[1] ZHANG G C, LIN F R, QI F, et al. Renewed prospects for organic photovoltaics[J]. Chemical Reviews, 2022, 122: 14180-14274.
[2] YAO H F, HOU J H. Recent advances in single-junction organic solar cells[J]. Angewandte Chemie International Edition, 2022, 61: 202209021.
[3] FU J H, YANG Q G, HUANG P H, et al. Rational molecular and device design enables organic solar cells approaching 20% efficiency[J]. Nature Communications, 2024, 15: 1830.
[4] LI Y W, XU G Y, CUI C H, et al. Flexible and semitransparent organic solar cells[J]. Advanced Energy Materials, 2017, 8: 1701791.
[5] WANG W X, CUI Y, ZHANG T, et al. High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders[J]. Joule, 2023, 7: 1067-1079.
[6] DAI S X, ZHAN X W. Nonfullerene acceptors for semitransparent organic solar cells[J]. Advanced Energy Materials, 2018, 8: 1800002.
[7] KEARNS D, CALVIN M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. The Journal of Chemical Physics, 1958, 29: 950-951.
[8] TANG C W. Two-layer organic photovoltaic cell[J]. Applied Physics Letters, 1986, 48: 183-185.
[9] SARICIFTCI N S, BRAUN D, ZHANG C, et al. Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells[J]. Applied Physics Letters, 1993, 62: 585-587.
[10] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270: 1789-1791.
[11] DANG M T, HIRSCH L, WANTZ G, et al. Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):
[6,6]-phenyl-C61-butyric acid methyl ester system[J]. Chemical Reviews, 2013, 113: 3734-3765.
[12] QIAN D P, YE L, ZHANG M J, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state[J]. Macromolecules, 2012, 45: 9611-9617.
[13] LIU Y H, ZHAO J B, LI Z K, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nature Communications, 2014, 5: 5293.
[14] YE L, ZHANG S Q, HUO L J, et al. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithio- phene[J]. Accounts of Chemical Research, 2014, 47: 1595-1603.
[15] YAO H F, YE L, ZHANG H, et al. Molecular design of benzodithiophene-based organic photovoltaic materials[J]. Chemical Reviews, 2016, 116: 7397-7457.
[16] HU H W, CHOW P C Y, ZHANG G Y, et al. Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics[J]. Accounts of Chemical Research, 2017, 50: 2519-2528.
[17] ZHANG M J, GUO X, MA W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance[J]. Advanced Materials, 2015, 27: 4655-4660.
[18] JIN Y C, CHEN Z M, XIAO M J, et al. Thick film polymer solar cells based on naphtho
[1,2-c:5,6-c]bis
[1,2,5]thiadiazole conjugated polymers with efficiency over 11%[J]. Advanced Energy Materials, 2017, 7: 1700944.
[19] NIELSEN C B, HOLLIDAY S, CHEN H Y, et al. Non-fullerene electron acceptors for use in organic solar cells[J]. Accounts of Chemical Research, 2015, 48: 2803-2812.
[20] WADSWORTH A, MOSER M, MARKS A, et al. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells[J]. Chemical Society Reviews, 2019, 48: 1596-1625.
[21] LIN Y Z, WANG J Y, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27: 1170-1174.
[22] SINGH S P, SUMAN. Impact of end group on the performance of non-fullerene acceptors for organic solar cell applications[J]. Journal of Materials Chemistry A, 2019, 7: 22701-22729.
[23] YUAN J, ZHANG Y Q, ZHOU L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core[J]. Joule, 2019, 3: 1140-1151.
[24] LI S X, LI C Z, SHI M M, et al. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives[J]. ACS Energy Letters, 2020, 5: 1554-1567.
[25] MEREDITH P, LI W, ARMIN A. Nonfullerene acceptors: a renaissance in organic photovoltaics?[J]. Advanced Energy Materials, 2020, 10: 2001788.
[26] WEI Q Y, LIU W, LECLERC M, et al. A-D-A′-D-A non-fullerene acceptors for high-performance organic solar cells[J]. Science China Chemistry, 2020, 63: 1352-1366.
[27] LIU W, XU X, YUAN J, et al. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells[J]. ACS Energy Letters, 2021, 6: 598-608.
[28] LUO Z H, XU T L, ZHANG C E, et al. Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells[J]. Energy & Environmental Science, 2023, 6: 2732-2758.
[29] LIANG S J, LIU B Q, KARUTHEDATH S, et al. Double-cable conjugated polymers with pendent near-infrared electron acceptors for single-component organic solar cells[J]. Angewandte Chemie International Edition, 2022, 134: 202209316.
[30] LIANG S J, XIAO C Y, XIE C C, et al. 13% single-component organic solar cells based on double-cable conjugated polymers with pendent Y-series acceptors[J]. Advanced Materials, 2023, 35: 2300629.
[31] CHEN H, ZHAO T X, LI L, et al. 17.6%-efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor[J]. Advanced Materials, 2021, 33: 2102778.
[32] LI X R, DU X Y, ZHAO J W, et al. Layer-by-layer solution processing method for organic solar cells[J]. Solar RRL, 2021, 5: 2000592.
[33] LIU C H, FU Y W, ZHOU J P, et al. Alkoxythiophene directed fibrillization of polymer donor for efficient organic solar cells[J]. Advanced Materials, 2023: 2308608.
[34] XU X P, YU L Y, MENG H F, et al. Polymer solar cells with 18.74% efficiency: from bulk heterojunction to interdigitated bulk heterojunction[J]. Advanced Functional Materials, 2021, 32: 2108797.
[35] WANG L, CHEN C, FU Y W, et al. Donor-acceptor mutually diluted heterojunctions for layer-by-layer fabrication of high-performance organic solar cells[J]. Nature Energy, 2024, 9: 208-218.
[36] XIAO M J, MENG Y D, TANG L T, et al. Solid additive-assisted selective optimization strategy for sequential deposited active layers to construct 19.16% efficiency binary organic solar cells[J]. Advanced Functional Materials, 2023: 2311216.
[37] CAO C C, WANG H T, QIU D S, et al. Quasiplanar heterojunction all-polymer solar cells: a dual approach to stability[J]. Advanced Functional Materials, 2022, 32: 2201828.
[38] WANG H T, CAO C C, CHEN H, et al. Oligomeric acceptor: a “two-in-one” strategy to bridge small molecules and polymers for stable solar devices[J]. Angewandte Chemie International Edition, 2022, 61: 202201844.
[39] ZHANG G P, ZHAO C Y, ZHU L X, et al. Toluene processed all-polymer solar cells with 18% efficiency and enhanced stability enabled by solid additive: comparison between sequential-processing and blend-casting[J]. Energy & Environmental Materials, 2023: 12683.
[40] ZHAO Z M, ZHAO J J, CHUNG S, et al. Suppressing bimolecular charge recombination and energetic disorder with planar heterojunction active layer enables 18.1% efficiency binary organic solar cells[J]. ACS Materials Letters, 2023, 5: 1718-1726.
[41] WU Z H, SUN C, DONG S, et al. N-type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells[J]. Journal of the American Chemical Society, 2016, 138: 2004-2013.
[42] CHENG P, WANG J Y, ZHAN X W, et al. Constructing high-performance organic photovoltaics via emerging non-fullerene acceptors and tandem-junction structure[J]. Advanced Energy Materials, 2020, 10: 2000746.
[43] ZHENG Z, WANG J Q, BI P Q, et al. Tandem organic solar cell with 20.2% efficiency[J]. Joule, 2021, 6: 171-184.
[44] STOLTZFUS D M, DONAGHEY J E, ARMIN A, et al. Charge generation pathways in organic solar cells: assessing the contribution from the electron acceptor[J]. Chemical Reviews, 2016, 116: 12920-12955.
[45] CHENG P, LI G, ZHAN X W, et al. Next-generation organic photovoltaics based on non-fullerene acceptors[J]. Nature Photonics, 2018, 12: 131-142.
[46] LU L Y, ZHENG T Y, WU Q H, et al. Recent advances in bulk heterojunction polymer solar cells[J]. Chemical Reviews, 2015, 115: 12666-12731.
[47] HAVINGA E E, TEN H W, WYNBERG H. A new class of small band gap organic polymer conductors[J]. Polymer Bulletin, 1992, 29: 119-126.
[48] DUAN C H, HUANG F, CAO Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures[J]. Journal of Materials Chemistry, 2012, 22: 10416-10434.
[49] WUDL F, KOBAYASHI M, HEEGER A J. Poly(isothianaphthene)[J]. The Journal of Organic Chemistry, 1984, 49: 3382-3384.
[50] RONCALI J. Molecular engineering of the band gap of π-conjugated systems: facing technological applications[J]. Macromolecular Rapid Communications, 2007, 28: 1761-1775.
[51] BREDAS J-L, NORTON J E, CORNIL J, et al. Molecular understanding of organic solar cells: the challenges[J]. Accounts of Chemical Research, 2009, 42: 1691-1699.
[52] KOßMEHL G, BEIMLING P, MANECKE G. Über polyarylenalkenylene und polyheteroarylenalkenylene, 14. synthesen und charakterisierung von poly- (thieno
[2′,3′:1,2]benzo
[4,5-b]thiophen-2,6-diylvinylenarylenvinylen)en, poly (4,8-dimethoxythieno
[2′,3′:1,2]benzo
[4,5-b]thiophen-2,6-diylvinylenarylenv- inylen)en und einigen modellverbindungen[J]. Die Makromolekulare Chemie, 1983, 184: 627-650.
[53] PAN H L, LI Y N, WU Y L, et al. Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors[J]. Journal of the American Chemical Society, 2007, 129: 4112-4113.
[54] HOU J H, PARK M H, ZHANG S Q, et al. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo
[1, 2-b:4,5-b′]dithiophene[J]. Macromolecules, 2008, 41: 6012-6018.
[55] LIANG Y Y, FENG D Q, WU Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. Journal of the American Chemical Society, 2009, 131: 7792-7799.
[56] HUO L J, HOU J H, ZHANG S Q, et al. A polybenzo
[1,2-b:4,5-b′]dithiophene derivative with deep homo level and its application in high-performance polymer solar cells[J]. Angewandte Chemie International Edition, 2010, 49: 1500-1503.
[57] HUO L J, ZHANG S Q, GUO X, et al. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers[J]. Angewandte Chemie International Edition, 2011, 50: 9697-9702.
[58] LAIO S H, JHUO H J, CHENG Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance[J]. Advanced Materials, 2013, 25: 4766-4771.
[59] CUI C H, WONG W Y, LI Y F. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution[J]. Energy & Environmental Science, 2014, 7: 2276-2284.
[60] ZHANG M J, GUO X, ZHANG S Q, et al. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers[J]. Advanced Materials, 2014, 26: 1118-1123.
[61] DU Z K, BAO X C, LI Y H, et al. Balancing high open circuit voltage over 1.0 V and high short circuit current in benzodithiophene-based polymer solar cells with low energy loss: a synergistic effect of fluorination and alkylthiolation[J]. Advanced Energy Materials, 2017: 1701471.
[62] XUE L W, YANG Y K, XU J Q, et al. Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells[J]. Advanced Materials, 2017, 29: 1703344.
[63] ZHAO Q Q, QU J F, HE F. Chlorination: an effective strategy for high-performance organic solar cells[J]. Advanced Science, 2020, 7: 2000509.
[64] YAO H F, WANG J W, XU Y, et al. Recent progress in chlorinated organic photovoltaic materials[J]. Accounts of Chemical Research, 2020, 53: 822-832.
[65] ZHANG S Q, QIN Y P, ZHU J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor[J]. Advanced Materials, 2018, 30: 1800868.
[66] CAHO P J, MU Z, WANG H, et al. Chlorination of side chains: a strategy for achieving a high open circuit voltage over 1.0 V in benzo
[1,2-b:4,5-b′]di- thiophene-based non-fullerene solar cells[J]. ACS Applied Energy Materials, 2018, 1: 2365-2372.
[67] CHAO P J, CHEN H, ZHU Y L, et al. Chlorination of conjugated side chains to enhance intermolecular interactions for elevated solar conversion[J]. Macromolecules, 2019, 53: 165-173.
[68] CHAO P J, LIU L Z, ZHOU J D, et al. Multichloro-substitution strategy: facing low photon energy loss in nonfullerene solar cells[J]. ACS Applied Energy Materials, 2018, 1: 6549-6559.
[69] HINSBERG O. Ueber chinoxaline[J]. Berichte der Deutschen Chemischen Gesellschaft, 1884, 17: 318-323.
[70] YUAN J, QIU L X, ZHANG Z G, et al. A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells[J]. Chemical Communications, 2016, 52: 6881-6884.
[71] YUAN J, QIU L X, ZHANG Z G, et al. Tetrafluoroquinoxaline based polymers for non-fullerene polymer solar cells with efficiency over 9%[J]. Nano Energy, 2016, 30: 312-320.
[72] XU S T, FENG L L, YUAN J, et al. Hexafluoroquinoxaline based polymer for nonfullerene solar cells reaching 9.4% efficiency[J]. ACS Applied Materials & Interfaces, 2017, 9: 18816-18825.
[73] WANG T, LAU T K, LU X H, et al. A medium bandgap D-A copolymer based on 4-alkyl-3,5-difluorophenyl substituted quinoxaline unit for high performance solar cells[J]. Macromolecules, 2018, 51: 2838-2846.
[74] XU S T, WANG X J, FENG L L, et al. Optimizing the conjugated side chains of quinoxaline based polymers for nonfullerene solar cells with 10.5% efficiency[J]. Journal of Materials Chemistry A, 2018, 6: 3074-3083.
[75] YUAN J, LIU Y, ZHU C, et al. Asymmetric quinoxaline-based polymer for high efficiency non-fullerene solar cells[J]. Acta Physico-Chimica Sinica, 2018, 34: 1272-1278.
[76] SUN C K, ZHU C, MENG L, et al. Quinoxaline-based D-A copolymers for the applications as polymer donor and hole transport material in polymer/perovskite solar cells[J]. Advanced Materials, 2021, 34: 2104161.
[77] SUN C K, PAN F, QIU B B, et al. D-A copolymer donor based on bithienyl benzodithiophene D-unit and monoalkoxy bifluoroquinoxaline A-unit for high performance polymer solar cells[J]. Chemistry of Materials, 2020, 32: 3254-3261.
[78] ZHU C, MENG L, ZHANG J Y, et al. A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells[J]. Advanced Materials, 2021, 33: 2100474.
[79] ZENG L, MA R J, ZHANG Q, et al. Synergy strategy to the flexible alkyl and chloride side-chain engineered quinoxaline-based D-A conjugated polymers for efficient non-fullerene polymer solar cells[J]. Materials Chemistry Frontiers, 2021, 5: 1906-1916.
[80] ZHANG Q, SONG X, SINGH R, et al. Chloride side-chain engineered quinoxaline-based D-A copolymer enabling non-fullerene organic solar cells with over 16% efficiency[J]. Chemical Engineering Journal, 2022, 437: 135182.
[81] YU T, XU X P, ZHANG G J, et al. Wide bandgap copolymers based on quinoxalino
[6,5-f].quinoxaline for highly efficient nonfullerene polymer solar cells[J]. Advanced Functional Materials, 2017, 27: 1701491.
[82] ZHANG Y J, ZHOU P C, WANG J C, et al. Designing a thiophene-fused quinoxaline unit to build D-A copolymers for non-fullerene organic solar cells[J]. Dyes and Pigments, 2020, 174: 108022.
[83] XU Y, CUI Y, YAO H F, et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device[J]. Advanced Materials, 2021, 33: 2101090.
[84] CUI Y, XU Y, YAO H F, et al. Single-junction organic photovoltaic cell with 19% efficiency[J]. Advanced Materials, 2021, 33: 2102420.
[85] ZHAO T X, CAO C C, WANG H T, et al. Highly efficient all-polymer solar cells from a dithieno
[3,2-f:2′,3′-h]quinoxaline-based wide band gap donor[J]. Macromolecules, 2021, 54: 11468-11477.
[86] KE C X, LAI X, WANG H T, et al. Subtle effect of alkyl substituted π-bridges on dibenzo[a,c]phenazine based polymer donors towards enhanced photovoltaic performance[J]. Chinese Journal of POLYMER SCIENCE, 2022, 40: 889-897.
[87] BEI Q, ZHANG B, WANG K F, et al. Benzothiadiazole-based materials for organic solar cells[J]. Chinese Chemical Letters, 2023, 35: 108438.
[88] DHANABALAN A, VAN DUREN J K J, VAN HAL P A, et al. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells[J]. Advanced Functional Materials, 2001, 11: 255-262.
[89] ZHOU H X, YANG L Q, STUART A C, et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % effi- ciency[J]. Angewandte Chemie International Edition, 2011, 50: 2995-2998.
[90] WANG N, CHEN Z, WEI W, et al. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments[J]. Journal of the American Chemical Society, 2013, 135: 17060-17068.
[91] FENG K, YANG G F, XU X P, et al. High-performance wide bandgap copolymers using an edot modified benzodithiophene donor block with 10.11% efficiency[J]. Advanced Energy Materials, 2017, 8: 1602773.
[92] ZHANG G J, XU X P, BI Z Z, et al. Fluorinated and alkylthiolated polymeric donors enable both efficient fullerene and nonfullerene polymer solar cells[J]. Advanced Functional Materials, 2018, 28: 1706404.
[93] CHAO P J, JOHNER N, ZHONG X W, et al. Chlorination strategy on polymer donors toward efficient solar conversions[J]. Journal of Energy Chemistry, 2019, 39: 208-216.
[94] HU Z M, CHEN H, QU J F, et al. Design and synthesis of chlorinated benzothiadiazole-based polymers for efficient solar energy conversion[J]. ACS Energy Letters, 2017, 2: 753-758.
[95] MO D Z, WANG H, CHEN H, et al. Chlorination of low-band-gap polymers: toward high-performance polymer solar cells[J]. Chemistry of Materials, 2017, 29: 2819-2830.
[96] DONG Y Y, YANG H, WU Y, et al. Towards improved efficiency of polymer solar cells via chlorination of a benzo
[1,2-b:4,5-b′]dithiophene based polymer donor[J]. Journal of Materials Chemistry A, 2019, 7: 2261-2267.
[97] WANG M, HU X W, LIU P, et al. Donor-acceptor conjugated polymer based on naphtho
[1,2-c:5,6-c]bis
[1,2,5]thiadiazole for high-performance polymer solar cells[J]. Journal of the American Chemical Society, 2011, 133: 9638-9641.
[98] WANG L X, CAI D D, ZHENG Q D, et al. Low band gap polymers incorporating a dicarboxylic imide-derived acceptor moiety for efficient polymer solar cells[J]. ACS Macro Letters, 2013, 2: 605-608.
[99] LIU Q S, JIANG Y F, JIN K, et al. 18% efficiency organic solar cells[J]. Science Bulletin, 2020, 65: 272-275.
[100] QIN J Q, ZHANG L X, ZUO C T, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency[J]. Journal of Semiconductors, 2020, 42: 010501.
[101] ZHAO T X, WANG H, PU M R, et al. Tuning the molecular weight of chlorine-substituted polymer donors for small energy loss[J]. Chinese Journal of Chemistry, 2021, 39: 1651-1658.
[102] TANG H L, NING J H, WANG K, et al. Dithienobenzoselenadiazole-based polymer donors with tuned side chains for efficient polymer solar cells[J]. ACS Applied Energy Materials, 2023, 6: 4079-4088.
[103] THOMPSON B C, FRECHET J M. Polymer-fullerene composite solar cells[J]. Angewandte Chemie International Edition, 2008, 47: 58-77.
[104] LIU Y H, LIU B W, MA C Q, et al. Recent progress in organic solar cells (part i material science)[J]. Science China Chemistry, 2022, 65: 224-268.
[105] LI S S, YE L, ZHAO W C, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells[J]. Advanced Materials, 2016, 28: 9423-9429.
[106] ZHAO W C, LI S S, YAO H F, et al. Molecular optimization enables over 13% efficiency in organic solar cells[J]. Journal of the American Chemical Society, 2017, 139: 7148-7151.
[107] ZHANG H, YAO H F, HOU J X, et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors[J]. Advanced Materials, 2018, 30: 1800613.
[108] ZHAO F W, DAI S X, WU Y, et al. Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency[J]. Advanced Materials, 2017, 29: 1700144.
[109] YAO H F, WANG J W, XU Y, et al. Terminal groups of nonfullerene acceptors: design and application[J]. Chemistry of Materials, 2023, 35: 807-821.
[110] CUI Y, YAO H F, ZHANG J Q, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J]. Nature Communications, 2019, 10: 2515.
[111] CUI Y, YAO H F, ZHANG J Q, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency[J]. Advanced Materials, 2020, 32: 1908205.
[112] LI C, ZHOU J D, SONG J L, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells[J]. Nature Energy, 2021, 6: 605-613.
[113] ZHU L, ZHANG M, XU J Q, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology[J]. Nature Materials, 2022, 21: 656-663.
[114] YU H, QI Z Y, ZHANG J Q, et al. Tailoring non-fullerene acceptors by selenium-incorporated heterocycles for organic solar cells with over 16% efficiency[J]. Journal of Materials Chemistry A, 2020, 8: 23756-23765.
[115] WANG J L, YANG C, AN Q S, et al. Synergistic strategy of manipulating the number of selenophene units and asymmetric central core of small molecular acceptors enables polymer solar cells with 17.5% efficiency[J]. Angewandte Chemie International Edition, 2021, 60: 19241.
[116] SHI J Y, CHEN Z Y, LIU H, et al. Selenium-substitution asymmetric acceptor enables efficient binary organic solar cells over 18.3% via regulating molecular stacking and phase separation[J]. Advanced Energy Materials, 2023, 13: 2301292.
[117] FAN B B, LIN F, WU X, et al. Selenium-containing organic photovoltaic materials[J]. Accounts of Chemical Research, 2021, 54: 3906-3916.
[118] QU J F, CHEN H, ZHOU J D, et al. Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor[J]. ACS Applied Materials & Interfaces, 2018, 10: 39992-40000.
[119] LAI H J, CHEN H, ZHOU J D, et al. Isomer-free: precise positioning of chlorine-induced interpenetrating charge transfer for elevated solar conversion[J]. iScience, 2019, 17: 302-314.
[120] LAI H J, ZHAO Q Q, CHEN Z Y, et al. Trifluoromethylation enables a 3D interpenetrated low-band-gap acceptor for efficient organic solar cells[J]. Joule, 2020, 4: 688-700.
[121] LAI H J, HE F. Crystal engineering in organic photovoltaic acceptors: a 3D network approach[J]. Advanced Energy Materials, 2020, 10: 2002678.
[122] MA L J, ZHANG S Q, HOU J H. Crystal structures in state-of-the-art non-fullerene electron acceptors[J]. Journal of Materials Chemistry A, 2022, 11: 481-494.
[123] XU J Q, LIN F, ZHU L, et al. The crystalline behavior and device function of nonfullerene acceptors in organic solar cells[J]. Advanced Energy Materials, 2022, 12: 2201338.
[124] LIU J, CHEN S S, QIAN D P, et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force[J]. Nature Energy, 2016, 1: 16089.
[125] QIAN D P, ZHENG Z L, YAO H F, et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells[J]. Nature Materials, 2018, 17: 703-709.
[126] ZHANG G Y, NING H J, CHEN H, et al. Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency[J]. Joule, 2021, 5: 931-944.
[127] QIU D D, SHI Y N, LI Y, et al. Conjugation expansion strategy enables highly stable all-polymer solar cells[J]. Chinese Chemical Letters, 2023, 34: 108019.
[128] SHEN X Y, LAI X, LAI H J, et al. Isomerism strategy to optimize aggregation and morphology for superior polymer solar cells[J]. Macromolecules, 2022, 55: 6384-6393.
[129] JAEWON L, SIN D H, CLEMENT J A, et al. Medium-bandgap conjugated polymers containing fused dithienobenzochalcogenadiazoles: chalcogen atom effects on organic photovoltaics[J]. Macromolecules, 2016, 49: 9358-9370.
[130] MATEKER W R, MCGEHEE M D. Progress in understanding degradation mechanisms and improving stability in organic photovoltaics[J]. Advanced Materials, 2017, 29: 1603940.
[131] ZHU L, ZHANG M, ZHONG W K, et al. Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells[J]. Energy & Environmental Science, 2021, 14: 4341-4357.
[132] LAI X, LAI H J, DU M Z, et al. Bilayer quasiplanar heterojunction organic solar cells with a co-acceptor: a synergistic approach for stability and efficiency[J]. Chemistry of Materials, 2022, 34: 7886-7896.
修改评论