[1] MORTIMER R J. Electrochromic materials [J]. Chemical Society Reviews, 1997, 26(3): 147-156.
[2] GRANQVIST C G. Handbook of inorganic electrochromic materials [M]. Elsevier, 1995:1-15.
[3] WEN CHEUN B, TAMANG A, KNIPP D, et al. Post-annealing effect on the electrochromic properties of WO3 films [J]. Optical Materials, 2020, 108: 110426-110432.
[4] ZHOU J, LUO G, WEI Y, et al. Enhanced electrochromic performances and cycle stability of NiO-based thin films via Li–Ti co-doping prepared by sol–gel method [J]. Electrochimica Acta, 2015, 186: 182-191.
[5] DULGERBAKI C, KOMUR A I, NOHUT MASLAKCI N, et al. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application [J]. Optical Materials, 2017, 70: 171-179.
[6] AU B W, CHAN K-Y. Towards an all-solid-state electrochromic device: a review of solid-state electrolytes and the way forward [J]. Polymers, 2022, 14(12): 2458-2474.
[7] WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development [J]. Materials Science and Engineering: R, Reports, 2020, 140: 100524-100550.
[8] GRANQVIST C G, ARVIZU M A, QU H-Y, et al. Advances in electrochromic device technology: Multiple roads towards superior durability [J]. Surface and Coatings Technology, 2019, 357: 619-625.
[9] ZHANG W, LI H, HOPMANN E, et al. Nanostructured inorganic electrochromic materials for light applications [J]. Nanophotonics (Berlin, Germany), 2021, 10(2): 825-850.
[10] LAKHTAKIA A. Green nanotechnology: solutions for sustainability and energy in the built Environment, by G. B. Smith and C. G. Granqvist [J]. Journal of Nanophotonics, 2011, 5: 050201-050202.
[11] XIE L, ZHAO S, ZHU Y, et al. High performance and excellent stability of all-solid-state electrochromic devices based on a Li1.85AlOz ion conducting layer [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17390-17396.
[12] YU H, GUO J, WANG C, et al. High performance in electrochromic amorphous WOx film with long-term stability and tunable switching times via Al/Li-ions intercalation/deintercalation [J]. Electrochimica Acta, 2019, 318: 644-650.
[13] PATEL K J, BHATT G G, RAY J R, et al. All-inorganic solid-state electrochromic devices: a review [J]. Journal of Solid State Electrochemistry, 2017, 21(2): 337-347.
[14] WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films [J]. Nature Materials, 2015, 14(10): 996-1001.
[15] WEN R-T, ARVIZU M A, MORALES-LUNA M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring [J]. Chemistry of Materials, 2016, 28(13): 4670-4676.
[16] RAI V, SINGH R S, BLACKWOOD D J, et al. A review on recent advances in electrochromic devices: a material approach [J]. Advanced Engineering Materials, 2020, 22(8): 1438-1656.
[17] DEB S K. A novel electrophotographic system [J]. Applied Optics, 1969, 8: 192-195.
[18] WANG H, YAO C-J, NIE H-J, et al. Recent progress in integrated functional electrochromic energy storage devices [J]. Journal of Materials Chemistry C, 2020, 8(44): 15507-15525.
[19] LI J, JIANG Y, ZHANG Q, et al. Immobilising a cobalt cubane catalyst on a dye-sensitised TiO2 photoanode via electrochemical polymerisation for light-driven water oxidation [J]. RSC Advances, 2017, 7(7): 4102-4107.
[20] ZHENG R, HUANG T, ZHANG Z, et al. Novel polyimides containing flexible carbazole blocks with electrochromic and electrofluorescencechromic properties [J]. RSC Advances, 2020, 10(12): 6992-7003.
[21] CONG S, TIAN Y, LI Q, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications [J]. Advanced Materials, 2014, 26(25): 4260-4267.
[22] CELIK E, AYBARC U, EBEOGLUGIL M F, et al. ITO films on glass substrate by sol–gel technique: synthesis, characterization and optical properties [J]. Journal of Sol-Gel Science and Technology, 2009, 50(3): 337-347.
[23] XU Y, LIU J. Graphene as transparent electrodes: fabrication and new emerging applications [J]. Small, 2016, 12(11): 1400-1419.
[24] SUKEGAWA T, MASUKO I, OYAIZU K, et al. Expanding the dimensionality of polymers populated with organic robust radicals toward flow cell application: synthesis of TEMPO-crowded bottlebrush polymers using anionic polymerization and ROMP [J]. Macromolecules, 2014, 47(24): 8611-8617.
[25] DENG B, HSU P-C, CHEN G, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes [J]. Nano Letters, 2015, 15(6): 4206-4213.
[26] MORTIMER R. Electrochromic materials [J]. Annual Review of Materials Research, 2011, 41: 241-268.
[27] CAI G, WANG J, LEE P S. Next-generation multifunctional electrochromic devices [J]. Accounts of Chemical Research, 2016, 49(8): 1469-1476.
[28] WU W, WANG M, MA J, et al. Electrochromic metal oxides: recent progress and prospect [J]. Advanced Electronic Materials, 2018, 4(8): 1800185-1800204.
[29] HIRANKUMAR G, MEHTA N. Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes [J]. Heliyon, 2018, 4(12): 1800185-1800212.
[30] MORTIMER R J. Organic electrochromic materials [J]. Electrochimica Acta, 1999, 44(18): 2971-2981.
[31] VERGAZ R, SÁNCHEZ-PENA J, POZO-GONZALO C, et al. Relating cyclic voltammetry and impedance analysis in a viologen electrochromic device [J]. Solar Energy Materials and Solar Cells, 2009, 93: 2125-2132.
[32] ZHAO S, HUANG W, GUAN Z, et al. A novel bis (dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency [J]. Electrochimica Acta, 2019, 298: 533-540.
[33] PAGÈS H, TOPART P, LEMORDANT D. Wide band electrochromic displays based on thin conducting polymer films [J]. Electrochimica Acta, 2001, 46(13): 2137-2143.
[34] NGUYEN T V, LE Q V, PENG S, et al. Exploring conducting polymers as a promising alternative for electrochromic devices [J]. Advanced Materials Technologies, 2023, 8(18): 2300474-2300502.
[35] NUROLDAYEVA G, BALANAY M P. Flexing the spectrum: advancements and prospects of flexible electrochromic materials [J]. Polymers, 2023, 15(13): 2924-2950.
[36] MECERREYES D, MARCILLA R, OCHOTECO E, et al. A simplified all-polymer flexible electrochromic device [J]. Electrochimica Acta, 2004, 49(21): 3555-3559.
[37] LAMPERT C M. Electrochromic materials and devices for energy efficient windows [J]. Solar Energy Materials, 1984, 11(1): 1-27.
[38] HUANG Y, WANG B, CHEN F, et al. Electrochromic materials based on ions insertion and extraction [J]. Advanced Optical Materials, 2022, 10(4): 2101783-21001803.
[39] GRANQVIST C G, BAYRAK PEHLIVAN İ, GREEN S V, et al. Oxide-based electrochromics: advances in materials and devices [J]. MRS Online Proceedings Library, 2011, 1328(1): 11-22.
[40] BUCH V R, CHAWLA A K, RAWAL S K. Review on electrochromic property for WO3 thin films using different deposition techniques [J]. Materials Today: Proceedings, 2016, 3(6): 1429-1437.
[41] BENI G. Recent advances in inorganic electrochromics [J]. Solid State Ionics, 1981, 3: 157-163.
[42] ZOU Y S, ZHANG Y C, LOU D, et al. Structural and optical properties of WO3 films deposited by pulsed laser deposition [J]. Journal of Alloys and Compounds, 2014, 583: 465-470.
[43] CHAUDHARY A, PATHAK D K, TANWAR M, et al. Polythiophene–PCBM-based all-organic electrochromic device: fast and flexible [J]. ACS Applied Electronic Materials, 2019, 1(1): 58-63.
[44] YE W, GUO X, ZHANG X, et al. Multicolored and high optical contrast flexible electrochromic devices based on viologen derivatives [J]. Synthetic Metals, 2022, 287: 117076-117083.
[45] LEE H B, JIN W-Y, OVHAL M M, et al. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review [J]. Journal of Materials Chemistry C, 2019, 7(5): 1087-1110.
[46] JAMDEGNI M, KAUR A. Review—polymeric/small organic molecules-based electrochromic devices: how far toward realization [J]. Journal of The Electrochemical Society, 2022, 169(3): 030541-30555.
[47] RAMANAVICIUS S, RAMANAVICIUS A. Conducting polymers in the design of biosensors and biofuel cells [J], Polymers, 2021, 13(1): 49-68.
[48] XIAO L, LV Y, LIN J, et al. WO3-based electrochromic distributed bragg reflector: toward electrically tunable microcavity luminescent device [J]. Advanced Optical Materials, 2017, 6: 1700791-1700799.
[49] GU C, JIA A-B, ZHANG Y-M, et al. Emerging electrochromic materials and devices for future displays [J]. Chemical Reviews, 2022, 122(18): 14679-14721.
[50] GHOSH T, KANDPAL S, RANI C, et al. Recipe for fabricating optimized solid-state electrochromic devices and its know-how: challenges and future [J]. Advanced Optical Materials, 2023, 11(12): 2203126-2203142.
[51] BISQUERT J. Analysis of the kinetics of ion intercalation [J]. Electrochimica Acta, 2002, 47(15): 2435-2449.
[52] WANG Z, CHEN G, ZHANG H, et al. In situ TEM investigation of hexagonal WO3 irreversible transformation to Li2WO4 [J]. Scripta Materialia, 2021, 203: 114090-114095.
[53] TAKAYANAGI M, TSUCHIYA T, UEDA S, et al. In situ hard X-ray photoelectron spectroscopy on the origin of irreversibility in electrochromic LixWO3 thin films [J]. Applied Surface Science, 2021, 568: 150898-150907.
[54] HASHIMOTO S, MATSUOKA H, KAGECHIKA H, et al. Degradation of electrochromic amorphous WO3 film in lithium-salt electrolyte [J]. Journal of The Electrochemical Society, 1990, 137(4): 1300-1304.
[55] ZHANG R, ZHOU Q, HUANG S, et al. Capturing ion trapping and detrapping dynamics in electrochromic thin films [J]. Nature Communications, 2024, 15(1): 2294-2305.
[56] ZHOU K, WANG H, LIU J, et al. The mechanism of trapped ions eroding the electrochromic performances of WO3 thin films [J]. International Journal of Electrochemical Science, 2018, 13(8): 7335-7346.
[57] ARVIZU M A, HUI-YING Q, CINDEMIR U, et al. Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment [J]. Journal of Materials Chemistry A, 2019, 7(6): 2908-2918.
[58] BALOUKAS B, ARVIZU M A, WEN R-T, et al. Galvanostatic rejuvenation of electrochromic WO3 thin films: ion trapping and detrapping observed by optical measurements and by time-of-flight secondary ion mass spectrometry [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16995-17001.
[59] SORAR I, BAYRAK PEHLIVAN İ, BOHLIN J, et al. Potentiostatic rejuvenation of electrochromic WO3 thin films: Exploring the effect of polyethylene oxide in LiClO4-propylene carbonate electrolytes [J]. Solar Energy Materials and Solar Cells, 2020, 218: 110767-110776.
[60] WEN R-T, NIKLASSON G A, GRANQVIST C G. Eliminating electrochromic degradation in amorphous TiO2 through Li-ion detrapping [J]. ACS Applied Materials & Interfaces, 2016, 8(9): 5777-5782.
[61] HUANG S, ZHANG R, SHAO P, et al. Electrochromic performance fading and restoration in amorphous TiO2 thin films [J]. Advanced Optical Materials, 2022, 10(16): 2200903-2200915.
[62] ARVIZU M A, GRANQVIST C G, NIKLASSON G A. Rejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: preliminary results [J]. Journal of Physics: Conference Series, 2016, 764(1): 012009-012016.
[63] QU H Y, PRIMETZHOFER D, ARVIZU M A, et al. Electrochemical rejuvenation of anodically coloring electrochromic nickel oxide thin films [J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42420-42424.
[64] DEB S. Optical and photoelectric properties and color centers in thin films of tungsten oxide [J]. Philosophical Magazine, 1973, 27(4): 801-822.
[65] HIROCHI K, KITABATAKE M, YAMAZAKI O. Electrochromic effects of Li-W-O films under ultraviolet light exposure [J]. Journal of The Electrochemical Society, 1986, 133(9): 1973-1974.
[66] MOHAMEDKHAIR A K, DRMOSH Q A, QAMAR M, et al. Tuning structural properties of WO3 thin films for photoelectrocatalytic water oxidation [J]. Catalysts, 2021, 11(3): 381-396.
[67] SHCHEGOLKOV A V, JANG S-H, SHCHEGOLKOV A V, et al. A brief overview of electrochromic materials and related devices: a nanostructured materials perspective [J]. Nanomaterials, 2021, 11(9): 2376-2408.
[68] UFHEIL J, WÜRSIG A, SCHNEIDER O D, et al. Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte [J]. Electrochemistry Communications, 2005, 7(12): 1380-1384.
[69] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303-4317.
[70] HISHIMONE P, NAGAI H, SATO M. Methods of fabricating thin films for energy materials and devices [M]. IntechOpen, 2020: 1-3.
[71] HAHN H, AVERBACK R. The production of nanocrystalline powders by magnetron sputtering [J]. Journal of Applied Physics, 1990, 67(2): 1113-1115.
[72] BRÄUER G, SZYSZKA B, VERGÖHL M, et al. Magnetron sputtering – milestones of 30 years [J]. Vacuum, 2010, 84(12): 1354-1359.
[73] TONG M, YANG J, JIN Q, et al. Facile preparation of amorphous carbon-coated tungsten trioxide containing oxygen vacancies as photocatalysts for dye degradation [J]. Journal of Materials Science, 2019, 54(15): 10656-10669.
[74] FAUGHNAN B W, CRANDALL R S, LAMPERT M A. Model for the bleaching of WO3 electrochromic films by an electric field [J]. Applied Physics Letters, 1975, 27(5): 275-277.
[75] SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes [J]. Nature Materials, 2013, 12(9): 827-835.
[76] WOOD K N, STEIRER K X, HAFNER S E, et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes [J]. Nature Communications, 2018, 9(1): 2490-2499.
[77] HORACHIT C, INTANIWET A, RUANKHAM P. Low-temperature-processed ZnO thin films as electron transporting layer to achieve stable perovskite solar cells [J]. Optical and Quantum Electronics, 2018, 50(10): 379-391.
[78] SANTATO C, ODZIEMKOWSKI M, ULMANN M, et al. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications [J]. Journal of the American Chemical Society, 2001, 123(43): 10639-10649.
[79] PYPER O, KASCHNER A, THOMSEN C. In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes [J]. Solar Energy Materials and Solar Cells, 2002, 71(4): 511-522.
[80] BASERGA A, RUSSO V, DI FONZO F, et al. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization [J]. Thin Solid Films, 2007, 515(16): 6465-6469.
[81] LEE S-H, CHEONG H M, TRACY C E, et al. Raman spectroscopic studies of electrochromic a-WO3 [J]. Electrochimica Acta, 1999, 44(18): 3111-3115.
[82] BUENO P, PONTES F, LEITE E, et al. Structural analysis of pure and LiCF3SO3-doped amorphous WO3 electrochromic films and discussion on coloration kinetics [J]. Journal of Applied Physics, 2004, 96(4): 2102-2109.
[83] KUDO H, WU C, IHLE H. Mass-spectrometric study of the vaporization of Li2O (s) and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2 [J]. Journal of Nuclear Materials, 1978, 78(2): 380-389.
[84] YAMDAGNI R, PUPP C, PORTER R. Mass spectrometric study of the evaporation of lithium and sodium molybdates and tungstates [J]. Journal of Inorganic and Nuclear Chemistry, 1970, 32(11): 3509-3523.
[85] SUN Z, LAI Y, LV N, et al. Boosting the electrochemical performance of all-solid-state batteries with sulfide Li6PS5Cl solid electrolyte using Li2WO4-coated LiCoO2 cathode [J]. Advanced Materials Interfaces, 2021, 8(15): 2100624-2100630.
[86] TAUC J. Optical properties and electronic structure of amorphous Ge and Si [J]. Materials Research Bulletin, 1968, 3(1): 37-46.
[87] LIU Q, CHEN Q, ZHANG Q, et al. In situ electrochromic efficiency of a nickel oxide thin film: origin of electrochemical process and electrochromic degradation [J]. Journal of Materials Chemistry C, 2018, 6(3): 646-563.
[88] ZHANG S, CAO S, ZHANG T, et al. Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling [J]. Advanced Materials, 2020, 32(43): 2004686-2004693.
[89] HUANG Y, WANG B, BAI X, et al. 3D Pine-needle-like W18O49/TiO2 heterostructures as dual-band electrochromic materials with ultrafast response and excellent stability [J]. Advanced Optical Materials, 2022, 10(7): 2102399-2102407.
[90] LUO H, WEI M, WEI K. Synthesis of Nb2O5 nanosheets and its electrochemical measurements [J]. Materials Chemistry and Physics, 2010, 120(1): 6-9.
[91] RANI R A, ZOOLFAKAR A S, OU J Z, et al. Nanoporous Nb2O5 hydrogen gas sensor [J]. Sensors and Actuators B: Chemical, 2013, 176: 149-156.
[92] CHEN X, YU T, FAN X, et al. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production [J]. Applied Surface Science, 2007, 253(20): 8500-8506.
[93] FENG J, YANG Z, YANG D, et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells [J]. Nano Energy, 2017, 36: 1-8.
[94] LEMOS R M J, BALBONI R D C, CHOLANT C M, et al. Molybdenum doping effect on sol-gel Nb2O5: Li+ thin films: Investigation of structural, optical and electrochromic properties [J]. Materials Science in Semiconductor Processing, 2021, 134: 105995-106004.
[95] RATHIKA R, KOVENDHAN M, JOSEPH D P, et al. 200 MeV Ag15+ swift heavy ion beam induced property modifications in Nb2O5 thin films by fluence variation [J]. Journal of Physics and Chemistry of Solids, 2019, 135: 109089-109096.
[96] OZER N, LAMPERT C M. Structural and optical properties of sol-gel deposited proton conducting Ta2O5 films [J]. Journal of Sol-Gel Science and Technology, 1997, 8: 703-709.
[97] Z. TEPEHAN F, GHODSI F E, OZER N, et al. Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications [J]. Solar Energy Materials and Solar Cells, 1999, 59(3): 265-275.
[98] CHEN P-W, CHANG C-T, ALI M M, et al. Tantalum oxide film deposited by vacuum cathodic arc plasma with improved electrochromic performance [J]. Solar Energy Materials and Solar Cells, 2018, 182: 188-195.
[99] HE Y, ZHANG F, ZHANG Q, et al. High capacity and performance lithium based electrochromic device via amorphous tantalum oxide protective layer [J]. Electrochimica Acta, 2018, 280: 163-170.
[100] GUERFI A, PAYNTER R W, DAO L H. Characterization and stability of electrochromic MoO3 thin films prepared by electrodeposition [J]. Journal of The Electrochemical Society, 1995, 142(10): 3457-3464.
[101] CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics [J]. Journal of Materials Chemistry, 2009, 19(17): 2526-1552.
修改评论