis. Adv. Sci. 2017, 4 (11), 1700174-1700181.120. Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B., Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138 (30), 9385-8.121. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.122. Sethuraman, V.; Pryamitsyn, V.; Ganesan, V., Influence of molecular weight and degree of segregation on local segmental dynamics of ordered block copolymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54 (9), 859-864.123. Zhou, D.; Liu, R.; He, Y.-B.; Li, F.; Liu, M.; Li, B.; Yang, Q.-H.; Cai, Q.; Kang, F., SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Adv. Energy Mater. 2016, 6 (7), 1502214-1502223.124. Chen, Z.; Chao, D.; Liu, J.; Copley, M.; Lin, J.; Shen, Z.; Kim, G.-T.; Passerini, S., 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. J. Mater. Chem. A 2017, 5 (30), 15669-15675.125. Chen, B.; Huang, Z.; Chen, X.; Zhao, Y.; Xu, Q.; Long, P.; Chen, S.; Xu, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 2016, 210, 905-914.126. Inoue, T.; Mukai, K., Are All-Solid-State Lithium-Ion Batteries Really Safe?–Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. ACS Appl. Mater. Interfaces 2017, 9 (2), 1507-1515.127. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935.128. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.129. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4 (9), 3243-3262.130. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12 (3), 194-206.131. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.132. Zardalidis, G.; Farmakis, F., A Systematic Study Aiming Toward Voltage Noise Elimination in Viscoelastic Poly(methyl methacrylate)–Poly(ethylene oxide) Polymer Blend Electrolytes in Li Metal Battery Cells. Adv. Energy Mater. 2023, 2301035.133. Zhang, X.; Su, Q.; Du, G.; Xu, B.; Wang, S.; Chen, Z.; Wang, L.; Huang, W.; Pang, H., Stabilizing Solid-state Lithium Metal Batteries through In Situ Generated Janus-heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes. Angew. Chem., Int. Ed. 2023, e202304947.134. Xu, H.; Zhang, J.; Zhang, H.; Long, J.; Xu, L.; Mai, L., In Situ Topological Interphases Boosting Stable Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2023, 13 (21), 2204411.135. Jiang, F.; Wang, Y.; Ju, J.; Zhou, Q.; Cui, L.; Wang, J.; Zhu, G.; Miao, H.; Zhou, X.; Cui, G., Percolated Sulfide in Salt-Concentrated Polymer Matrices Extricating High-Voltage All-Solid-State Lithium-metal Batteries. Adv. Sci. 2022, 9 (25), 2202474.136. Li, L.; Duan, H.; Li, J.; Zhang, L.; Deng, Y.; Chen, G., Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Adv. Energy Mater. 2021, 11 (28), 2003154.137. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G., Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 1999, 398 (6730), 792.138. Homann, G.; Stolz, L.; Neuhaus, K.; Winter, M.; Kasnatscheew, J., Effective Optimization of High Voltage Solid-State Lithium Batteries by Using Poly(ethylene oxide)-Based Polymer Electrolyte with Semi-Interpenetrating Network. Adv. Funct. Mater. 2020, 30 (46), 2006289.139. Wang, X.; Song, Y.; Jiang, X.; Liu, Q.; Dong, J.; Wang, J.; Zhou, X.; Li, B.; Yin, G.; Jiang, Z.; Wang, J., Constructing Interfacial Nanolayer Stabilizes 4.3 V High-Voltage All-Solid-State Lithium Batteries with PEO-Based Solid-State Electrolyte. Adv. Funct. Mater. 2022, 32 (23), 2113068.140. Chen, H.; Adekoya, D.; Hencz, L.; Ma, J.; Chen, S.; Yan, C.; Zhao, H.; Cui, G.; Zhang, S., Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery. Adv. Energy Mater. 2020, 10 (21), 2000049.141. Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S.-J.; Nordlund, D.; Liu, Y.; Yu, X.; Bai, X.; Li, H.; Chen, L., Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte. Adv. Funct. Mater. 2020, 30 (22), 1909392.142. Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G., Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery. Adv. Sci. 2019, 6 (22), 1901036.143. Fu, C.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A., Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 2020, 19 (7), 758-766.144. Hwang, S. S.; Cho, C. G.; Kim, H., Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem. Commun. 2010, 12 (7), 916-919.145. Nair, J. R.; Shaji, I.; Ehteshami, N.; Thum, A.; Diddens, D.; Heuer, A.; Winter, M., Solid Polymer Electrolytes for Lithium Metal Battery via Thermally Induced Cationic Ring-Opening Polymerization (CROP) with an Insight into the Reaction Mechanism. Chem. Mater. 2019, 31 (9), 3118-3133.146. Zhang, G.; Chang, J.; Wang, L.; Li, J.; Wang, C.; Wang, R.; Shi, G.; Yu, K.; Huang, W.; Zheng, H.; Wu, T.; Deng, Y.; Lu, J., A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 2023, 14 (1), 1081.147. Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; Zheng, Y.; Amanchukwu, C. V.; Hung, S. T.; Ma, Y.; Lomeli, E. G.; Qin, J.; Cui, Y.; Bao, Z., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5 (7), 526-533.148. Gao, Y.; Hu, B.; Yao, Y.; Chen, Q., Segmental Dynamics of PEO/LiClO4 Complex Crystals and Their Influence on the Li+-Ion Transportation in Crystal Lattices: A 13C Solid-State NMR Approach. Chem. - Eur. J. 2011, 17 (32), 8941-8946.149. Wei, L.; Gao, Y.; Hu, B.; Chen, Q., Structures of crystalline and amorphous phases of the poly(ethylene oxide)/lithium trifluoromethanesulfonate complexes as studied by solid-state high-resolution 13C nuclear magnetic resonance. Polymer 2013, 54 (3), 1184-1189.150. Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z., A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. J. Am. Chem. Soc. 2020, 142 (16), 7393-7403.151. Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A., Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4 (5), 365-373.152. Wong, D. H. C.; Thelen, J. L.; Fu, Y.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; DeSimone, J. M., Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. 2014, 111 (9), 3327-3331.153. Pathirana, T.; Kerr, R.; Forsyth, M.; Howlett, P. C., Electrochemical Formation in Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte Using Symmetric Li-Metal Coin Cells. J. Electrochem. Soc. 2020, 167 (12), 120526.154. Luo, J.; Fang, C.-C.; Wu, N.-L., High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Adv. Energy Mater. 2018, 8 (2), 1701482.155. Zhao, Y.; Zhou, T.; Mensi, M.; Choi, J. W.; Coskun, A., Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 2023, 14 (1), 299.156. Cha, J.; Han, J.-G.; Hwang, J.; Cho, J.; Choi, N.-S., Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J. Power Sources 2017, 357, 97-106.157. Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; Su, D.; Yang, X.-Q.; Wang, C., Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule 2019, 3 (10), 2550-2564.158. Liu, Y.; Hu, R.; Zhang, D.; Liu, J.; Liu, F.; Cui, J.; Lin, Z.; Wu, J.; Zhu, M., Constructing Li-Rich Artificial SEI Layer in Alloy–Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All-Solid-State Lithium Metal Batteries. Adv. Mater. 2021, 33 (11), 2004711.159. Fraile-Insagurbe, D.; Boaretto, N.; Aldalur, I.; Raposo, I.; Bonilla, F. J.; Armand, M.; Martínez-Ibañez, M., Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Res. 2023, 16 (6), 8457-8468.160. Ma, M.; Shao, F.; Wen, P.; Chen, K.; Li, J.; Zhou, Y.; Liu, Y.; Jia, M.; Chen, M.; Lin, X., Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability toward Li Anodes and High-Voltage Cathodes. ACS Energy Lett. 2021, 6 (12), 4255-4264.161. Yusim, Y.; Trevisanello, E.; Ruess, R.; Richter, F. H.; Mayer, A.; Bresser, D.; Passerini, S.; Janek, J.; Henss, A., Evaluation and Improvement of the Stability of Poly(ethylene oxide)-based Solid-state Batteries with High-Voltage Cathodes. Angew. Chem., Int. Ed. 2023, 62 (12), e202218316.162. Zhai, H.; Gong, T.; Xu, B.; Cheng, Q.; Paley, D.; Qie, B.; Jin, T.; Fu, Z.; Tan, L.; Lin, Y.-H.; Nan, C.-W.; Yang, Y., Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating. ACS Appl. Mater. Interfaces 2019, 11 (32), 28774-28780.163. Wu, N.; Chien, P.-H.; Li, Y.; Dolocan, A.; Xu, H.; Xu, B.; Grundish, N. S.; Jin, H.; Hu, Y.-Y.; Goodenough, J. B., Fast Li+ Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. J. Am. Chem. Soc. 2020, 142 (5), 2497-2505.164. Liang, J.; Hwang, S.; Li, S.; Luo, J.; Sun, Y.; Zhao, Y.; Sun, Q.; Li, W.; Li, M.; Banis, M. N.; Li, X.; Li, R.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Su, D.; Sun, X., Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 2020, 78, 105107.165. Brecher, A., 9 - Transit Bus Applications of Lithium-Ion Batteries: Progress and Prospects. In Lithium-Ion Batteries, Pistoia, G., Ed. Elsevier: Amsterdam, 2014; pp 177-203.166. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5 (7), 7854-7863.167. Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30 (33), 1800561.168. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. J. Power Sources 2018, 382, 160-175.169. Karami, H.; Mousavi, M. F.; Shamsipur, M., A novel dry bipolar rechargeable battery based on polyaniline. J. Power Sources 2003, 124 (1), 303-308.170. Shen, D. H.; Halpert, G., Design concepts of high power bipolar rechargeable lithium battery. J. Power Sources 1993, 43 (1), 327-338.171. Pang, M.-C.; Wei, Y.; Wang, H.; Marinescu, M.; Yan, Y.; Offer, G. J., Large-Format Bipolar and Parallel Solid-State Lithium-Metal Cell Stacks: A Thermally Coupled Model-Based Comparative Study. J. Electrochem. Soc. 2020, 167 (16), 160555.172. Hou, Z.; Mao, W.; Zhang, Z.; Chen, J.; Ao, H.; Qian, Y., Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 2022, 15 (6), 5072-5080.173. Mei, W.; Chen, H.; Sun, J.; Wang, Q., Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective. Appl. Therm. Eng. 2018, 142, 148-165.174. Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H., Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7.175. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A., Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3 (1), 16-21.176. Gambe, Y.; Sun, Y.; Honma, I., Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex. Sci. Rep. 2015, 5 (1), 8869.177. Nam, Y. J.; Cho, S.-J.; Oh, D. Y.; Lim, J.-M.; Kim, S. Y.; Song, J. H.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y. S., Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Lett. 2015, 15 (5), 3317-3323.178. Zhang, Z.; Zhao, Y.; Chen, S.; Xie, D.; Yao, X.; Cui, P.; Xu, X., An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J. Mater. Chem. A 2017, 5 (32), 16984-16993.179. Kim, J.-H.; Hwang, I.; Kim, S.-H.; Park, J.; Jin, W.; Seo, K.; Lee, S.-Y., Voltage-tunable portable power supplies based on tailored integration of modularized silicon photovoltaics and printed bipolar lithium-ion batteries. J. Mater. Chem. A 2020, 8 (32), 16291-16301.180. Zheng, S.; Wu, Z.-S.; Zhou, F.; Wang, X.; Ma, J.; Liu, C.; He, Y.-B.; Bao, X., All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613-620.181. Lee, J.; Song, J.; Lee, H.; Noh, H.; Kim, Y.-J.; Kwon, S. H.; Lee, S. G.; Kim, H.-T., A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries. ACS Energy Lett. 2017, 2 (5), 1232-1239.182. Chen, Z.; Kim, G.-T.; Kim, J.-K.; Zarrabeitia, M.; Kuenzel, M.; Liang, H.-P.; Geiger, D.; Kaiser, U.; Passerini, S., Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer. Adv. Energy Mater. 2021, 11 (30), 2101339.183. Kim, H. W.; Manikandan, P.; Lim, Y. J.; Kim, J. H.; Nam, S.-c.; Kim, Y., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4 (43), 17025-17032.184. Pervez, S. A.; Kim, G.; Vinayan, B. P.; Cambaz, M. A.; Kuenzel, M.; Hekmatfar, M.; Fichtner, M.; Passerini, S., Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Small 2020, 16 (14), 2000279.185. Whitehead, A. H.; Schreiber, M., Current Collectors for Positive Electrodes of Lithium-Based Batteries. J. Electrochem. Soc. 2005, 152 (11), A2105.186. Li, P.; Zhang, Y.; Zheng, Z., Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Adv. Mater. 2019, 31 (37), 1902987.187. Gao, Y.; Xie, C.; Zheng, Z., Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Adv. Energy Mater. 2021, 11 (3), 2002838.188. Cho, K.; Baek, J.; Balamurugan, C.; Im, H.; Kim, H.-J., Corrosion study of nickel-coated copper and chromate-coated aluminum for corrosion-resistant lithium-ion battery lead-tab. J. Ind. Eng. Chem. 2022, 106, 537-545.189. Chang, J.; Hu, H.; Shang, J.; Fang, R.; Shou, D.; Xie, C.; Gao, Y.; Yang, Y.; Zhuang, Q. N.; Lu, X.; Zhang, Y. K.; Li, F.; Zheng, Z., Rational Design of Li-Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. Small 2022, 18 (2), 2105308.190. Meyer, W. H., Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater. 1998, 10 (6), 439-448.191. Yamada, H.; Bhattacharyya, A. J.; Maier, J., Extremely High Silver Ionic Conductivity in Composites of Silver Halide (AgBr, AgI) and Mesoporous Alumina. Adv. Funct. Mater. 2006, 16 (4), 525-530.192. Lee, K.; Choi, J. H.; Lee, H. M.; Kim, K. J.; Choi, J. W., Solution-Processed Metal Coating to Nonwoven Fabrics for Wearable Rechargeable Batteries. Small 2018, 14 (43), 1703028.193. Kim, S.-H.; Kim, N.-Y.; Choe, U.-J.; Kim, J.-M.; Lee, Y.-G.; Lee, S.-Y., Ultrahigh-Energy-Density Flexible Lithium-Metal Full Cells based on Conductive Fibrous Skeletons. Adv. Energy Mater. 2021, 11 (24), 2100531.194. Yao, Y.; Wei, Z.; Wang, H.; Huang, H.; Jiang, Y.; Wu, X.; Yao, X.; Wu, Z.-S.; Yu, Y., Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. Adv. Energy Mater. 2020, 10 (12), 1903698.195. Pan, H.; Zhang, M.; Cheng, Z.; Jiang, H.; Yang, J.; Wang, P.; He, P.; Zhou, H., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Science Advances 2022, 8 (15), eabn4372.196. Teng, J.; Tang, X.; Li, H.; Wu, Q.; Zhao, D.; Li, J., Al–Li alloys as bifunctional sacrificial lithium sources for prelithiation of high-energy-density Li-ion batteries. Journal of Power Sources 2022, 540, 231642.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765590
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Wei ZY. Fabrication of flexible polymer-based high-voltage solid-state lithium metal batteries[D]. 香港. 香港理工大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12068033-魏振耀-材料科学与工程(11232KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[魏振耀]的文章
百度学术
百度学术中相似的文章
[魏振耀]的文章
必应学术
必应学术中相似的文章
[魏振耀]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。