1. Fu, K. K.; Cheng, J.; Li, T.; Hu, L., Flexible Batteries: From Mechanics to Devices. ACS Energy Lett. 2016, 1 (5), 1065-1079.
2. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451, 652-657.
3. Goodenough, J. B.; Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-1176.
4. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303-4418.
5. Yuan, M.; Liu, K., Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem. 2020, 43, 58-70.
6. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S., Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23 (8), 947-958.
7. Quartarone, E.; Mustarelli, P., Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 2011, 40 (5), 2525-2540.
8. Li, F.; Kitaura, H.; Zhou, H., The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 2013, 6 (8), 2302-2311.
9. Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O., Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Appl. Mater. Interfaces 2016, 8 (16), 10617-26.
10. Xu, X.; Wang, S.; Wang, H.; Hu, C.; Jin, Y.; Liu, J.; Yan, H., Recent progresses in the suppression method based on the growth mechanism of lithium dendrite. J. Energy Chem. 2018, 27 (2), 513-527.
11. Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; He, C.; Kaskel, S.; Zhang, Q., Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Lett. 2020, 5 (3), 833-843.
12. Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A., Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5 (3), 229-252.
13. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 2014, 43 (13), 4714-4727.
14. Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W., Solid Garnet Batteries. Joule 2019, 3 (5), 1190-1199.
15. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14 (5), 2577-2619.
16. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X., Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018, 14, 58-74.
17. Zhang, L.; Wang, S.; Wang, Q.; Shao, H.; Jin, Z., Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. Adv. Mater. n/a (n/a), 2303355.
18. Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G., Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries. Adv. Mater. 2019, 31 (50), 1902029.
19. Liu, T.; Yuan, Y.; Tao, X.; Lin, Z.; Lu, J., Bipolar Electrodes for Next-Generation Rechargeable Batteries. Adv. Sci. 2020, 7 (17), 2001207.
20. Wu, J.; Yuan, L.; Zhang, W.; Li, Z.; Xie, X.; Huang, Y., Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14 (1), 12-36.
21. Um, H.-D.; Choi, K.-H.; Hwang, I.; Kim, S.-H.; Seo, K.; Lee, S.-Y., Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. 2017, 10 (4), 931-940.
22. Kim, S.-H.; Choi, K.-H.; Cho, S.-J.; Yoo, J.; Lee, S.-S.; Lee, S.-Y., Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 2018, 11 (2), 321-330.
23. Janek, J.; Zeier, W. G., A solid future for battery development. Nat. Energy 2016, 1 (9), 16141.
24. Wei, Z.; Chen, S.; Wang, J.; Wang, Z.; Zhang, Z.; Yao, X.; Deng, Y.; Xu, X., Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J. Mater. Chem. A 2018, 6 (27), 13438-13447.
25. Shin, H.-S.; Ryu, M.-H.; Park, M.-S.; Kim, H.; Jung, K.-N.; Lee, J.-W., Tailoring percolative conduction networks and reaction interfaces via infusion of polymeric ionic conductor for high-performance solid-state batteries. Chem. Eng. J. 2021, 408, 127274.
26. Duan, H.; Yin, Y.-X.; Zeng, X.-X.; Li, J.-Y.; Shi, J.-L.; Shi, Y.; Wen, R.; Guo, Y.-G.; Wan, L.-J., In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater. 2018, 10, 85-91.
27. Wan, J.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; Zhang, X.; Zong, L.; Wang, J.; Chen, L.-Q.; Qin, J.; Cui, Y., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14 (7), 705-711.
28. Liu, C.; Zhu, F.; Huang, Z.; Liao, W.; Guan, X.; Li, Y.; Chen, D.; Lu, Z., An integrate and ultra-flexible solid-state lithium battery enabled by in situ polymerized solid electrolyte. Chem. Eng. J. 2022, 434, 134644.
29. Wu, J.; Rao, Z.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y., Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2019, 9 (46), 1902767.
30. Wang, Z.; Shen, L.; Deng, S.; Cui, P.; Yao, X., 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Adv. Mater. 2021, 33 (25), 2100353.31. Monchak, M.; Hupfer, T.; Senyshyn, A.; Boysen, H.; Chernyshov, D.; Hansen, T.; Schell, K. G.; Bucharsky, E. C.; Hoffmann, M. J.; Ehrenberg, H., Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor. Inorg. Chem. 2016, 55 (6), 2941-2945.32. Inaguma, Y.; Chen, L.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. J. S. S. C., High ionic conductivity in lithium lanthanum titanate. 1993, 86 (10), 689-693.33. Huggins, R. A. J. E. A., Recent results on lithium ion conductors. 1977, 22 (7), 773-781.34. Li, Y.; Chen, X.; Dolocan, A.; Cui, Z.; Xin, S.; Xue, L.; Xu, H.; Park, K.; Goodenough, J. B., Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. J Am Chem Soc 2018, 140 (20), 6448-6455.35. Zhao, Y.; Daemen, L. L., Superionic conductivity in lithium-rich anti-perovskites. J Am Chem Soc 2012, 134 (36), 15042-7.36. Ren, Y.; Chen, K.; Chen, R.; Liu, T.; Zhang, Y.; Nan, C.-W., Oxide Electrolytes for Lithium Batteries. J. Am. Ceram. Soc. 2015, 98 (12), 3603-3623.37. Bai, H.; Hu, J.; Li, X.; Duan, Y.; Shao, F.; Kozawa, T.; Naito, M.; Zhang, J., Influence of LiBO2 addition on the microstructure and lithium-ion conductivity of Li1+xAlxTi2−x(PO4)3(x = 0.3) ceramic electrolyte. Ceram. Int. 2018, 44 (6), 6558-6563.38. Cheng, L.; Park, J. S.; Hou, H.; Zorba, V.; Chen, G.; Richardson, T.; Cabana, J.; Russo, R.; Doeff, M., Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. J. Mater. Chem. A 2014, 2 (1), 172-181.39. Lan, W.; Fan, H.; Lau, V. W.-h.; Zhang, J.; Zhang, J.; Zhao, R.; Chen, H., Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications. Sustainable Energy Fuels 2020, 4 (4), 1812-1821.40. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J. Solid State Chem. 2009, 182 (8), 2046-2052.41. Geiger, C. A.; Alekseev, E.; Lazic, B.; Fisch, M.; Armbruster, T.; Langner, R.; Fechtelkord, M.; Kim, N.; Pettke, T.; Weppner, W., Crystal Chemistry and Stability of “Li7La3Zr2O12” Garnet: A Fast Lithium-Ion Conductor. Inorg. Chem. 2011, 50 (3), 1089-1097.42. Kun, R.; Langer, F.; Delle Piane, M.; Ohno, S.; Zeier, W. G.; Gockeln, M.; Colombi Ciacchi, L.; Busse, M.; Fekete, I., Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic Li7La3Zr2O12. ACS Appl. Mater. Interfaces 2018, 10 (43), 37188-37197.43. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat. Mater. 2011, 10 (9), 682-686.44. Sun, Y.; Suzuki, K.; Hori, S.; Hirayama, M.; Kanno, R., Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary System. Chem. Mater. 2017, 29 (14), 5858-5864.45. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1 (4), 16030.46. Epp, V.; Gün, Ö.; Deiseroth, H.-J.; Wilkening, M., Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+ Hopping in Argyrodite-Type Li6PS5Br. J. Phys. Chem. Letter. 2013, 4 (13), 2118-2123.47. Han, F.; Yue, J.; Fan, X.; Gao, T.; Luo, C.; Ma, Z.; Suo, L.; Wang, C., High-Performance All-Solid-State Lithium–Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite. Nano Lett. 2016, 16 (7), 4521-4527.48. Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; Roslon, I.; van Eck, E. R. H.; Kentgens, A. P. M.; Wagemaker, M., Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl–Li2S All-Solid-State Li-Ion Battery. J. Am. Chem. Soc. 2016, 138 (35), 11192-11201.49. Yamauchi, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. J. Power Sources 2013, 244, 707-710.50. Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P., Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses. Mater. Res. Bull. 1983, 18 (2), 189-193.51. D. E. Fenton, J. M. P., P. V. Wright, Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589.52. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D., Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114-143.53. Li, Z.; Zhao, Y.; Tenhaeff, W. E., 5 V Stable Nitrile-Bearing Polymer Electrolyte with Aliphatic Segment as Internal Plasticizer. ACS Appl. Energy Mater. 2019, 2 (5), 3264-3273.54. Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y.-R., An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications. Adv. Mater. 2003, 15 (23), 2027-2032.55. Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q., Organic-inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. J. Mater. Chem. A 2017, 5 (34), 18012-18019.56. Borodin, O.; Smith, G. D., Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations. Macromolecules 2006, 39 (4), 1620-1629.57. Zhao, C.-Z.; Zhang, X.-Q.; Cheng, X.-B.; Zhang, R.; Xu, R.; Chen, P.-Y.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q., An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. U. S. A., Early Ed. 2017, 114 (42), 11069-11074.58. Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M., Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. J. Am. Chem. Soc. 2011, 133 (33), 13121-13129.59. Faglioni, F.; Merinov, B. V.; Goddard, W. A.; Kozinsky, B., Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance. Phys. Chem. Chem. Phys. 2018, 20 (41), 26098-26104.60. Cabañero Martínez, M. A.; Boaretto, N.; Naylor, A. J.; Alcaide, F.; Salian, G. D.; Palombarini, F.; Ayerbe, E.; Borras, M.; Casas-Cabanas, M., Are Polymer-Based Electrolytes Ready for High-Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance. Adv. Energy Mater. 2022, 12 (32), 2201264.61. Nie, K.; Wang, X.; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L., Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 2020, 5 (3), 826-832.62. Pandian, S.; Adiga, S. P.; Tagade, P.; Hariharan, K. S.; Mayya, K. S.; Lee, Y. G., Electrochemical stability of ether based salt-in-polymer based electrolytes: Computational investigation of the effect of substitution and the type of salt. J. Power Sources 2018, 393, 204-210.63. Xia, Y.; Fujieda, T.; Tatsumi, K.; Prosini, P. P.; Sakai, T., Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 2001, 92 (1), 234-243.64. Yang, Q.; Huang, J.; Li, Y.; Wang, Y.; Qiu, J.; Zhang, J.; Yu, H.; Yu, X.; Li, H.; Chen, L., Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J. Power Sources 2018, 388, 65-70.65. Wang, X.; Zhang, C.; Sawczyk, M.; Sun, J.; Yuan, Q.; Chen, F.; Mendes, T. C.; Howlett, P. C.; Fu, C.; Wang, Y.; Tan, X.; Searles, D. J.; Král, P.; Hawker, C. J.; Whittaker, A. K.; Forsyth, M., Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 2022, 21 (9), 1057-1065.66. Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X. W., Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375 (6582), 739-745.67. Su, Y.; Rong, X.; Gao, A.; Liu, Y.; Li, J.; Mao, M.; Qi, X.; Chai, G.; Zhang, Q.; Suo, L.; Gu, L.; Li, H.; Huang, X.; Chen, L.; Liu, B.; Hu, Y.-S., Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat. Commun. 2022, 13 (1), 4181.68. Zhao, C.-Z.; Zhao, Q.; Liu, X.; Zheng, J.; Stalin, S.; Zhang, Q.; Archer, L. A., Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode. Adv. Mater. 2020, 32 (12), 1905629.69. Chen, F.; Yang, D.; Zha, W.; Zhu, B.; Zhang, Y.; Li, J.; Gu, Y.; Shen, Q.; Zhang, L.; Sadoway, D. R., Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 2017, 258, 1106-1114.70. Wang, Y.; Ju, J.; Dong, S.; Yan, Y.; Jiang, F.; Cui, L.; Wang, Q.; Han, X.; Cui, G., Facile Design of Sulfide-Based all Solid-State Lithium Metal Battery: In Situ Polymerization within Self-Supported Porous Argyrodite Skeleton. Adv. Funct. Mater. 2021, 31 (28), 2101523.71. Zhou, W.; Wang, Z.; Pu, Y.; Li, Y.; Xin, S.; Li, X.; Chen, J.; Goodenough, J. B., Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries. Adv. Mater. 2019, 31 (4), 1805574.72. Yu, X.; Li, J.; Manthiram, A., Rational Design of a Laminated Dual-Polymer/Polymer–Ceramic Composite Electrolyte for High-Voltage All-Solid-State Lithium Batteries. ACS Mater. Lett. 2020, 2 (4), 317-324.73. Liang, J.-Y.; Zeng, X.-X.; Zhang, X.-D.; Zuo, T.-T.; Yan, M.; Yin, Y.-X.; Shi, J.-L.; Wu, X.-W.; Guo, Y.-G.; Wan, L.-J., Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries. J. Am. Chem. Soc. 2019, 141 (23), 9165-9169.74. Wang, L.-P.; Zhang, X.-D.; Wang, T.-S.; Yin, Y.-X.; Shi, J.-L.; Wang, C.-R.; Guo, Y.-G., Ameliorating the Interfacial Problems of Cathode and Solid-State Electrolytes by Interface Modification of Functional Polymers. Adv. Energy Mater. 2018, 8 (24), 1801528.75. Jung, K.-N.; Shin, H.-S.; Park, M.-S.; Lee, J.-W., Solid-State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry. ChemElectroChem 2019, 6 (15), 3842-3859.76. Saw, L. H.; Ye, Y.; Tay, A. A. O., Integration issues of lithium-ion battery into electric vehicles battery pack. J. Cleaner Prod. 2016, 113, 1032-1045.77. LaFollette, R. M.; Bennion, D. N., Design Fundamentals of High Power Density, Pulsed Discharge, Lead‐Acid Batteries: II . Modeling. J. Electrochem. Soc. 1990, 137 (12), 3701-3707.78. Braithwaite, J. W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S. J.; Peebles, D. E.; Ohlhausen, J. A.; Cieslak, W. R., Corrosion of Lithium‐Ion Battery Current Collectors. J. Electrochem. Soc. 1999, 146 (2), 448-456.79. Myung, S.-T.; Hitoshi, Y.; Sun, Y.-K., Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21 (27), 9891-9911.80. Ogihara, N.; Yasuda, T.; Kishida, Y.; Ohsuna, T.; Miyamoto, K.; Ohba, N., Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for High-Voltage Bipolar Batteries. Angew. Chem., Int. Ed. 2014, 53 (43), 11467-11472.81. Duduta, M.; de Rivaz, S.; Clarke, D. R.; Wood, R. J., Ultra-Lightweight, High Power Density Lithium-Ion Batteries. Batteries Supercaps 2018, 1 (4), 131-134.82. Yoshima, K.; Harada, Y.; Takami, N., Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries. J. Power Sources 2016, 302, 283-290.83. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 513-537.84. Shin, H.-S.; Ryu, W.-G.; Park, M.-S.; Jung, K.-N.; Kim, H.; Lee, J.-W., Multilayered, Bipolar, All-Solid-State Battery Enabled by a Perovskite-Based Biphasic Solid Electrolyte. ChemSusChem 2018, 11 (18), 3184-3190.85. Myung, S.-T.; Sasaki, Y.; Saito, T.; Sun, Y.-K.; Yashiro, H., Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt. Electrochim. Acta 2009, 54 (24), 5804-5812.86. Wei, Z.; Chen, S.; Wang, J.; Wang, Z.; Zhang, Z.; Yao, X.; Deng, Y.; Xu, X., A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J. Power Sources 2018, 394, 57-66.87. Kim, S.-H.; Kim, J.-H.; Cho, S.-J.; Lee, S.-Y., All-Solid-State Printed Bipolar Li–S Batteries. Adv. Energy Mater. 2019, 9 (40), 1901841.88. Zhang, F.; Ji, B.; Tong, X.; Sheng, M.; Zhang, X.; Lee, C.-S.; Tang, Y., A Dual-Ion Battery Constructed with Aluminum Foil Anode and Mesocarbon Microbead Cathode via an Alloying/Intercalation Process in an Ionic Liquid Electrolyte. Adv. Mater. Interfaces 2016, 3 (23), 1600605.89. Gao, T.; Wang, B.; Fang, H.; Liu, C.; Wang, L.; Liu, G.; Liu, T.; Wang, D., Li3V2(PO4)3 as a cathode additive for the over-discharge protection of lithium ion batteries. RSC Adv. 2016, 6 (80), 76933-76937.90. Geoffroy, I.; Willmann, P.; Mesfar, K.; Carré, B.; Lemordant, D., Electrolytic characteristics of ethylene carbonate–diglyme-based electrolytes for lithium batteries. Electrochim. Acta 2000, 45 (13), 2019-2027.91. Chang, J.; Shang, J.; Sun, Y.; Ono, L. K.; Wang, D.; Ma, Z.; Huang, Q.; Chen, D.; Liu, G.; Cui, Y.; Qi, Y.; Zheng, Z., Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nat. Commun. 2018, 9 (1), 4480.92. Wang, D.; Chang, J.; Huang, Q.; Chen, D.; Li, P.; Yu, Y.-W. D.; Zheng, Z., Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles. Fundam. Res. 2021, 1 (4), 399-407.93. Wen, L.; Li, F.; Cheng, H.-M., Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Adv. Mater. 2016, 28 (22), 4306-4337.94. Chang, J.; Huang, Q.; Gao, Y.; Zheng, Z., Pathways of Developing High-Energy-Density Flexible Lithium Batteries. Adv. Mater. 2021, 33 (46), 2004419.95. Xu, S.; Zhang, Y.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y.; Su, J.; Zhang, H.; Cheng, H.; Lu, B.; Yu, C.; Chuang, C.; Kim, T.-i.; Song, T.; Shigeta, K.; Kang, S.; Dagdeviren, C.; Petrov, I.; Braun, P. V.; Huang, Y.; Paik, U.; Rogers, J. A., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4 (1), 1543.96. Koo, M.; Park, K.-I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J., Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Lett. 2012, 12 (9), 4810-4816.97. Gwon, H.; Kim, H.-S.; Lee, K. U.; Seo, D.-H.; Park, Y. C.; Lee, Y.-S.; Ahn, B. T.; Kang, K., Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4 (4), 1277-1283.98. Gao, Y.; Guo, Q.; Zhang, Q.; Cui, Y.; Zheng, Z., Fibrous Materials for Flexible Li–S Battery. Adv. Energy Mater. 2021, 11 (15), 2002580.99. Gao, Y.; Hu, H.; Chang, J.; Huang, Q.; Zhuang, Q.; Li, P.; Zheng, Z., Realizing High-Energy and Stable Wire-Type Batteries with Flexible Lithium–Metal Composite Yarns. Adv. Energy Mater. 2021, 11 (40), 2101809.100. Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L., Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8 (17), 1703012.101. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2 (4), 16103.102. Chen, Z.; Kim, G.-T.; Wang, Z.; Bresser, D.; Qin, B.; Geiger, D.; Kaiser, U.; Wang, X.; Shen, Z. X.; Passerini, S., 4-V flexible all-solid-state lithium polymer batteries. Nano Energy 2019, 64, 103986.103. Yu, S.; Xu, Q.; Tsai, C.-L.; Hoffmeyer, M.; Lu, X.; Ma, Q.; Tempel, H.; Kungl, H.; Wiemhöfer, H.-D.; Eichel, R.-A., Flexible All-Solid-State Li-Ion Battery Manufacturable in Ambient Atmosphere. ACS Appl. Mater. Interfaces 2020, 12 (33), 37067-37078.104. Judez, X.; Zhang, H.; Li, C.; Eshetu, G. G.; Zhang, Y.; González-Marcos, J. A.; Armand, M.; Rodriguez-Martinez, L. M., Polymer-Rich Composite Electrolytes for All-Solid-State Li–S Cells. J. Phys. Chem. Lett. 2017, 8 (15), 3473-3477.105. Tsai, C.-L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O., Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS Appl. Mater. Interfaces 2016, 8 (16), 10617-10626.106. Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114-16120.107. Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K., Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power Sources 2017, 353, 333-342.108. Goodenough, J. B.; Singh, P., Review—Solid Electrolytes in Rechargeable Electrochemical Cells. J. Electrochem. Soc. 2015, 162 (14), A2387-A2392.109. Keller, M.; Varzi, A.; Passerini, S., Hybrid electrolytes for lithium metal batteries. J. Power Sources 2018, 392, 206-225.110. Kim, S.; Harada, K.; Toyama, N.; Oguchi, H.; Kisu, K.; Orimo, S.-i., Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification. J. Energy Chem. 2020, 43, 47-51.111. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103-16118.112. Judez, X.; Eshetu, G. G.; Li, C.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M., Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule 2018, 2 (11), 2208-2224.113. Wei, Z.; Zhang, Z.; Chen, S.; Wang, Z.; Yao, X.; Deng, Y.; Xu, X., UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature. Energy Storage Mater. 2019, 22, 337-345.114. Chen, S.; Wang, J.; Zhang, Z.; Wu, L.; Yao, L.; Wei, Z.; Deng, Y.; Xie, D.; Yao, X.; Xu, X., In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 2018, 387, 72-80.115. Fu, K.; Gong, Y.; Dai, J.; Gong, A.; Han, X.; Yao, Y.; Wang, C.; Wang, Y.; Chen, Y.; Yan, C.; Li, Y.; Wachsman, E. D.; Hu, L., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (26), 7094-7099.116. Wang, Z.; Gu, H.; Wei, Z.; Wang, J.; Yao, X.; Chen, S., Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. Ionics 2019, 25 (3), 907-916.117. Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L., In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries. Adv. Sci. 2017, 4 (2), 1600377-1600385.118. Watanabe, T.; Inafune, Y.; Tanaka, M.; Mochizuki, Y.; Matsumoto, F.; Kawakami, H., Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework. J. Power Sources 2019, 423, 255-262.119. Cui, Y.; Liang, X.; Chai, J.; Cui, Z.; Wang, Q.; He, W.; Liu, X.; Liu, Z.; Cui, G.; Feng, J., High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis. Adv. Sci. 2017, 4 (11), 1700174-1700181.120. Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J. B., Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138 (30), 9385-8.121. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.122. Sethuraman, V.; Pryamitsyn, V.; Ganesan, V., Influence of molecular weight and degree of segregation on local segmental dynamics of ordered block copolymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54 (9), 859-864.123. Zhou, D.; Liu, R.; He, Y.-B.; Li, F.; Liu, M.; Li, B.; Yang, Q.-H.; Cai, Q.; Kang, F., SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life. Adv. Energy Mater. 2016, 6 (7), 1502214-1502223.124. Chen, Z.; Chao, D.; Liu, J.; Copley, M.; Lin, J.; Shen, Z.; Kim, G.-T.; Passerini, S., 1D nanobar-like LiNi0.4Co0.2Mn0.4O2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. J. Mater. Chem. A 2017, 5 (30), 15669-15675.125. Chen, B.; Huang, Z.; Chen, X.; Zhao, Y.; Xu, Q.; Long, P.; Chen, S.; Xu, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim. Acta 2016, 210, 905-914.126. Inoue, T.; Mukai, K., Are All-Solid-State Lithium-Ion Batteries Really Safe?–Verification by Differential Scanning Calorimetry with an All-Inclusive Microcell. ACS Appl. Mater. Interfaces 2017, 9 (2), 1507-1515.127. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334 (6058), 928-935.128. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.129. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4 (9), 3243-3262.130. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12 (3), 194-206.131. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.132. Zardalidis, G.; Farmakis, F., A Systematic Study Aiming Toward Voltage Noise Elimination in Viscoelastic Poly(methyl methacrylate)–Poly(ethylene oxide) Polymer Blend Electrolytes in Li Metal Battery Cells. Adv. Energy Mater. 2023, 2301035.133. Zhang, X.; Su, Q.; Du, G.; Xu, B.; Wang, S.; Chen, Z.; Wang, L.; Huang, W.; Pang, H., Stabilizing Solid-state Lithium Metal Batteries through In Situ Generated Janus-heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes. Angew. Chem., Int. Ed. 2023, e202304947.134. Xu, H.; Zhang, J.; Zhang, H.; Long, J.; Xu, L.; Mai, L., In Situ Topological Interphases Boosting Stable Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2023, 13 (21), 2204411.135. Jiang, F.; Wang, Y.; Ju, J.; Zhou, Q.; Cui, L.; Wang, J.; Zhu, G.; Miao, H.; Zhou, X.; Cui, G., Percolated Sulfide in Salt-Concentrated Polymer Matrices Extricating High-Voltage All-Solid-State Lithium-metal Batteries. Adv. Sci. 2022, 9 (25), 2202474.136. Li, L.; Duan, H.; Li, J.; Zhang, L.; Deng, Y.; Chen, G., Toward High Performance All-Solid-State Lithium Batteries with High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes. Adv. Energy Mater. 2021, 11 (28), 2003154.137. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G., Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 1999, 398 (6730), 792.138. Homann, G.; Stolz, L.; Neuhaus, K.; Winter, M.; Kasnatscheew, J., Effective Optimization of High Voltage Solid-State Lithium Batteries by Using Poly(ethylene oxide)-Based Polymer Electrolyte with Semi-Interpenetrating Network. Adv. Funct. Mater. 2020, 30 (46), 2006289.139. Wang, X.; Song, Y.; Jiang, X.; Liu, Q.; Dong, J.; Wang, J.; Zhou, X.; Li, B.; Yin, G.; Jiang, Z.; Wang, J., Constructing Interfacial Nanolayer Stabilizes 4.3 V High-Voltage All-Solid-State Lithium Batteries with PEO-Based Solid-State Electrolyte. Adv. Funct. Mater. 2022, 32 (23), 2113068.140. Chen, H.; Adekoya, D.; Hencz, L.; Ma, J.; Chen, S.; Yan, C.; Zhao, H.; Cui, G.; Zhang, S., Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca–CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery. Adv. Energy Mater. 2020, 10 (21), 2000049.141. Qiu, J.; Liu, X.; Chen, R.; Li, Q.; Wang, Y.; Chen, P.; Gan, L.; Lee, S.-J.; Nordlund, D.; Liu, Y.; Yu, X.; Bai, X.; Li, H.; Chen, L., Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries with PEO-Based Solid Electrolyte. Adv. Funct. Mater. 2020, 30 (22), 1909392.142. Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G., Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery. Adv. Sci. 2019, 6 (22), 1901036.143. Fu, C.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A. W.; Viswanathan, V.; Helms, B. A., Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 2020, 19 (7), 758-766.144. Hwang, S. S.; Cho, C. G.; Kim, H., Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem. Commun. 2010, 12 (7), 916-919.145. Nair, J. R.; Shaji, I.; Ehteshami, N.; Thum, A.; Diddens, D.; Heuer, A.; Winter, M., Solid Polymer Electrolytes for Lithium Metal Battery via Thermally Induced Cationic Ring-Opening Polymerization (CROP) with an Insight into the Reaction Mechanism. Chem. Mater. 2019, 31 (9), 3118-3133.146. Zhang, G.; Chang, J.; Wang, L.; Li, J.; Wang, C.; Wang, R.; Shi, G.; Yu, K.; Huang, W.; Zheng, H.; Wu, T.; Deng, Y.; Lu, J., A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 2023, 14 (1), 1081.147. Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; Zheng, Y.; Amanchukwu, C. V.; Hung, S. T.; Ma, Y.; Lomeli, E. G.; Qin, J.; Cui, Y.; Bao, Z., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5 (7), 526-533.148. Gao, Y.; Hu, B.; Yao, Y.; Chen, Q., Segmental Dynamics of PEO/LiClO4 Complex Crystals and Their Influence on the Li+-Ion Transportation in Crystal Lattices: A 13C Solid-State NMR Approach. Chem. - Eur. J. 2011, 17 (32), 8941-8946.149. Wei, L.; Gao, Y.; Hu, B.; Chen, Q., Structures of crystalline and amorphous phases of the poly(ethylene oxide)/lithium trifluoromethanesulfonate complexes as studied by solid-state high-resolution 13C nuclear magnetic resonance. Polymer 2013, 54 (3), 1184-1189.150. Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z., A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability. J. Am. Chem. Soc. 2020, 142 (16), 7393-7403.151. Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A., Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4 (5), 365-373.152. Wong, D. H. C.; Thelen, J. L.; Fu, Y.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; DeSimone, J. M., Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. 2014, 111 (9), 3327-3331.153. Pathirana, T.; Kerr, R.; Forsyth, M.; Howlett, P. C., Electrochemical Formation in Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte Using Symmetric Li-Metal Coin Cells. J. Electrochem. Soc. 2020, 167 (12), 120526.154. Luo, J.; Fang, C.-C.; Wu, N.-L., High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes. Adv. Energy Mater. 2018, 8 (2), 1701482.155. Zhao, Y.; Zhou, T.; Mensi, M.; Choi, J. W.; Coskun, A., Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 2023, 14 (1), 299.156. Cha, J.; Han, J.-G.; Hwang, J.; Cho, J.; Choi, N.-S., Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J. Power Sources 2017, 357, 97-106.157. Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; Su, D.; Yang, X.-Q.; Wang, C., Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries. Joule 2019, 3 (10), 2550-2564.158. Liu, Y.; Hu, R.; Zhang, D.; Liu, J.; Liu, F.; Cui, J.; Lin, Z.; Wu, J.; Zhu, M., Constructing Li-Rich Artificial SEI Layer in Alloy–Polymer Composite Electrolyte to Achieve High Ionic Conductivity for All-Solid-State Lithium Metal Batteries. Adv. Mater. 2021, 33 (11), 2004711.159. Fraile-Insagurbe, D.; Boaretto, N.; Aldalur, I.; Raposo, I.; Bonilla, F. J.; Armand, M.; Martínez-Ibañez, M., Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Res. 2023, 16 (6), 8457-8468.160. Ma, M.; Shao, F.; Wen, P.; Chen, K.; Li, J.; Zhou, Y.; Liu, Y.; Jia, M.; Chen, M.; Lin, X., Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability toward Li Anodes and High-Voltage Cathodes. ACS Energy Lett. 2021, 6 (12), 4255-4264.161. Yusim, Y.; Trevisanello, E.; Ruess, R.; Richter, F. H.; Mayer, A.; Bresser, D.; Passerini, S.; Janek, J.; Henss, A., Evaluation and Improvement of the Stability of Poly(ethylene oxide)-based Solid-state Batteries with High-Voltage Cathodes. Angew. Chem., Int. Ed. 2023, 62 (12), e202218316.162. Zhai, H.; Gong, T.; Xu, B.; Cheng, Q.; Paley, D.; Qie, B.; Jin, T.; Fu, Z.; Tan, L.; Lin, Y.-H.; Nan, C.-W.; Yang, Y., Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating. ACS Appl. Mater. Interfaces 2019, 11 (32), 28774-28780.163. Wu, N.; Chien, P.-H.; Li, Y.; Dolocan, A.; Xu, H.; Xu, B.; Grundish, N. S.; Jin, H.; Hu, Y.-Y.; Goodenough, J. B., Fast Li+ Conduction Mechanism and Interfacial Chemistry of a NASICON/Polymer Composite Electrolyte. J. Am. Chem. Soc. 2020, 142 (5), 2497-2505.164. Liang, J.; Hwang, S.; Li, S.; Luo, J.; Sun, Y.; Zhao, Y.; Sun, Q.; Li, W.; Li, M.; Banis, M. N.; Li, X.; Li, R.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Su, D.; Sun, X., Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 2020, 78, 105107.165. Brecher, A., 9 - Transit Bus Applications of Lithium-Ion Batteries: Progress and Prospects. In Lithium-Ion Batteries, Pistoia, G., Ed. Elsevier: Amsterdam, 2014; pp 177-203.166. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5 (7), 7854-7863.167. Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30 (33), 1800561.168. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. J. Power Sources 2018, 382, 160-175.169. Karami, H.; Mousavi, M. F.; Shamsipur, M., A novel dry bipolar rechargeable battery based on polyaniline. J. Power Sources 2003, 124 (1), 303-308.170. Shen, D. H.; Halpert, G., Design concepts of high power bipolar rechargeable lithium battery. J. Power Sources 1993, 43 (1), 327-338.171. Pang, M.-C.; Wei, Y.; Wang, H.; Marinescu, M.; Yan, Y.; Offer, G. J., Large-Format Bipolar and Parallel Solid-State Lithium-Metal Cell Stacks: A Thermally Coupled Model-Based Comparative Study. J. Electrochem. Soc. 2020, 167 (16), 160555.172. Hou, Z.; Mao, W.; Zhang, Z.; Chen, J.; Ao, H.; Qian, Y., Bipolar electrode architecture enables high-energy aqueous rechargeable sodium ion battery. Nano Res. 2022, 15 (6), 5072-5080.173. Mei, W.; Chen, H.; Sun, J.; Wang, Q., Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective. Appl. Therm. Eng. 2018, 142, 148-165.174. Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H., Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7.175. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A., Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3 (1), 16-21.176. Gambe, Y.; Sun, Y.; Honma, I., Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex. Sci. Rep. 2015, 5 (1), 8869.177. Nam, Y. J.; Cho, S.-J.; Oh, D. Y.; Lim, J.-M.; Kim, S. Y.; Song, J. H.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y. S., Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Lett. 2015, 15 (5), 3317-3323.178. Zhang, Z.; Zhao, Y.; Chen, S.; Xie, D.; Yao, X.; Cui, P.; Xu, X., An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J. Mater. Chem. A 2017, 5 (32), 16984-16993.179. Kim, J.-H.; Hwang, I.; Kim, S.-H.; Park, J.; Jin, W.; Seo, K.; Lee, S.-Y., Voltage-tunable portable power supplies based on tailored integration of modularized silicon photovoltaics and printed bipolar lithium-ion batteries. J. Mater. Chem. A 2020, 8 (32), 16291-16301.180. Zheng, S.; Wu, Z.-S.; Zhou, F.; Wang, X.; Ma, J.; Liu, C.; He, Y.-B.; Bao, X., All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy 2018, 51, 613-620.181. Lee, J.; Song, J.; Lee, H.; Noh, H.; Kim, Y.-J.; Kwon, S. H.; Lee, S. G.; Kim, H.-T., A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries. ACS Energy Lett. 2017, 2 (5), 1232-1239.182. Chen, Z.; Kim, G.-T.; Kim, J.-K.; Zarrabeitia, M.; Kuenzel, M.; Liang, H.-P.; Geiger, D.; Kaiser, U.; Passerini, S., Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer. Adv. Energy Mater. 2021, 11 (30), 2101339.183. Kim, H. W.; Manikandan, P.; Lim, Y. J.; Kim, J. H.; Nam, S.-c.; Kim, Y., Hybrid solid electrolyte with the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J. Mater. Chem. A 2016, 4 (43), 17025-17032.184. Pervez, S. A.; Kim, G.; Vinayan, B. P.; Cambaz, M. A.; Kuenzel, M.; Hekmatfar, M.; Fichtner, M.; Passerini, S., Overcoming the Interfacial Limitations Imposed by the Solid–Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Small 2020, 16 (14), 2000279.185. Whitehead, A. H.; Schreiber, M., Current Collectors for Positive Electrodes of Lithium-Based Batteries. J. Electrochem. Soc. 2005, 152 (11), A2105.186. Li, P.; Zhang, Y.; Zheng, Z., Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Adv. Mater. 2019, 31 (37), 1902987.187. Gao, Y.; Xie, C.; Zheng, Z., Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Adv. Energy Mater. 2021, 11 (3), 2002838.188. Cho, K.; Baek, J.; Balamurugan, C.; Im, H.; Kim, H.-J., Corrosion study of nickel-coated copper and chromate-coated aluminum for corrosion-resistant lithium-ion battery lead-tab. J. Ind. Eng. Chem. 2022, 106, 537-545.189. Chang, J.; Hu, H.; Shang, J.; Fang, R.; Shou, D.; Xie, C.; Gao, Y.; Yang, Y.; Zhuang, Q. N.; Lu, X.; Zhang, Y. K.; Li, F.; Zheng, Z., Rational Design of Li-Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. Small 2022, 18 (2), 2105308.190. Meyer, W. H., Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater. 1998, 10 (6), 439-448.191. Yamada, H.; Bhattacharyya, A. J.; Maier, J., Extremely High Silver Ionic Conductivity in Composites of Silver Halide (AgBr, AgI) and Mesoporous Alumina. Adv. Funct. Mater. 2006, 16 (4), 525-530.192. Lee, K.; Choi, J. H.; Lee, H. M.; Kim, K. J.; Choi, J. W., Solution-Processed Metal Coating to Nonwoven Fabrics for Wearable Rechargeable Batteries. Small 2018, 14 (43), 1703028.193. Kim, S.-H.; Kim, N.-Y.; Choe, U.-J.; Kim, J.-M.; Lee, Y.-G.; Lee, S.-Y., Ultrahigh-Energy-Density Flexible Lithium-Metal Full Cells based on Conductive Fibrous Skeletons. Adv. Energy Mater. 2021, 11 (24), 2100531.194. Yao, Y.; Wei, Z.; Wang, H.; Huang, H.; Jiang, Y.; Wu, X.; Yao, X.; Wu, Z.-S.; Yu, Y., Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. Adv. Energy Mater. 2020, 10 (12), 1903698.195. Pan, H.; Zhang, M.; Cheng, Z.; Jiang, H.; Yang, J.; Wang, P.; He, P.; Zhou, H., Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Science Advances 2022, 8 (15), eabn4372.196. Teng, J.; Tang, X.; Li, H.; Wu, Q.; Zhao, D.; Li, J., Al–Li alloys as bifunctional sacrificial lithium sources for prelithiation of high-energy-density Li-ion batteries. Journal of Power Sources 2022, 540, 231642.
修改评论