[1]SKRIPKA A, MENDEZ-GONZALEZ D, MARIN R, et al. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: Recent developments in multifunctional nanomaterials[J]. Nanoscale Advances, 2021, 3(22): 6310-6329.
[2]FANG J, ZHOU Z, XIAO M, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors[J]. InfoMat, 2020, 2(2): 291-317.
[3]TAN K W, YAP C M, ZHENG Z, et al. State‐of‐the‐art advances, development, and challenges of metal oxide semiconductor nanomaterials for photothermal solar steam generation[J]. Advanced Sustainable Systems, 2022, 6(4): 2100416.
[4]VAUGHN D D, SCHAAK R E. Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials[J]. Chemical Society Reviews, 2013, 42(7): 2861-2879.
[5]WANG Y, SUN H. Advances and prospects of lasers developed from colloidal semiconductor nanostructures[J]. Progress in Quantum Electronics, 2018, 60: 1-29.
[6]SCOTT R, PRUDNIKAU A V, ANTANOVICH A, et al. A comparative study demonstrates strong size tunability of carrier-phonon coupling in CdSe-based 2D and 0D nanocrystals[J]. Nanoscale, 2019, 11(9): 3958-3967.
[7]ACHERMANN M, BARTKO A P, HOLLINGSWORTH J A, et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics, 2006, 2(8): 557-561.
[8]KLIMOV V I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals[J]. The Journal of Physical Chemistry B, 2000, 104(26): 6112-6123.
[9]EISLER H J, SUNDAR V C, BAWENDI M G, et al. Color-selective semiconductor nanocrystal laser[J]. Applied Physics Letters, 2002, 80(24): 4614-4616.
[10]BANFI G P, DEGIORGIO V, GHIGLIAZZA M, et al. Two-photon absorption in semiconductor nanocrystals[J]. Physical Review B, 1994, 50(8): 5699-5702.
[11]HUANG H, POLAVARAPU L, SICHERT J A, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications[J]. NPG Asia Materials, 2016, 8(11): e328-e328.
[12]MAES J, BALCAEN L, DRIJVERS E, et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2018, 9(11): 3093-3097.
[13]SWARNKAR A, CHULLIYIL R, RAVI V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots[J]. Angewandte Chemie-International Edition, 2015, 54(51): 15424-15428.
[14]DUTTA A, BEHERA R K, PAL P, et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach[J]. Angewandte Chemie-International Edition, 2019, 58(17): 5552-5556.
[15]YAN F, TAN S T, LI X, et al. Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications[J]. Small, 2019, 15(47): 1902079.
[16]RAMASAMY P, LIM D-H, KIM B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J]. Chemical Communications, 2016, 52(10): 2067-2070.
[17]ZHANG H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Advanced Functional Materials, 2017, 27(7): 1604382.
[18]ZHOU F, LI Z, CHEN H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells[J]. Nano Energy, 2020, 73: 104757.
[19]XU Y, CAO M, HUANG S. Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals[J]. Nano Research, 2021, 14(11): 3773-3794.
[20]ARANDIYAN H, S. MOFARAH S, SORRELL C C, et al. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science[J]. Chemical Society Reviews, 2021, 50(18): 10116-10211.
[21]WELLS H L. On caesium-mercuric halides[J]. American Journal of Science, 1892, s3-44(261): 221.
[22]MØLLER C K. Crystal structure and photoconductivity of caesium plumbohalides[J]. Nature, 1958, 182(4647): 1436-1436.
[23]WEBER D. CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure[J]. 1978, 33(12): 1443-1445.
[24]KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[25]JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385.
[26]MARIOTTI S, KöHNEN E, SCHELER F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells[J]. Science, 2023, 381(6653): 63-69.
[27]PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.
[28]JANA A, MEENA A, PATIL S A, et al. Self-assembly of perovskite nanocrystals[J]. Progress in Materials Science, 2022, 129: 100975.
[29]CHEN M J, YANG J, WANG Z Y, et al. 3D nanoprinting of perovskites[J]. Advanced Materials, 2019, 31(44): 1904073.
[30]TAI C-L, HONG W-L, KUO Y-T, et al. Ultrastable, deformable, and stretchable luminescent organic-inorganic perovskite nanocrystal-polymer composites for 3D printing and white light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30176-30184.
[31]ZHANG Y, SIEGLER T D, THOMAS C J, et al. A “tips and tricks” practical guide to the synthesis of metal halide perovskite nanocrystals[J]. Chemistry of Materials, 2020, 32(13): 5410-5423.
[32]VYBORNYI O, YAKUNIN S, KOVALENKO M V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals[J]. Nanoscale, 2016, 8(12): 6278-6283.
[33]PAN A, HE B, FAN X, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 2016, 10(8): 7943-7954.
[34]PAN J, SHANG Y, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 140(2): 562-565.
[35]ALMEIDA G, ASHTON O J, GOLDONI L, et al. The phosphine oxide route toward lead halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(44): 14878-14886.
[36]KRIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX3 (X= Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Letters, 2018, 3(3): 641-646.
[37]SUN S, YUAN D, XU Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J]. ACS Nano, 2016, 10(3): 3648-3657.
[38]AHMED G H, EL-DEMELLAWI J K, YIN J, et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation[J]. ACS Energy Letters, 2018, 3(10): 2301-2307.
[39]LIU W, LIN Q, LI H, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961.
[40]YIN J, AHMED G H, BAKR O M, et al. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite[J]. ACS Energy Letters, 2019, 4(3): 789-795.
[41]AHMED G H, YIN J, BAKR O M, et al. Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping[J]. The Journal of chemical physics, 2020, 152(2): 020902.
[42]AHMED G H, YIN J, BOSE R, et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(10): 4393-4400.
[43]PARK J H, LEE A-Y, YU J C, et al. Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8428-8435.
[44]ZHANG X, WANG X, LIU H, et al. Defect engineering of metal halide perovskite optoelectronic devices[J]. Progress in Quantum Electronics, 2022, 86: 100438.
[45]LI W, IONESCU E, RIEDEL R, et al. Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors?[J]. Journal of Materials Chemistry A, 2013, 1(39): 12239-12245.
[46]BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693.
[47]SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 2019, 119(5): 3296-3348.
[48]ZHANG F, ZHONG H, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542.
[49]FILIPPETTI A, MATTONI A. Hybrid perovskites for photovoltaics: Insights from first principles[J]. Physical Review B, 2014, 89(12): 125203.
[50]PHILIPPE B, JACOBSSON T J, CORREA-BAENA J-P, et al. Valence level character in a mixed perovskite material and determination of the valence band maximum from photoelectron spectroscopy: Variation with photon energy[J]. The Journal of Physical Chemistry C, 2017, 121(48): 26655-26666.
[51]KIM H-S, LEE C-R, IM J-H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(1): 591.
[52]KOJIMA A, IKEGAMI M, TESHIMA K, et al. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. Chemistry Letters, 2012, 41(4): 397-399.
[53]DIRIN D N, DREYFUSS S, BODNARCHUK M I, et al. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals[J]. Journal of the American Chemical Society, 2014, 136(18): 6550-6553.
[54]HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494.
[55]GONZALEZ-CARRERO S, GALIAN R E, PéREZ-PRIETO J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of Materials Chemistry A, 2015, 3(17): 9187-9193.
[56]LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2435-2445.
[57]WU Y, WEI C, LI X, et al. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield[J]. ACS Energy Letters, 2018, 3(9): 2030-2037.
[58]MASADA S, YAMADA T, TAHARA H, et al. Effect of A-site cation on photoluminescence spectra of single lead bromide perovskite nanocrystals[J]. Nano Letters, 2020, 20(5): 4022-4028.
[59]WANG L, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556-2562.
[60]MüLLER K A, BERLINGER W, WALDNER F. Characteristic structural phase transition in perovskite-type compounds[J]. Physical Review Letters, 1968, 21(12): 814-817.
[61]WELLER M T, WEBER O J, HENRY P F, et al. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K[J]. Chemical Communications, 2015, 51(20): 4180-4183.
[62]BRIVIO F, FROST J M, SKELTON J M, et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide[J]. Physical Review B, 2015, 92(14): 144308.
[63]RANA S, AWASTHI K, BHOSALE S S, et al. Temperature-dependent electroabsorption and electrophotoluminescence and exciton binding energy in MAPbBr3 perovskite quantum dots[J]. The Journal of Physical Chemistry C, 2019, 123(32): 19927-19937.
[64]LIU Y, LU H, NIU J, et al. Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films[J]. AIP Advances, 2018, 8(9): 095108.
[65]ZHU H, CAI T, QUE M, et al. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4199-4205.
[66]OSTERLOH F E. Solution self-assembly of magnetic light modulators from exfoliated perovskite and magnetite nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(22): 6248-6249.
[67]LIN C-H, CHENG B, LI T-Y, et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices[J]. ACS Nano, 2019, 13(2): 1168-1176.
[68]HE H J, SUM T C. Halide perovskite nanocrystals for multiphoton applications[J]. Dalton Transactions, 2020, 49(43): 15149-15160.
[69]KUMAR A, SOLANKI A, MANJAPPA M, et al. Excitons in 2D perovskites for ultrafast terahertz photonic devices[J]. Science Advances, 2020, 6(8): eaax8821.
[70]FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Letters, 2014, 14(5): 2584-2590.
[71]RAKITA Y, BAR-ELLI O, MEIRZADEH E, et al. Tetragonal CH3NH3PbI3 is ferroelectric[J]. Proceedings of the National Academy of Sciences, 2017, 114(28): E5504-E5512.
[72]RUBINO A, HUQ T, DRANCZEWSKI J, et al. Efficient third harmonic generation from FAPbBr3 perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2020, 8(45): 15990-15995.
[73]ZHANG R, FAN J, ZHANG X, et al. Nonlinear optical response of organic-inorganic halide perovskites[J]. ACS Photonics, 2016, 3(3): 371-377.
[74]ZHANG X, XIAO S, LI R, et al. Influence of mixed organic cations on the nonlinear optical properties of lead tri-iodide perovskites[J]. Photonics Research, 2020, 8(9): A25-A30.
[75]WANG Y, LI X, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453.
[76]CHEN W, BHAUMIK S, VELDHUIS S A, et al. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals[J]. Nature Communications, 2017, 8(1): 15198.
[77]ZHENG Q, ZHU H, CHEN S-C, et al. Frequency-upconverted stimulated emission by simultaneous five-photon absorption[J]. Nature Photonics, 2013, 7(3): 234-239.
[78]DUTTA A, PRADHAN N. Phase-stable red-emitting CsPbI3 nanocrystals: Successes and challenges[J]. ACS Energy Letters, 2019, 4(3): 709-719.
[79]SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95.
[80]XUE J, WANG R, CHEN L, et al. A small-molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%[J]. Advanced Materials, 2019, 31(37): 1900111.
[81]LIU J X, KANG J, CHEN S, et al. Effects of compositional engineering and surface passivation on the properties of halide perovskites: A theoretical understanding[J]. Physical Chemistry Chemical Physics, 2020, 22(35): 19718-19724.
[82]SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells[J]. Science Advances, 2017, 3(10): eaao4204.
[83]DONG Y H, GU Y, ZOU Y S, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect[J]. Small, 2016, 12(40): 5622-5632.
[84]SONG J, LI J, LI X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167.
[85]PAN J, QUAN L N, ZHAO Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28(39): 8718-8725.
[86]WEI Y, CHENG Z, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310-350.
[87]SCHMIDT L C, PERTEGáS A, GONZáLEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3): 850-853.
[88]ZHOU Q, BAI Z, LU W-G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168.
[89]LIU M, WAN Q, WANG H, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nature Photonics, 2021, 15(5): 379-385.
[90]XU Y, CHEN Q, ZHANG C, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J]. Journal of the American Chemical Society, 2016, 138(11): 3761-3768.
[91]WANG Y, LI X, NALLA V, et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 2017, 27(13): 1605088.
[92]LOU S, ZHOU Z, XUAN T, et al. Chemical transformation of lead halide perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell imaging[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24241-24246.
[93]WANG Y, VARADI L, TRINCHI A, et al. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging [J]. Small, 2018, 14(51): 1803156.
[94]CHAN K K, GIOVANNI D, HE H, et al. Water-stable all-inorganic perovskite nanocrystals with nonlinear optical properties for targeted multiphoton bioimaging[J]. ACS Applied Nano Materials, 2021, 4(9): 9022-9033.
[95]AKKERMAN Q A, RAINò G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 2018, 17(5): 394-405.
[96]DE ROO J, IBáñEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2): 2071-2081.
[97]BROWN A A M, HOOPER T J N, VELDHUIS S A, et al. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes[J]. Nanoscale, 2019, 11(25): 12370-12380.
[98]ZHANG X, LI L, SUN Z, et al. Rational chemical doping of metal halide perovskites[J]. Chemical Society Reviews, 2019, 48(2): 517-539.
[99]STEELE J A, LAI M, ZHANG Y, et al. Phase transitions and anion exchange in all-inorganic halide perovskites[J]. Accounts of Materials Research, 2020, 1(1): 3-15.
[100]ZHANG F, HUANG S, WANG P, et al. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects[J]. Chemistry of Materials, 2017, 29(8): 3793-3799.
[101]WANG N, LIU W B, ZHANG Q C. Perovskite-based nanocrystals: Synthesis and applications beyond solar cells[J]. Small Methods, 2018, 2(6): 1700380.
[102]ZHANG F, SHI Z, LI S, et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28013-28022.
[103]HUANG Y, LI F, QIU L, et al. Enhancing the stability of CH3NH3PbBr3 nanoparticles using double hydrophobic shells of SiO2 and poly(vinylidene fluoride)[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26384-26391.
[104]HUANG S, ZHANG T, JIANG C, et al. Luminescent CH3NH3PbBr3/β-cyclodextrin core/shell nanodots with controlled size and ultrastability through host-guest interactions[J]. ChemNanoMat, 2019, 5(10): 1311-1316.
[105]YUAN S, WANG Z-K, ZHUO M-P, et al. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes[J]. ACS Nano, 2018, 12(9): 9541-9548.
[106]ZHANG D, XU Y, LIU Q, et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection[J]. Inorganic Chemistry, 2018, 57(8): 4613-4619.
[107]CHA J-H, NOH K, YIN W, et al. Formation and encapsulation of all-inorganic lead halide perovskites at room temperature in metal-organic frameworks[J]. The Journal of Physical Chemistry Letters, 2019, 10(9): 2270-2277.
[108]CHEN W, LIU H, FAN R, et al. Formation and encapsulation of lead halide perovskites in lanthanide metal-organic frameworks for tunable emission[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9851-9857.
[109]HOU S, GUO Y, TANG Y, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18417-18422.
[110]HINTERMAYR V A, LAMPE C, LöW M, et al. Polymer nanoreactors shield perovskite nanocrystals from degradation[J]. Nano Letters, 2019, 19(8): 4928-4933.
[111]RAJA S N, BEKENSTEIN Y, KOC M A, et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35523-35533.
[112]RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability[J]. ACS Energy Letters, 2020, 5(6): 1794-1796.
[113]TANG X, YANG J, LI S, et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties[J]. Advanced Science, 2019, 6(18): 1900412.
[114]BHAUMIK S, VELDHUIS S A, NG Y F, et al. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles[J]. Chemical Communications, 2016, 52(44): 7118-7121.
[115]JIA C, LI H, MENG X, et al. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals[J]. Chemical Communications, 2018, 54(49): 6300-6303.
[116]WANG S, BI C, YUAN J, et al. Original core-shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%[J]. ACS Energy Letters, 2018, 3(1): 245-251.
[117]WANG B, ZHANG C, HUANG S, et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23303-23310.
[118]JIANG G, GUHRENZ C, KIRCH A, et al. Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethylenimine[J]. ACS Nano, 2019, 13(9): 10386-10396.
[119]GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.
[120]PIETRYGA J M, PARK Y-S, LIM J, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18): 10513-10622.
[121]MARNOCHA J. Tuning size and light emission characteristics of CdSeS/ZnS alloyed core-shell quantum dots by alcohol[D]. Milwaukee: The University of Wisconsin-Milwaukee, 2019.
[122]SHEIK-BAHAE M, SAID A A, WEI T-H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE journal of quantum electronics, 1990, 26(4): 760-769.
[123]DINI D, CALVETE M, HANACK M. Nonlinear optical materials for the smart filtering of optical radiation[J]. Chemical Reviews, 2016, 116(22): 13043-13233.
[124]CORRêA D S, DE BONI L, MISOGUTI L, et al. Z-scan theoretical analysis for three-, four-and five-photon absorption[J]. Optics Communications, 2007, 277(2): 440-445.
[125]QUAPP W, MELNIKOV V. Valley ridge inflection points on the potential energy surfaces of H2S, H2Se and H2CO[J]. Physical Chemistry Chemical Physics, 2001, 3(14): 2735-2741.
[126]GU B, WANG J, CHEN J, et al. Z-scan theory for material with two-and three-photon absorption[J]. Optics Express, 2005, 13(23): 9230-9234.
[127]ALO A, BARROS L W T, NAGAMINE G, et al. Simple yet effective method to determine multiphoton absorption cross section of colloidal semiconductor nanocrystals[J]. ACS Photonics, 2020, 7(7): 1806-1812.
[128]HAN D, IMRAN M, ZHANG M, et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process[J]. ACS Nano, 2018, 12(8): 8808-8816.
[129]KESHAVARZ M, OTTESEN M, WIEDMANN S, et al. Tracking structural phase transitions in lead-halide perovskites by means of thermal expansion[J]. Advanced Materials, 2019, 31(24): 1900521.
[130]WANG X Z, WANG Q, CHAI Z J, et al. The thermal stability of FAPbBr3 nanocrystals from temperature-dependent photoluminescence and first-principles calculations[J]. RSC Advances, 2020, 10(72): 44373-44381.
[131]LEE K J, TUREDI B, GIUGNI A, et al. Domain-size-dependent residual stress governs the phase-transition and photoluminescence behavior of methylammonium lead iodide[J]. Advanced Functional Materials, 2021, 31(15): 2008088.
[132]YU C, CHEN Z, J. WANG J, et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3[J]. Journal of Applied Physics, 2011, 110(6): 063526.
[133]BHATIA H, GHOSH B, DEBROYE E. Colloidal FAPbBr3 perovskite nanocrystals for light emission: What's going on?[J]. Journal of Materials Chemistry C, 2022, 10(37): 13437-13461.
[134]ZHANG X Y, PANG G T, XING G C, et al. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film[J]. Materials Today Physics, 2020, 15: 100259.
[135]GOVINDA S, KORE B P, SWAIN D, et al. Critical comparison of FAPbX3 and MAPbX3 (X = Br and Cl): How do they differ?[J]. The Journal of Physical Chemistry C, 2018, 122(25): 13758-13766.
[136]PRAMANIK A, GATES K, GAO Y, et al. Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry[J]. The Journal of Physical Chemistry C, 2019, 123(8): 5150-5156.
[137]KRISHNAKANTH K N, SETH S, SAMANTA A, et al. Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films[J]. Nanoscale, 2019, 11(3): 945-954.
[138]ZHAO F, LI J, YU J, et al. Photophysical properties of Zn-alloyed CsPbI3 nanocrystals[J]. The Journal of Physical Chemistry C, 2020, 124(49): 27169-27175.
[139]SZEREMETA J, ANTONIAK M A, WAWRZYNCZYK D, et al. The two-photon absorption cross-section studies of CsPbX3 (X = I, Br, Cl) nanocrystals[J]. Nanomaterials, 2020, 10(6): 1054.
[140]LU W-G, CHEN C, HAN D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique[J]. Advanced Optical Materials, 2016, 4(11): 1732-1737.
[141]MUNSON K T, SWARTZFAGER J R, GAN J, et al. Does dipolar motion of organic cations affect polaron dynamics and bimolecular recombination in halide perovskites?[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3166-3172.
[142]ZHU H, MIYATA K, FU Y, et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites[J]. Science, 2016, 353(6306): 1409-1413.
[143]ZHANG C, WANG S, LI X, et al. Core/Shell perovskite nanocrystals: Synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications[J]. Advanved Functional Materials, 2020, 30(31): 1910582.
[144]DANG Z, SHAMSI J, PALAZON F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals[J]. ACS Nano, 2017, 11(2): 2124-2132.
[145]NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769.
[146]LIANG Z, ZHAO S, XU Z, et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28824-28830.
[147]LEI X, YU K. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2MoS2 heterostructure[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 98: 17-22.
[148]SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors[J]. Physical Review B, 1992, 45(16): 8989-8994.
[149]KONDO T, AZUMA T, YUASA T, et al. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4[J]. Solid State Communications, 1998, 105(4): 253-255.
[150]GALKOWSKI K, MITIOGLU A, MIYATA A, et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors[J]. Energy & Environmental Science, 2016, 9(3): 962-970.
[151]WEN X, SITT A, YU P, et al. Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals[J]. Physical Chemistry Chemical Physics, 2012, 14(10): 3505-3512.
[152]LI H L, TANG J L, KANG Y B, et al. Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires[J]. Applied Physics Letters, 2018, 113(23) : 233104.
[153]TONG G, CHEN T, LI H, et al. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells[J]. Nano Energy, 2019, 65: 104015.
[154]HANUSCH F C, WIESENMAYER E, MANKEL E, et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide[J]. The Journal of Physical Chemistry Letters, 2014, 5(16): 2791-2795.
[155]SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Phyics-Condensed Matter, 2002, 14(11): 2717-2744.
[156]JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Materilas, 2013, 1(1): 011002.
[157]TAO J M, PERDEW J P, TANG H, et al. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures[J]. Journal of Chemical Physics, 2018, 148(7): 074110.
[158]FISCHER T H, ALMLOF J. Genral methods for geometry and wave function optimization[J]. Journal of Physcis Chemistry, 1992, 96(24): 9768-9774.
[159]MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[160]LIU L, LI H, LIU Z, et al. The conversion of CuInS2/ZnS core/shell structure from type I to quasi-type II and the shell thickness-dependent solar cell performance[J]. Journal of Colloid and Interface Science, 2019, 546: 276-284.
[161]SCARDI P, LEONARDI A, GELISIO L, et al. Anisotropic atom displacement in Pd nanocubes resolved by molecular dynamics simulations supported by X-ray diffraction imaging[J]. Physical Review B, 2015, 91(15): 155414.
[162]CHAE B G, LEE J H, PARK S, et al. Direct three-dimensional observation of core/shell-structured quantum dots with a composition-competitive gradient[J]. ACS Nano, 2018, 12(12): 12109-12117.
[163]CHO C, PALATNIK A, SUDZIUS M, et al. Controlling and optimizing amplified spontaneous emission in perovskites[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35242-35249.
[164]ZHU C, NIU X, FU Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J]. Nature Communications, 2019, 10(1): 815.
[165]TONG Y, YAO E-P, MANZI A, et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: Toward filling the green gap[J]. Advanced Materials, 2018, 30(29): 1801117.
[166]WANG Y, LI X, SREEJITH S, et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase[J]. Advanced Materials, 2016, 28(48): 10637-10643.
[167]MEGGIOLARO D, MOSCONI E, DE ANGELIS F. Formation of surface defects dominates ion migration in lead-halide perovskites[J]. ACS Energy Letters, 2019, 4(3): 779-785.
[168]MOSCONI E, DE ANGELIS F. Mobile ions in organohalide perovskites: Interplay of electronic structure and dynamics[J]. ACS Energy Letters, 2016, 1(1): 182-188.
[169]FANG H-H, YANG J, TAO S, et al. Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability[J]. Advanced Functional Materials, 2018, 28(21): 1800305.
[170]FERDANI D W, PERING S R, GHOSH D, et al. Patrial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells[J]. Energy & Environmental Science, 2019, 12(7): 2264-2272.
[171]KLIMOV V I, MIKHAILOVSKY A A, MCBRANCH D W, et al.Quantization of multiparticle Auger rates in semiconductor quantum dots[J].Science, 2000, 287(5455): 1011-1013.
[172]LI J, JING Q, XIAO S, et al. Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4817-4825.
[173]KONG D, JIA Y, REN Y, et al. Shell-thickness-dependent biexciton lifetime in type I and quasi-type II CdSe@CdS core/shell quantum dots[J]. The Journal of Physical Chemistry C, 2018, 122(25): 14091-14098.
[174]MANSER J S, KAMAT P V. Band filling with free charge carriers in organometal halide perovskites[J]. Nature Photonics, 2014, 8(9): 737-743.
[175]FU J, XU Q, HAN G, et al. Hot carrier cooling mechanisms in halide perovskites[J]. Nature Communications, 2017, 8(1): 1300.
[176]REN Y J, NIE Z H, DENG F, et al. Deciphering the excited-state dynamics and multicarrier interactions in perovskite core-shell type hetero-nanocrystals[J]. Nanoscale, 2021, 13(1): 292-299.
[177]RABOUW F T, VAXENBURG R, BAKULIN A A, et al. Dynamics of intraband and interband Auger processes in colloidal core-shell quantum dots[J]. ACS Nano, 2015, 9(10): 10366-10376.
[178]DANG C, LEE J, BREEN C, et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films[J]. Nature Nanotechnology, 2012, 7(5): 335-339.
[179]SHE C, FEDIN I, DOLZHNIKOV D S, et al. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets[J]. ACS Nano, 2015, 9(10): 9475-9485.
[180]LI X, WEI Q, WANG K Y, et al. Charge carrier dynamics and broad wavelength tunable amplified spontaneous emission in ZnxCd1-xSe nanowires[J]. Journal of Chemistry Letters, 2019, 10(23): 7516-7522.
[181]SHE C, FEDIN I, DOLZHNIKOV D S, et al. Low-threshold stimulated emission using colloidal quantum wells[J]. Nano Letters, 2014, 14(5): 2772-2777.
[182]LIANG Y, SHANG Q Y, LI M, et al. Solvent recrystallization-enabled green amplified spontaneous emissions with an ultra-low threshold from pinhole-free perovskite films[J]. Advanced Functional Materials, 2021, 31(48): 2106108.
[183]HUANG C-Y, ZOU C, MAO C, et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 2017, 4(9): 2281-2289.
[184]ZHU H, FU Y, MENG F, et al. Lead halide perovskite nanowire lasers withlow lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-642.
[185]PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence[J]. Journal of the American Chemical Society, 2016, 138(43): 14202-14205.
[186]LI M, SHANG Q, LI C, et al. High optical gain of solution-processed mixed-cation CsPbBr3 thin films towards enhanced amplified spontaneous emission[J]. Advanced Functional Materials, 2021, 31(25): 2102210.
[187]DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.
[188]HELMCHEN F, DENK W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.
[189]PALCZEWSKA G, MAEDA T, IMANISHI Y, et al. Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes[J]. Nature Medicine, 2010, 16(12): 1444-1449.
[190]HOOVER E E, SQUIER J A. Advances in multiphoton microscopy technology[J]. Nature Photonics, 2013, 7(2): 93-101.
[191]PAWLICKI M, COLLINS H A, DENNING R G, et al. Two-photon absorption and the design of two-photon dyes[J]. Angewandte Chemie International Edition, 2009, 48(18): 3244-3266.
[192]EHRLICH J E, WU X L, LEE I Y S, et al. Two-photon absorption and broadband optical limiting with bis-donor stilbenes[J]. Optics Letters, 1997, 22(24): 1843-1845.
[193]POND S J K, TSUTSUMI O, RUMI M, et al. Metal-ion sensing fluorophores with large two-photon absorption cross sections: Aza-crown ether substituted donor-acceptor-donor distyrylbenzenes[J]. Journal of the American Chemical Society, 2004, 126(30): 9291-9306.
[194]AGARWAL G S, HARSHAWARDHAN W. Inhibition and enhancement of two photon absorption[J]. Physical Review Letters, 1996, 77(6): 1039-1042.
[195]HE G S, XU G C, PRASAD P N, et al. Two-photon absorption and optical-limiting properties of novel organic compounds[J]. Optics Letters, 1995, 20(5): 435-437.
[196]WALTERS G, SUTHERLAND B R, HOOGLAND S, et al. Two-photon absorption in organometallic bromide perovskites[J]. ACS Nano, 2015, 9(9): 9340-9346.
[197]HE J, QU Y, LI H, et al. Three-photon absorption in ZnO and ZnS crystals[J]. Optics Express, 2005, 13(23): 9235-9247.
[198]LI J, ZHAO F, XIAO S, et al. Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets[J]. Optics Letters, 2019, 44(15): 3873-3876.
[199]HE H, CUI Y, LI B, et al. Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence[J]. Advanced Materials, 2019, 31(6): 1806897.
[200]LI M, XU Y, HAN S, et al. Giant and broadband multiphoton absorption nonlinearities of a 2D organometallic perovskite ferroelectric[J]. Advanced Materials, 2020, 32(36): 2002972.
[201]WEBSTER S, FU J, PADILHA L A, et al. Comparison of nonlinear absorption in three similar dyes: Polymethine, squaraine and tetraone[J]. Chemical Physics, 2008, 348(1): 143-151.
[202]EGGELING C, VOLKMER A, SEIDEL C A M. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy[J]. ChemPhysChem, 2005, 6(5): 791-804.
[203]WU L, WANG X, GONG H, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency[J]. Journal of Materials Chemistry C, 2015, 3(4): 750-758.
[204]EMELYANOV A Y, PERTSEV N A, HOFFMANN-EIFERT S, et al. Grain-boundary effect on the curie-weiss law of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective medium[J]. Journal of Electroceramics, 2002, 9(1): 5-16.
[205]VASILAKAKI M, BINNS C, TROHIDOU K N. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: A Monte Carlo study of shape and size effects[J]. Nanoscale, 2015, 7(17): 7753-7762.
[206]MORELLO G, DELLA SALA F, CARBONE L, et al. Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field[J]. Physical Review B, 2008, 78(19): 195313.
[207]ZEGRYA G G, ANDREEV A D. Mechanism of suppression of Auger recombination process in type-II heterostructures[J]. Applied Physics Letters, 1995, 67(18): 2681-2683.
[208]MOHSENI H, LITVINOV V I, RAZEGHI M. Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices[J]. Physical Review B, 1998, 58(23): 15378-15380.
[209]GARCíA-SANTAMARíA F, CHEN Y, VELA J, et al. Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance[J]. Nano Letters, 2009, 9(10): 3482-3488.
[210]PARK Y-S, BAE W K, PIETRYGA J M, et al. Auger recombination of biexcitons and negative and positive trions in individual quantum dots[J]. ACS Nano, 2014, 8(7): 7288-7296.
[211]RABOUW F T, LUNNEMANN P, VAN DIJK-MOES R J A, et al. Reduced Auger recombination in single CdSe/CdS nanorods by one-dimensional electron delocalization[J]. Nano Letters, 2013, 13(10): 4884-4892.
[212]XING G C, CHAKRABORTTY S, CHOU K L, et al. Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures[J]. Applied Physics Letters, 2010, 97(6): 061112.
[213]VILLENEUVE D M, IVANOV M Y, CORKUM P B. Enhanced ionization of diatomic molecules in strong laser fields: A classical model[J]. Physical Review A, 1996, 54(1): 736-741.
修改评论