中文版 | English
题名

光电耦合离子反俘获实现电致变色氧化物与器件性能恢复的研究

其他题名
STUDY ON THE PERFORMANCE RESTORATION IN ELECTROCHROMIC OXIDES AND DEVICES THROUGH PHOTO- ELECTROCHEMICAL SYNERGISTICALLY INDUCED ION DETRAPPING
姓名
姓名拼音
ZHOU Qinqi
学号
12132097
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
温瑞涛
导师单位
材料科学与工程系
论文答辩日期
2024-05-09
论文提交日期
2024-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电致变色技术因能够动态调节光与热,在节能、显示等领域有很大的应用前景。提高电致变色材料与器件的稳定性与可逆性一直以来是电致变色领域的研究重点。电致变色非晶氧化物在长期循环过程中发生的离子俘获是造成其性能衰减的重要原因之一。尽管已报道的恒电流、恒电压方法可以通过离子反俘获多次有效地使电致变色非晶氧化物性能恢复,但都需长时间的高电压作用,而这会导致有机电解质分解以及多层电致变色器件中其它膜层的损坏为了解决上述问题,本论文发展了一种全新的离子反俘获方法光电耦合法,即施加恒压过程中辅以紫外光照射,或电化学循环过程中直接进行紫外光照射。论文具体研究内容与成果如下:

首先,以非晶WO3为主要研究对象,系统地探究了光电耦合实现离子反俘获的条件、形式和影响因素。结果表明紫外光与恒压共同作用可以在降低恒压大小的前提下使WO3性能恢复,但紫外光波长与功率、恒压大小以及光电耦合作用时间都会影响其离子反俘获效果。此外,在WO3循环过程中直接进行紫外光照也能实现离子反俘获,使WO3性能得到动态恢复。

其次,利用多种表征手段并结合电流密度曲线分析,揭示了光电耦合对非晶WO3离子反俘获机理。研究表明光电耦合能够有效分解浅层陷阱离子俘获生成的正交相Li2WO4晶粒以及深层陷阱离子俘获生成的W4+-Li2WO4耦合物、非晶Li2WO4W4+-Li2O耦合物,成功释放被浅层陷阱和深层陷阱俘获的Li离子,从而恢复WO3薄膜性能。并且WO3在光电耦合过程中的电流密度曲线前段出现的波谷可被视为离子反俘获的重要特征

最后,通过将光电耦合离子反俘获法扩展到电致变色器件和其他阴极电致变色非晶氧化物中,结果表明光电耦合离子反俘获具有普适性。但由于不同非晶金属氧化物及其器件在循环过程中展现出不同的离子俘获特点,因此需要不同的紫外光与恒压共同组合才能达到最优的离子反俘获效果

本论文的研究工作证实了光电耦合离子反俘获的可行性与普适性,为提高电致变色氧化物及器件循环寿命做出了有益的探索,同时也为电致变色非晶氧化物中离子俘获和反俘获的机理研究提供了新的思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] MORTIMER R J. Electrochromic materials [J]. Chemical Society Reviews, 1997, 26(3): 147-156.
[2] GRANQVIST C G. Handbook of inorganic electrochromic materials [M]. Elsevier, 1995:1-15.
[3] WEN CHEUN B, TAMANG A, KNIPP D, et al. Post-annealing effect on the electrochromic properties of WO3 films [J]. Optical Materials, 2020, 108: 110426-110432.
[4] ZHOU J, LUO G, WEI Y, et al. Enhanced electrochromic performances and cycle stability of NiO-based thin films via Li–Ti co-doping prepared by sol–gel method [J]. Electrochimica Acta, 2015, 186: 182-191.
[5] DULGERBAKI C, KOMUR A I, NOHUT MASLAKCI N, et al. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application [J]. Optical Materials, 2017, 70: 171-179.
[6] AU B W, CHAN K-Y. Towards an all-solid-state electrochromic device: a review of solid-state electrolytes and the way forward [J]. Polymers, 2022, 14(12): 2458-2474.
[7] WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development [J]. Materials Science and Engineering: R, Reports, 2020, 140: 100524-100550.
[8] GRANQVIST C G, ARVIZU M A, QU H-Y, et al. Advances in electrochromic device technology: Multiple roads towards superior durability [J]. Surface and Coatings Technology, 2019, 357: 619-625.
[9] ZHANG W, LI H, HOPMANN E, et al. Nanostructured inorganic electrochromic materials for light applications [J]. Nanophotonics (Berlin, Germany), 2021, 10(2): 825-850.
[10] LAKHTAKIA A. Green nanotechnology: solutions for sustainability and energy in the built Environment, by G. B. Smith and C. G. Granqvist [J]. Journal of Nanophotonics, 2011, 5: 050201-050202.
[11] XIE L, ZHAO S, ZHU Y, et al. High performance and excellent stability of all-solid-state electrochromic devices based on a Li1.85AlOz ion conducting layer [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17390-17396.
[12] YU H, GUO J, WANG C, et al. High performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalation [J]. Electrochimica Acta, 2019, 318: 644-650.
[13] PATEL K J, BHATT G G, RAY J R, et al. All-inorganic solid-state electrochromic devices: a review [J]. Journal of Solid State Electrochemistry, 2017, 21(2): 337-347.
[14] WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films [J]. Nature Materials, 2015, 14(10): 996-1001.
[15] WEN R-T, ARVIZU M A, MORALES-LUNA M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring [J]. Chemistry of Materials, 2016, 28(13): 4670-4676.
[16] RAI V, SINGH R S, BLACKWOOD D J, et al. A review on recent advances in electrochromic devices: a material approach [J]. Advanced Engineering Materials, 2020, 22(8): 1438-1656.
[17] DEB S K. A novel electrophotographic system [J]. Applied Optics, 1969, 8: 192-195.
[18] WANG H, YAO C-J, NIE H-J, et al. Recent progress in integrated functional electrochromic energy storage devices [J]. Journal of Materials Chemistry C, 2020, 8(44): 15507-15525.
[19] LI J, JIANG Y, ZHANG Q, et al. Immobilising a cobalt cubane catalyst on a dye-sensitised TiO2 photoanode via electrochemical polymerisation for light-driven water oxidation [J]. RSC Advances, 2017, 7(7): 4102-4107.
[20] ZHENG R, HUANG T, ZHANG Z, et al. Novel polyimides containing flexible carbazole blocks with electrochromic and electrofluorescencechromic properties [J]. RSC Advances, 2020, 10(12): 6992-7003.
[21] CONG S, TIAN Y, LI Q, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications [J]. Advanced Materials, 2014, 26(25): 4260-4267.
[22] CELIK E, AYBARC U, EBEOGLUGIL M F, et al. ITO films on glass substrate by sol–gel technique: synthesis, characterization and optical properties [J]. Journal of Sol-Gel Science and Technology, 2009, 50(3): 337-347.
[23] XU Y, LIU J. Graphene as transparent electrodes: fabrication and new emerging applications [J]. Small, 2016, 12(11): 1400-1419.
[24] SUKEGAWA T, MASUKO I, OYAIZU K, et al. Expanding the dimensionality of polymers populated with organic robust radicals toward flow cell application: synthesis of TEMPO-crowded bottlebrush polymers using anionic polymerization and ROMP [J]. Macromolecules, 2014, 47(24): 8611-8617.
[25] DENG B, HSU P-C, CHEN G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes [J]. Nano Letters, 2015, 15(6): 4206-4213.
[26] MORTIMER R. Electrochromic materials [J]. Annual Review of Materials Research, 2011, 41: 241-268.
[27] CAI G, WANG J, LEE P S. Next-generation multifunctional electrochromic devices [J]. Accounts of Chemical Research, 2016, 49(8): 1469-1476.
[28] WU W, WANG M, MA J, et al. Electrochromic metal oxides: recent progress and prospect [J]. Advanced Electronic Materials, 2018, 4(8): 1800185-1800204.
[29] HIRANKUMAR G, MEHTA N. Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes [J]. Heliyon, 2018, 4(12): 1800185-1800212.
[30] MORTIMER R J. Organic electrochromic materials [J]. Electrochimica Acta, 1999, 44(18): 2971-2981.
[31] VERGAZ R, SÁNCHEZ-PENA J, POZO-GONZALO C, et al. Relating cyclic voltammetry and impedance analysis in a viologen electrochromic device [J]. Solar Energy Materials and Solar Cells, 2009, 93: 2125-2132.
[32] ZHAO S, HUANG W, GUAN Z, et al. A novel bis (dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency [J]. Electrochimica Acta, 2019, 298: 533-540.
[33] PAGÈS H, TOPART P, LEMORDANT D. Wide band electrochromic displays based on thin conducting polymer films [J]. Electrochimica Acta, 2001, 46(13): 2137-2143.
[34] NGUYEN T V, LE Q V, PENG S, et al. Exploring conducting polymers as a promising alternative for electrochromic devices [J]. Advanced Materials Technologies, 2023, 8(18): 2300474-2300502.
[35] NUROLDAYEVA G, BALANAY M P. Flexing the spectrum: advancements and prospects of flexible electrochromic materials [J]. Polymers, 2023, 15(13): 2924-2950.
[36] MECERREYES D, MARCILLA R, OCHOTECO E, et al. A simplified all-polymer flexible electrochromic device [J]. Electrochimica Acta, 2004, 49(21): 3555-3559.
[37] LAMPERT C M. Electrochromic materials and devices for energy efficient windows [J]. Solar Energy Materials, 1984, 11(1): 1-27.
[38] HUANG Y, WANG B, CHEN F, et al. Electrochromic materials based on ions insertion and extraction [J]. Advanced Optical Materials, 2022, 10(4): 2101783-21001803.
[39] GRANQVIST C G, BAYRAK PEHLIVAN İ, GREEN S V, et al. Oxide-based electrochromics: advances in materials and devices [J]. MRS Online Proceedings Library, 2011, 1328(1): 11-22.
[40] BUCH V R, CHAWLA A K, RAWAL S K. Review on electrochromic property for WO3 thin films using different deposition techniques [J]. Materials Today: Proceedings, 2016, 3(6): 1429-1437.
[41] BENI G. Recent advances in inorganic electrochromics [J]. Solid State Ionics, 1981, 3: 157-163.
[42] ZOU Y S, ZHANG Y C, LOU D, et al. Structural and optical properties of WO3 films deposited by pulsed laser deposition [J]. Journal of Alloys and Compounds, 2014, 583: 465-470.
[43] CHAUDHARY A, PATHAK D K, TANWAR M, et al. Polythiophene–PCBM-based all-organic electrochromic device: fast and flexible [J]. ACS Applied Electronic Materials, 2019, 1(1): 58-63.
[44] YE W, GUO X, ZHANG X, et al. Multicolored and high optical contrast flexible electrochromic devices based on viologen derivatives [J]. Synthetic Metals, 2022, 287: 117076-117083.
[45] LEE H B, JIN W-Y, OVHAL M M, et al. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review [J]. Journal of Materials Chemistry C, 2019, 7(5): 1087-1110.
[46] JAMDEGNI M, KAUR A. Review—polymeric/small organic molecules-based electrochromic devices: how far toward realization [J]. Journal of The Electrochemical Society, 2022, 169(3): 030541-30555.
[47] RAMANAVICIUS S, RAMANAVICIUS A. Conducting polymers in the design of biosensors and biofuel cells [J], Polymers, 2021, 13(1): 49-68.
[48] XIAO L, LV Y, LIN J, et al. WO3-based electrochromic distributed bragg reflector: toward electrically tunable microcavity luminescent device [J]. Advanced Optical Materials, 2017, 6: 1700791-1700799.
[49] GU C, JIA A-B, ZHANG Y-M, et al. Emerging electrochromic materials and devices for future displays [J]. Chemical Reviews, 2022, 122(18): 14679-14721.
[50] GHOSH T, KANDPAL S, RANI C, et al. Recipe for fabricating optimized solid-state electrochromic devices and its know-how: challenges and future [J]. Advanced Optical Materials, 2023, 11(12): 2203126-2203142.
[51] BISQUERT J. Analysis of the kinetics of ion intercalation [J]. Electrochimica Acta, 2002, 47(15): 2435-2449.
[52] WANG Z, CHEN G, ZHANG H, et al. In situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4 [J]. Scripta Materialia, 2021, 203: 114090-114095.
[53] TAKAYANAGI M, TSUCHIYA T, UEDA S, et al. In situ hard X-ray photoelectron spectroscopy on the origin of irreversibility in electrochromic LixWO3 thin films [J]. Applied Surface Science, 2021, 568: 150898-150907.
[54] HASHIMOTO S, MATSUOKA H, KAGECHIKA H, et al. Degradation of electrochromic amorphous  WO3 film in lithium-salt electrolyte [J]. Journal of The Electrochemical Society, 1990, 137(4): 1300-1304.
[55] ZHANG R, ZHOU Q, HUANG S, et al. Capturing ion trapping and detrapping dynamics in electrochromic thin films [J]. Nature Communications, 2024, 15(1): 2294-2305.
[56] ZHOU K, WANG H, LIU J, et al. The mechanism of trapped ions eroding the electrochromic performances of WO3 thin films [J]. International Journal of Electrochemical Science, 2018, 13(8): 7335-7346.
[57] ARVIZU M A, HUI-YING Q, CINDEMIR U, et al. Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment [J]. Journal of Materials Chemistry A, 2019, 7(6): 2908-2918.
[58] BALOUKAS B, ARVIZU M A, WEN R-T, et al. Galvanostatic rejuvenation of electrochromic WO3 thin films: ion trapping and detrapping observed by optical measurements and by time-of-flight secondary ion mass spectrometry [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16995-17001.
[59] SORAR I, BAYRAK PEHLIVAN İ, BOHLIN J, et al. Potentiostatic rejuvenation of electrochromic WO3 thin films: Exploring the effect of polyethylene oxide in LiClO4-propylene carbonate electrolytes [J]. Solar Energy Materials and Solar Cells, 2020, 218: 110767-110776.
[60] WEN R-T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping [J]. ACS Applied Materials & Interfaces, 2016, 8(9): 5777-5782.
[61] HUANG S, ZHANG R, SHAO P, et al. Electrochromic performance fading and restoration in amorphous TiO2 thin films [J]. Advanced Optical Materials, 2022, 10(16): 2200903-2200915.
[62] ARVIZU M A, GRANQVIST C G, NIKLASSON G A. Rejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary results [J]. Journal of Physics: Conference Series, 2016, 764(1): 012009-012016.
[63] QU H Y, PRIMETZHOFER D, ARVIZU M A, et al. Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42420-42424.
[64] DEB S. Optical and photoelectric properties and color centers in thin films of tungsten oxide [J]. Philosophical Magazine, 1973, 27(4): 801-822.
[65] HIROCHI K, KITABATAKE M, YAMAZAKI O. Electrochromic effects of Li-W-O films under ultraviolet light exposure [J]. Journal of The Electrochemical Society, 1986, 133(9): 1973-1974.
[66] MOHAMEDKHAIR A K, DRMOSH Q A, QAMAR M, et al. Tuning structural properties of WO3 thin films for photoelectrocatalytic water oxidation [J]. Catalysts, 2021, 11(3): 381-396.
[67] SHCHEGOLKOV A V, JANG S-H, SHCHEGOLKOV A V, et al. A brief overview of electrochromic materials and related devices: a nanostructured materials perspective [J]. Nanomaterials, 2021, 11(9): 2376-2408.
[68] UFHEIL J, WÜRSIG A, SCHNEIDER O D, et al. Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte [J]. Electrochemistry Communications, 2005, 7(12): 1380-1384.
[69] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303-4317.
[70] HISHIMONE P, NAGAI H, SATO M. Methods of fabricating thin films for energy materials and devices [M]. IntechOpen, 2020: 1-3.
[71] HAHN H, AVERBACK R. The production of nanocrystalline powders by magnetron sputtering [J]. Journal of Applied Physics, 1990, 67(2): 1113-1115.
[72] BRÄUER G, SZYSZKA B, VERGÖHL M, et al. Magnetron sputtering – milestones of 30 years [J]. Vacuum, 2010, 84(12): 1354-1359.
[73] TONG M, YANG J, JIN Q, et al. Facile preparation of amorphous carbon-coated tungsten trioxide containing oxygen vacancies as photocatalysts for dye degradation [J]. Journal of Materials Science, 2019, 54(15): 10656-10669.
[74] FAUGHNAN B W, CRANDALL R S, LAMPERT M A. Model for the bleaching of WO3 electrochromic films by an electric field [J]. Applied Physics Letters, 1975, 27(5): 275-277.
[75] SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes [J]. Nature Materials, 2013, 12(9): 827-835.
[76] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes [J]. Nature Communications, 2018, 9(1): 2490-2499.
[77] HORACHIT C, INTANIWET A, RUANKHAM P. Low-temperature-processed ZnO thin films as electron transporting layer to achieve stable perovskite solar cells [J]. Optical and Quantum Electronics, 2018, 50(10): 379-391.
[78] SANTATO C, ODZIEMKOWSKI M, ULMANN M, et al. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications [J]. Journal of the American Chemical Society, 2001, 123(43): 10639-10649.
[79] PYPER O, KASCHNER A, THOMSEN C. In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes [J]. Solar Energy Materials and Solar Cells, 2002, 71(4): 511-522.
[80] BASERGA A, RUSSO V, DI FONZO F, et al. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization [J]. Thin Solid Films, 2007, 515(16): 6465-6469.
[81] LEE S-H, CHEONG H M, TRACY C E, et al. Raman spectroscopic studies of electrochromic a-WO3 [J]. Electrochimica Acta, 1999, 44(18): 3111-3115.
[82] BUENO P, PONTES F, LEITE E, et al. Structural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kinetics [J]. Journal of Applied Physics, 2004, 96(4): 2102-2109.
[83] KUDO H, WU C, IHLE H. Mass-spectrometric study of the vaporization of Li2O (s) and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2 [J]. Journal of Nuclear Materials, 1978, 78(2): 380-389.
[84] YAMDAGNI R, PUPP C, PORTER R. Mass spectrometric study of the evaporation of lithium and sodium molybdates and tungstates [J]. Journal of Inorganic and Nuclear Chemistry, 1970, 32(11): 3509-3523.
[85] SUN Z, LAI Y, LV N, et al. Boosting the electrochemical performance of all-solid-state batteries with sulfide Li6PS5Cl solid electrolyte using Li2WO4-coated LiCoO2 cathode [J]. Advanced Materials Interfaces, 2021, 8(15): 2100624-2100630.
[86] TAUC J. Optical properties and electronic structure of amorphous Ge and Si [J]. Materials Research Bulletin, 1968, 3(1): 37-46.
[87] LIU Q, CHEN Q, ZHANG Q, et al. In situ electrochromic efficiency of a nickel oxide thin film: origin of electrochemical process and electrochromic degradation [J]. Journal of Materials Chemistry C, 2018, 6(3): 646-563.
[88] ZHANG S, CAO S, ZHANG T, et al. Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling [J]. Advanced Materials, 2020, 32(43): 2004686-2004693.
[89] HUANG Y, WANG B, BAI X, et al. 3D Pine-needle-like W18O49/TiO2 heterostructures as dual-band electrochromic materials with ultrafast response and excellent stability [J]. Advanced Optical Materials, 2022, 10(7): 2102399-2102407.
[90] LUO H, WEI M, WEI K. Synthesis of Nb2O5 nanosheets and its electrochemical measurements [J]. Materials Chemistry and Physics, 2010, 120(1): 6-9.
[91] RANI R A, ZOOLFAKAR A S, OU J Z, et al. Nanoporous Nb2O5 hydrogen gas sensor [J]. Sensors and Actuators B: Chemical, 2013, 176: 149-156.
[92] CHEN X, YU T, FAN X, et al. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production [J]. Applied Surface Science, 2007, 253(20): 8500-8506.
[93] FENG J, YANG Z, YANG D, et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells [J]. Nano Energy, 2017, 36: 1-8.
[94] LEMOS R M J, BALBONI R D C, CHOLANT C M, et al. Molybdenum doping effect on sol-gel Nb2O5: Li+ thin films: Investigation of structural, optical and electrochromic properties [J]. Materials Science in Semiconductor Processing, 2021, 134: 105995-106004.
[95] RATHIKA R, KOVENDHAN M, JOSEPH D P, et al. 200 MeV Ag15+ swift heavy ion beam induced property modifications in Nb2O5 thin films by fluence variation [J]. Journal of Physics and Chemistry of Solids, 2019, 135: 109089-109096.
[96] OZER N, LAMPERT C M. Structural and optical properties of sol-gel deposited proton conducting Ta2O5 films [J]. Journal of Sol-Gel Science and Technology, 1997, 8: 703-709.
[97] Z. TEPEHAN F, GHODSI F E, OZER N, et al. Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications [J]. Solar Energy Materials and Solar Cells, 1999, 59(3): 265-275.
[98] CHEN P-W, CHANG C-T, ALI M M, et al. Tantalum oxide film deposited by vacuum cathodic arc plasma with improved electrochromic performance [J]. Solar Energy Materials and Solar Cells, 2018, 182: 188-195.
[99] HE Y, ZHANG F, ZHANG Q, et al. High capacity and performance lithium based electrochromic device via amorphous tantalum oxide protective layer [J]. Electrochimica Acta, 2018, 280: 163-170.
[100] GUERFI A, PAYNTER R W, DAO L H. Characterization and stability of electrochromic MoO3 thin films prepared by electrodeposition [J]. Journal of The Electrochemical Society, 1995, 142(10): 3457-3464.
[101] CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics [J]. Journal of Materials Chemistry, 2009, 19(17): 2526-1552.

所在学位评定分委会
材料科学与工程
国内图书分类号
TB303
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765592
专题南方科技大学
工学院_材料科学与工程系
推荐引用方式
GB/T 7714
周琴琪. 光电耦合离子反俘获实现电致变色氧化物与器件性能恢复的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132097-周琴琪-材料科学与工程(5824KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周琴琪]的文章
百度学术
百度学术中相似的文章
[周琴琪]的文章
必应学术
必应学术中相似的文章
[周琴琪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。