中文版 | English
题名

金属卤化物钙钛矿纳米晶的结构调控及光学特性研究

其他题名
STRUCTURAL MANIPULATION AND OPTICAL PROPERTY INVESTIGATION OF METAL HALIDE PEROVSKITE NANOCRYSTALS
姓名
姓名拼音
ZHANG Xuanyu
学号
12031192
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
陈锐
导师单位
电子与电气工程系
论文答辩日期
2024-05-06
论文提交日期
2024-06-12
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

作为一类新型的低维半导体材料,钙钛矿纳米晶拥有诸多优异的光电特性,比如极高的光致发光量子产率、窄的半高宽、可调的光致发光以及出众的非线性光学性质,在各类光电子领域彰显出巨大的应用潜力。然而,钙钛矿材料的环境稳定性较差,限制其实际应用和未来商业化。在众多提升钙钛矿纳米晶稳定性的策略中,选用合适的材料来构建异质核壳结构是一种有效的方法。本论文以金属卤化物钙钛矿纳米晶为研究对象,以提升材料的稳定性和光学性质为研究目标,研究了异质外延型核壳结构壳层厚度对钙钛矿纳米晶性质的影响。基于多种激光光谱技术,详细讨论材料的光学性能,深入了解核壳钙钛矿纳米晶的光物理过程。本论文的研究内容包括以下四个方面:

研究了FAPbBr3钙钛矿纳米晶的光学性质。首次确定了其在800 nm的双光子吸收截面为2.76 × 10-45 cm4 s1 photon-1。并讨论了FA+阳离子尺寸和氢键相互作用对无机骨架[PbBr6]4-畸变的影响,进而决定了材料的非线性光学响应。此外,FAPbBr3钙钛矿纳米晶表现出较差的稳定性。

研究了核壳钙钛矿纳米晶的光学性质。CsPbBr3壳层的包覆显著钝化了FAPbBr3钙钛矿纳米晶的表面缺陷,使其发光效率提升了13.4%,色纯度提升了19.8%,荧光强度稳定性提升了154.4%。随着壳层厚度的增加,材料的电子结构从准II型转变为I型。基于密度泛函理论计算了应力下不同壳层厚度的钙钛矿纳米晶的能带结构,从理论上验证了相关的实验结果。

研究了核壳钙钛矿纳米晶的超快载流子动力学过程。随着壳层厚度增加,双激子俄歇复合寿命呈现出先增大后减小的趋势。壳层的包覆降低了材料中的热载流子温度,但热载流子冷却速度却不受壳层厚度的影响。得益于有效的缺陷钝化、双激子俄歇复合过程的抑制以及较短的热载流子冷却时间,Cs和FA摩尔比为1.0的条件下制备出的核壳钙钛矿纳米晶中观察到了阈值为447 nJ cm-2的放大自发辐射行为。

研究了核壳钙钛矿纳米晶的多光子光学性质。核壳钙钛矿纳米晶呈现出超强的五光子光致发光,在2300 nm处的作用截面高达8.64 × 10-139 cm10 s4 photon-4 nm-3,比未包覆的FAPbBr3钙钛矿纳米晶增强了约一个数量级。这种增强可以归因于核壳钙钛矿纳米晶介电常数的增加,促进了多光子吸收效率,从局部场效应和内置电场中解决了高阶非线性行为中的电子失真问题。同时,准II型能带对齐对双激子俄歇复合的有效抑制,表面缺陷密度的降低和类天线效应高效的无辐射能量传递,都有助于增强五光子吸收诱导的光致发光

本论文中的研究成果对后续开发新型异质外延核壳钙钛矿纳米晶和调控其光学特性具有重要的指导意义,也为相关领域的应用提供了新的思路和方法。

其他摘要

As a new class of low-dimensional semiconductor materials, perovskite nanocrystals (PeNCs) possess a number of excellent optoelectronic properties, such as extremely high photoluminescence quantum yield (PLQY), narrow full width at half maximum (FWHM), tunable photoluminescence (PL), and outstanding nonlinear optical (NLO) properties, which demonstrate a great potential for application in various optoelectronic fields. However, the poor environmental stability limits their practical applications and future commercialization. Among various strategies to enhance the stability of PeNCs, the heterogeneous epitaxial growth of core-shell structures is an effective approach. In this thesis, metal halide PeNCs were chosen to be the research focus, with the aim of improving the stability and optical properties, and the effects of shell thickness of the heterogeneous epitaxial core-shell structure on the properties of core-shell PeNCs were investigated. Based on various laser spectroscopies, the optical properties of the core-shell PeNCs were discussed in detail to gain insight into their photophysical processes. The research of this thesis includes the following four aspects:

The optical properties of FAPbBr3 (FA = formamidine) PeNCs were investigated. For the first time, the two-photon absorption cross-section has been determined to be 2.76 × 10-45 cm4 s1 photon-1 at 800 nm. And the influence of FA+ size and hydrogen bond interaction on the distortion of the inorganic framework [PbBr6]4-, which in turn determines the NLO response, was discussed. In addition, FAPbBr3 PeNCs showed poor stability.

The optical properties of the core-shell PeNCs were investigated. The cladding of the CsPbBr3 shell significantly passivated the defect states on the surface of the FAPbBr3 PeNCs, increasing the PL efficiency by 13.4%, the color purity by 19.8%, and the emission stability by 154.4%. With the increase of shell thickness, the electronic structure of the core-shell PeNCs shifted from quasi-type-II to type-I energy band alignment. The electronic structures were calculated based on the density functional theory (DFT) taken the strain into consideration, and the corresponding experimental results were verified theoretically.

The ultrafast carrier dynamics in core-shell PeNCs were investigated. The biexciton Auger recombination lifetime trended to first increase and then decrease with increasing the shell thickness. The cladding of the shell reduced the hot carrier temperature in PeNCs, but the hot carrier cooling rate was not affected by the shell thickness. Thanks to the effective passivation of the defect states, the suppressed biexciton Auger recombination process, and the shorter cooling time of the hot carriers, the amplified spontaneous emission (ASE) with a low threshold of 447 nJ cm-2 was observed in the core-shell PeNCs prepared with molar ratio X between Cs and FA equal to 1.0.

The multiphoton absorption (MPA)-induced fluorescence properties of the core-shell PeNCs were investigated. The superb five-photon PL emission was observed with an action cross-section (η × σ5) as high as 8.64 × 10-139 cm10 s4 photon-4 nm-3 at 2300 nm, which was about one order of magnitude larger than the FAPbBr3 PeNCs. This enhancement could be attributed to the increase of dielectric constant, which promoted the MPA efficiency, and resolved the electronic distortion in the higher-order NLO behavior from the local field effects and built-in electric fields. Meanwhile, the effective suppression of the biexciton Auger recombination by quasi-type-II band alignment, the reduction of surface defect density, and the more efficient energy transfer through antenna-like effect help to achieve the enhanced 5PA-induced PL emission.

The research results from this thesis are of great significance in guiding the novel heterogeneous epitaxial growth of core-shell PeNCs, and the modulation of their optical properties, as well as providing new ideas and methods for application in related fields.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1]SKRIPKA A, MENDEZ-GONZALEZ D, MARIN R, et al. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: Recent developments in multifunctional nanomaterials[J]. Nanoscale Advances, 2021, 3(22): 6310-6329.
[2]FANG J, ZHOU Z, XIAO M, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors[J]. InfoMat, 2020, 2(2): 291-317.
[3]TAN K W, YAP C M, ZHENG Z, et al. State‐of‐the‐art advances, development, and challenges of metal oxide semiconductor nanomaterials for photothermal solar steam generation[J]. Advanced Sustainable Systems, 2022, 6(4): 2100416.
[4]VAUGHN D D, SCHAAK R E. Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials[J]. Chemical Society Reviews, 2013, 42(7): 2861-2879.
[5]WANG Y, SUN H. Advances and prospects of lasers developed from colloidal semiconductor nanostructures[J]. Progress in Quantum Electronics, 2018, 60: 1-29.
[6]SCOTT R, PRUDNIKAU A V, ANTANOVICH A, et al. A comparative study demonstrates strong size tunability of carrier-phonon coupling in CdSe-based 2D and 0D nanocrystals[J]. Nanoscale, 2019, 11(9): 3958-3967.
[7]ACHERMANN M, BARTKO A P, HOLLINGSWORTH J A, et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics, 2006, 2(8): 557-561.
[8]KLIMOV V I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals[J]. The Journal of Physical Chemistry B, 2000, 104(26): 6112-6123.
[9]EISLER H J, SUNDAR V C, BAWENDI M G, et al. Color-selective semiconductor nanocrystal laser[J]. Applied Physics Letters, 2002, 80(24): 4614-4616.
[10]BANFI G P, DEGIORGIO V, GHIGLIAZZA M, et al. Two-photon absorption in semiconductor nanocrystals[J]. Physical Review B, 1994, 50(8): 5699-5702.
[11]HUANG H, POLAVARAPU L, SICHERT J A, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications[J]. NPG Asia Materials, 2016, 8(11): e328-e328.
[12]MAES J, BALCAEN L, DRIJVERS E, et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2018, 9(11): 3093-3097.
[13]SWARNKAR A, CHULLIYIL R, RAVI V K, et al. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots[J]. Angewandte Chemie-International Edition, 2015, 54(51): 15424-15428.
[14]DUTTA A, BEHERA R K, PAL P, et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach[J]. Angewandte Chemie-International Edition, 2019, 58(17): 5552-5556.
[15]YAN F, TAN S T, LI X, et al. Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications[J]. Small, 2019, 15(47): 1902079.
[16]RAMASAMY P, LIM D-H, KIM B, et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J]. Chemical Communications, 2016, 52(10): 2067-2070.
[17]ZHANG H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Advanced Functional Materials, 2017, 27(7): 1604382.
[18]ZHOU F, LI Z, CHEN H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells[J]. Nano Energy, 2020, 73: 104757.
[19]XU Y, CAO M, HUANG S. Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals[J]. Nano Research, 2021, 14(11): 3773-3794.
[20]ARANDIYAN H, S. MOFARAH S, SORRELL C C, et al. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science[J]. Chemical Society Reviews, 2021, 50(18): 10116-10211.
[21]WELLS H L. On caesium-mercuric halides[J]. American Journal of Science, 1892, s3-44(261): 221.
[22]MØLLER C K. Crystal structure and photoconductivity of caesium plumbohalides[J]. Nature, 1958, 182(4647): 1436-1436.
[23]WEBER D. CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure[J]. 1978, 33(12): 1443-1445.
[24]KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[25]JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385.
[26]MARIOTTI S, KöHNEN E, SCHELER F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells[J]. Science, 2023, 381(6653): 63-69.
[27]PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696.
[28]JANA A, MEENA A, PATIL S A, et al. Self-assembly of perovskite nanocrystals[J]. Progress in Materials Science, 2022, 129: 100975.
[29]CHEN M J, YANG J, WANG Z Y, et al. 3D nanoprinting of perovskites[J]. Advanced Materials, 2019, 31(44): 1904073.
[30]TAI C-L, HONG W-L, KUO Y-T, et al. Ultrastable, deformable, and stretchable luminescent organic-inorganic perovskite nanocrystal-polymer composites for 3D printing and white light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30176-30184.
[31]ZHANG Y, SIEGLER T D, THOMAS C J, et al. A “tips and tricks” practical guide to the synthesis of metal halide perovskite nanocrystals[J]. Chemistry of Materials, 2020, 32(13): 5410-5423.
[32]VYBORNYI O, YAKUNIN S, KOVALENKO M V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals[J]. Nanoscale, 2016, 8(12): 6278-6283.
[33]PAN A, HE B, FAN X, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 2016, 10(8): 7943-7954.
[34]PAN J, SHANG Y, YIN J, et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 140(2): 562-565.
[35]ALMEIDA G, ASHTON O J, GOLDONI L, et al. The phosphine oxide route toward lead halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(44): 14878-14886.
[36]KRIEG F, OCHSENBEIN S T, YAKUNIN S, et al. Colloidal CsPbX3 (X= Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability[J]. ACS Energy Letters, 2018, 3(3): 641-646.
[37]SUN S, YUAN D, XU Y, et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature[J]. ACS Nano, 2016, 10(3): 3648-3657.
[38]AHMED G H, EL-DEMELLAWI J K, YIN J, et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation[J]. ACS Energy Letters, 2018, 3(10): 2301-2307.
[39]LIU W, LIN Q, LI H, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961.
[40]YIN J, AHMED G H, BAKR O M, et al. Unlocking the effect of trivalent metal doping in all-inorganic CsPbBr3 perovskite[J]. ACS Energy Letters, 2019, 4(3): 789-795.
[41]AHMED G H, YIN J, BAKR O M, et al. Near-unity photoluminescence quantum yield in inorganic perovskite nanocrystals by metal-ion doping[J]. The Journal of chemical physics, 2020, 152(2): 020902.
[42]AHMED G H, YIN J, BOSE R, et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(10): 4393-4400.
[43]PARK J H, LEE A-Y, YU J C, et al. Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8428-8435.
[44]ZHANG X, WANG X, LIU H, et al. Defect engineering of metal halide perovskite optoelectronic devices[J]. Progress in Quantum Electronics, 2022, 86: 100438.
[45]LI W, IONESCU E, RIEDEL R, et al. Can we predict the formability of perovskite oxynitrides from tolerance and octahedral factors?[J]. Journal of Materials Chemistry A, 2013, 1(39): 12239-12245.
[46]BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693.
[47]SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 2019, 119(5): 3296-3348.
[48]ZHANG F, ZHONG H, CHEN C, et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542.
[49]FILIPPETTI A, MATTONI A. Hybrid perovskites for photovoltaics: Insights from first principles[J]. Physical Review B, 2014, 89(12): 125203.
[50]PHILIPPE B, JACOBSSON T J, CORREA-BAENA J-P, et al. Valence level character in a mixed perovskite material and determination of the valence band maximum from photoelectron spectroscopy: Variation with photon energy[J]. The Journal of Physical Chemistry C, 2017, 121(48): 26655-26666.
[51]KIM H-S, LEE C-R, IM J-H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(1): 591.
[52]KOJIMA A, IKEGAMI M, TESHIMA K, et al. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media[J]. Chemistry Letters, 2012, 41(4): 397-399.
[53]DIRIN D N, DREYFUSS S, BODNARCHUK M I, et al. Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals[J]. Journal of the American Chemical Society, 2014, 136(18): 6550-6553.
[54]HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494.
[55]GONZALEZ-CARRERO S, GALIAN R E, PéREZ-PRIETO J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of Materials Chemistry A, 2015, 3(17): 9187-9193.
[56]LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15): 2435-2445.
[57]WU Y, WEI C, LI X, et al. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield[J]. ACS Energy Letters, 2018, 3(9): 2030-2037.
[58]MASADA S, YAMADA T, TAHARA H, et al. Effect of A-site cation on photoluminescence spectra of single lead bromide perovskite nanocrystals[J]. Nano Letters, 2020, 20(5): 4022-4028.
[59]WANG L, WANG K, ZOU B. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2556-2562.
[60]MüLLER K A, BERLINGER W, WALDNER F. Characteristic structural phase transition in perovskite-type compounds[J]. Physical Review Letters, 1968, 21(12): 814-817.
[61]WELLER M T, WEBER O J, HENRY P F, et al. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K[J]. Chemical Communications, 2015, 51(20): 4180-4183.
[62]BRIVIO F, FROST J M, SKELTON J M, et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide[J]. Physical Review B, 2015, 92(14): 144308.
[63]RANA S, AWASTHI K, BHOSALE S S, et al. Temperature-dependent electroabsorption and electrophotoluminescence and exciton binding energy in MAPbBr3 perovskite quantum dots[J]. The Journal of Physical Chemistry C, 2019, 123(32): 19927-19937.
[64]LIU Y, LU H, NIU J, et al. Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films[J]. AIP Advances, 2018, 8(9): 095108.
[65]ZHU H, CAI T, QUE M, et al. Pressure-induced phase transformation and band-gap engineering of formamidinium lead iodide perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2018, 9(15): 4199-4205.
[66]OSTERLOH F E. Solution self-assembly of magnetic light modulators from exfoliated perovskite and magnetite nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(22): 6248-6249.
[67]LIN C-H, CHENG B, LI T-Y, et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices[J]. ACS Nano, 2019, 13(2): 1168-1176.
[68]HE H J, SUM T C. Halide perovskite nanocrystals for multiphoton applications[J]. Dalton Transactions, 2020, 49(43): 15149-15160.
[69]KUMAR A, SOLANKI A, MANJAPPA M, et al. Excitons in 2D perovskites for ultrafast terahertz photonic devices[J]. Science Advances, 2020, 6(8): eaax8821.
[70]FROST J M, BUTLER K T, BRIVIO F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Letters, 2014, 14(5): 2584-2590.
[71]RAKITA Y, BAR-ELLI O, MEIRZADEH E, et al. Tetragonal CH3NH3PbI3 is ferroelectric[J]. Proceedings of the National Academy of Sciences, 2017, 114(28): E5504-E5512.
[72]RUBINO A, HUQ T, DRANCZEWSKI J, et al. Efficient third harmonic generation from FAPbBr3 perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2020, 8(45): 15990-15995.
[73]ZHANG R, FAN J, ZHANG X, et al. Nonlinear optical response of organic-inorganic halide perovskites[J]. ACS Photonics, 2016, 3(3): 371-377.
[74]ZHANG X, XIAO S, LI R, et al. Influence of mixed organic cations on the nonlinear optical properties of lead tri-iodide perovskites[J]. Photonics Research, 2020, 8(9): A25-A30.
[75]WANG Y, LI X, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16(1): 448-453.
[76]CHEN W, BHAUMIK S, VELDHUIS S A, et al. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals[J]. Nature Communications, 2017, 8(1): 15198.
[77]ZHENG Q, ZHU H, CHEN S-C, et al. Frequency-upconverted stimulated emission by simultaneous five-photon absorption[J]. Nature Photonics, 2013, 7(3): 234-239.
[78]DUTTA A, PRADHAN N. Phase-stable red-emitting CsPbI3 nanocrystals: Successes and challenges[J]. ACS Energy Letters, 2019, 4(3): 709-719.
[79]SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95.
[80]XUE J, WANG R, CHEN L, et al. A small-molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%[J]. Advanced Materials, 2019, 31(37): 1900111.
[81]LIU J X, KANG J, CHEN S, et al. Effects of compositional engineering and surface passivation on the properties of halide perovskites: A theoretical understanding[J]. Physical Chemistry Chemical Physics, 2020, 22(35): 19718-19724.
[82]SANEHIRA E M, MARSHALL A R, CHRISTIANS J A, et al. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells[J]. Science Advances, 2017, 3(10): eaao4204.
[83]DONG Y H, GU Y, ZOU Y S, et al. Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect[J]. Small, 2016, 12(40): 5622-5632.
[84]SONG J, LI J, LI X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167.
[85]PAN J, QUAN L N, ZHAO Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28(39): 8718-8725.
[86]WEI Y, CHENG Z, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews, 2019, 48(1): 310-350.
[87]SCHMIDT L C, PERTEGáS A, GONZáLEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3): 850-853.
[88]ZHOU Q, BAI Z, LU W-G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168.
[89]LIU M, WAN Q, WANG H, et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J]. Nature Photonics, 2021, 15(5): 379-385.
[90]XU Y, CHEN Q, ZHANG C, et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J]. Journal of the American Chemical Society, 2016, 138(11): 3761-3768.
[91]WANG Y, LI X, NALLA V, et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 2017, 27(13): 1605088.
[92]LOU S, ZHOU Z, XUAN T, et al. Chemical transformation of lead halide perovskite into insoluble, less cytotoxic, and brightly luminescent CsPbBr3/CsPb2Br5 composite nanocrystals for cell imaging[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24241-24246.
[93]WANG Y, VARADI L, TRINCHI A, et al. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging [J]. Small, 2018, 14(51): 1803156.
[94]CHAN K K, GIOVANNI D, HE H, et al. Water-stable all-inorganic perovskite nanocrystals with nonlinear optical properties for targeted multiphoton bioimaging[J]. ACS Applied Nano Materials, 2021, 4(9): 9022-9033.
[95]AKKERMAN Q A, RAINò G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 2018, 17(5): 394-405.
[96]DE ROO J, IBáñEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2): 2071-2081.
[97]BROWN A A M, HOOPER T J N, VELDHUIS S A, et al. Self-assembly of a robust hydrogen-bonded octylphosphonate network on cesium lead bromide perovskite nanocrystals for light-emitting diodes[J]. Nanoscale, 2019, 11(25): 12370-12380.
[98]ZHANG X, LI L, SUN Z, et al. Rational chemical doping of metal halide perovskites[J]. Chemical Society Reviews, 2019, 48(2): 517-539.
[99]STEELE J A, LAI M, ZHANG Y, et al. Phase transitions and anion exchange in all-inorganic halide perovskites[J]. Accounts of Materials Research, 2020, 1(1): 3-15.
[100]ZHANG F, HUANG S, WANG P, et al. Colloidal synthesis of air-stable CH3NH3PbI3 quantum dots by gaining chemical insight into the solvent effects[J]. Chemistry of Materials, 2017, 29(8): 3793-3799.
[101]WANG N, LIU W B, ZHANG Q C. Perovskite-based nanocrystals: Synthesis and applications beyond solar cells[J]. Small Methods, 2018, 2(6): 1700380.
[102]ZHANG F, SHI Z, LI S, et al. Synergetic effect of the surfactant and silica coating on the enhanced emission and stability of perovskite quantum dots for anticounterfeiting[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28013-28022.
[103]HUANG Y, LI F, QIU L, et al. Enhancing the stability of CH3NH3PbBr3 nanoparticles using double hydrophobic shells of SiO2 and poly(vinylidene fluoride)[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26384-26391.
[104]HUANG S, ZHANG T, JIANG C, et al. Luminescent CH3NH3PbBr3/β-cyclodextrin core/shell nanodots with controlled size and ultrastability through host-guest interactions[J]. ChemNanoMat, 2019, 5(10): 1311-1316.
[105]YUAN S, WANG Z-K, ZHUO M-P, et al. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes[J]. ACS Nano, 2018, 12(9): 9541-9548.
[106]ZHANG D, XU Y, LIU Q, et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection[J]. Inorganic Chemistry, 2018, 57(8): 4613-4619.
[107]CHA J-H, NOH K, YIN W, et al. Formation and encapsulation of all-inorganic lead halide perovskites at room temperature in metal-organic frameworks[J]. The Journal of Physical Chemistry Letters, 2019, 10(9): 2270-2277.
[108]CHEN W, LIU H, FAN R, et al. Formation and encapsulation of lead halide perovskites in lanthanide metal-organic frameworks for tunable emission[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9851-9857.
[109]HOU S, GUO Y, TANG Y, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18417-18422.
[110]HINTERMAYR V A, LAMPE C, LöW M, et al. Polymer nanoreactors shield perovskite nanocrystals from degradation[J]. Nano Letters, 2019, 19(8): 4928-4933.
[111]RAJA S N, BEKENSTEIN Y, KOC M A, et al. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: Enhanced stability and polarization[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35523-35533.
[112]RAVI V K, SAIKIA S, YADAV S, et al. CsPbBr3/ZnS core/shell type nanocrystals for enhancing luminescence lifetime and water stability[J]. ACS Energy Letters, 2020, 5(6): 1794-1796.
[113]TANG X, YANG J, LI S, et al. Single halide perovskite/semiconductor core/shell quantum dots with ultrastability and nonblinking properties[J]. Advanced Science, 2019, 6(18): 1900412.
[114]BHAUMIK S, VELDHUIS S A, NG Y F, et al. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles[J]. Chemical Communications, 2016, 52(44): 7118-7121.
[115]JIA C, LI H, MENG X, et al. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals[J]. Chemical Communications, 2018, 54(49): 6300-6303.
[116]WANG S, BI C, YUAN J, et al. Original core-shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%[J]. ACS Energy Letters, 2018, 3(1): 245-251.
[117]WANG B, ZHANG C, HUANG S, et al. Postsynthesis phase transformation for CsPbBr3/Rb4PbBr6 core/shell nanocrystals with exceptional photostability[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 23303-23310.
[118]JIANG G, GUHRENZ C, KIRCH A, et al. Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethylenimine[J]. ACS Nano, 2019, 13(9): 10386-10396.
[119]GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.
[120]PIETRYGA J M, PARK Y-S, LIM J, et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 2016, 116(18): 10513-10622.
[121]MARNOCHA J. Tuning size and light emission characteristics of CdSeS/ZnS alloyed core-shell quantum dots by alcohol[D]. Milwaukee: The University of Wisconsin-Milwaukee, 2019.
[122]SHEIK-BAHAE M, SAID A A, WEI T-H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE journal of quantum electronics, 1990, 26(4): 760-769.
[123]DINI D, CALVETE M, HANACK M. Nonlinear optical materials for the smart filtering of optical radiation[J]. Chemical Reviews, 2016, 116(22): 13043-13233.
[124]CORRêA D S, DE BONI L, MISOGUTI L, et al. Z-scan theoretical analysis for three-, four-and five-photon absorption[J]. Optics Communications, 2007, 277(2): 440-445.
[125]QUAPP W, MELNIKOV V. Valley ridge inflection points on the potential energy surfaces of H2S, H2Se and H2CO[J]. Physical Chemistry Chemical Physics, 2001, 3(14): 2735-2741.
[126]GU B, WANG J, CHEN J, et al. Z-scan theory for material with two-and three-photon absorption[J]. Optics Express, 2005, 13(23): 9230-9234.
[127]ALO A, BARROS L W T, NAGAMINE G, et al. Simple yet effective method to determine multiphoton absorption cross section of colloidal semiconductor nanocrystals[J]. ACS Photonics, 2020, 7(7): 1806-1812.
[128]HAN D, IMRAN M, ZHANG M, et al. Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: The enhancing role of the ligand-assisted reprecipitation process[J]. ACS Nano, 2018, 12(8): 8808-8816.
[129]KESHAVARZ M, OTTESEN M, WIEDMANN S, et al. Tracking structural phase transitions in lead-halide perovskites by means of thermal expansion[J]. Advanced Materials, 2019, 31(24): 1900521.
[130]WANG X Z, WANG Q, CHAI Z J, et al. The thermal stability of FAPbBr3 nanocrystals from temperature-dependent photoluminescence and first-principles calculations[J]. RSC Advances, 2020, 10(72): 44373-44381.
[131]LEE K J, TUREDI B, GIUGNI A, et al. Domain-size-dependent residual stress governs the phase-transition and photoluminescence behavior of methylammonium lead iodide[J]. Advanced Functional Materials, 2021, 31(15): 2008088.
[132]YU C, CHEN Z, J. WANG J, et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3[J]. Journal of Applied Physics, 2011, 110(6): 063526.
[133]BHATIA H, GHOSH B, DEBROYE E. Colloidal FAPbBr3 perovskite nanocrystals for light emission: What's going on?[J]. Journal of Materials Chemistry C, 2022, 10(37): 13437-13461.
[134]ZHANG X Y, PANG G T, XING G C, et al. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film[J]. Materials Today Physics, 2020, 15: 100259.
[135]GOVINDA S, KORE B P, SWAIN D, et al. Critical comparison of FAPbX3 and MAPbX3 (X = Br and Cl): How do they differ?[J]. The Journal of Physical Chemistry C, 2018, 122(25): 13758-13766.
[136]PRAMANIK A, GATES K, GAO Y, et al. Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry[J]. The Journal of Physical Chemistry C, 2019, 123(8): 5150-5156.
[137]KRISHNAKANTH K N, SETH S, SAMANTA A, et al. Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6 perovskite films[J]. Nanoscale, 2019, 11(3): 945-954.
[138]ZHAO F, LI J, YU J, et al. Photophysical properties of Zn-alloyed CsPbI3 nanocrystals[J]. The Journal of Physical Chemistry C, 2020, 124(49): 27169-27175.
[139]SZEREMETA J, ANTONIAK M A, WAWRZYNCZYK D, et al. The two-photon absorption cross-section studies of CsPbX3 (X = I, Br, Cl) nanocrystals[J]. Nanomaterials, 2020, 10(6): 1054.
[140]LU W-G, CHEN C, HAN D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique[J]. Advanced Optical Materials, 2016, 4(11): 1732-1737.
[141]MUNSON K T, SWARTZFAGER J R, GAN J, et al. Does dipolar motion of organic cations affect polaron dynamics and bimolecular recombination in halide perovskites?[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3166-3172.
[142]ZHU H, MIYATA K, FU Y, et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites[J]. Science, 2016, 353(6306): 1409-1413.
[143]ZHANG C, WANG S, LI X, et al. Core/Shell perovskite nanocrystals: Synthesis of highly efficient and environmentally stable FAPbBr3/CsPbBr3 for LED applications[J]. Advanved Functional Materials, 2020, 30(31): 1910582.
[144]DANG Z, SHAMSI J, PALAZON F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals[J]. ACS Nano, 2017, 11(2): 2124-2132.
[145]NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769.
[146]LIANG Z, ZHAO S, XU Z, et al. Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28824-28830.
[147]LEI X, YU K. First-principles calculations on strain and electric field induced band modulation and phase transition of bilayer WSe2MoS2 heterostructure[J]. Physica E: Low-dimensional Systems and Nanostructures, 2018, 98: 17-22.
[148]SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors[J]. Physical Review B, 1992, 45(16): 8989-8994.
[149]KONDO T, AZUMA T, YUASA T, et al. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4[J]. Solid State Communications, 1998, 105(4): 253-255.
[150]GALKOWSKI K, MITIOGLU A, MIYATA A, et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors[J]. Energy & Environmental Science, 2016, 9(3): 962-970.
[151]WEN X, SITT A, YU P, et al. Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals[J]. Physical Chemistry Chemical Physics, 2012, 14(10): 3505-3512.
[152]LI H L, TANG J L, KANG Y B, et al. Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires[J]. Applied Physics Letters, 2018, 113(23) : 233104.
[153]TONG G, CHEN T, LI H, et al. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells[J]. Nano Energy, 2019, 65: 104015.
[154]HANUSCH F C, WIESENMAYER E, MANKEL E, et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide[J]. The Journal of Physical Chemistry Letters, 2014, 5(16): 2791-2795.
[155]SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Phyics-Condensed Matter, 2002, 14(11): 2717-2744.
[156]JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. APL Materilas, 2013, 1(1): 011002.
[157]TAO J M, PERDEW J P, TANG H, et al. Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures[J]. Journal of Chemical Physics, 2018, 148(7): 074110.
[158]FISCHER T H, ALMLOF J. Genral methods for geometry and wave function optimization[J]. Journal of Physcis Chemistry, 1992, 96(24): 9768-9774.
[159]MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[160]LIU L, LI H, LIU Z, et al. The conversion of CuInS2/ZnS core/shell structure from type I to quasi-type II and the shell thickness-dependent solar cell performance[J]. Journal of Colloid and Interface Science, 2019, 546: 276-284.
[161]SCARDI P, LEONARDI A, GELISIO L, et al. Anisotropic atom displacement in Pd nanocubes resolved by molecular dynamics simulations supported by X-ray diffraction imaging[J]. Physical Review B, 2015, 91(15): 155414.
[162]CHAE B G, LEE J H, PARK S, et al. Direct three-dimensional observation of core/shell-structured quantum dots with a composition-competitive gradient[J]. ACS Nano, 2018, 12(12): 12109-12117.
[163]CHO C, PALATNIK A, SUDZIUS M, et al. Controlling and optimizing amplified spontaneous emission in perovskites[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35242-35249.
[164]ZHU C, NIU X, FU Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J]. Nature Communications, 2019, 10(1): 815.
[165]TONG Y, YAO E-P, MANZI A, et al. Spontaneous self-assembly of perovskite nanocrystals into electronically coupled supercrystals: Toward filling the green gap[J]. Advanced Materials, 2018, 30(29): 1801117.
[166]WANG Y, LI X, SREEJITH S, et al. Photon driven transformation of cesium lead halide perovskites from few-monolayer nanoplatelets to bulk phase[J]. Advanced Materials, 2016, 28(48): 10637-10643.
[167]MEGGIOLARO D, MOSCONI E, DE ANGELIS F. Formation of surface defects dominates ion migration in lead-halide perovskites[J]. ACS Energy Letters, 2019, 4(3): 779-785.
[168]MOSCONI E, DE ANGELIS F. Mobile ions in organohalide perovskites: Interplay of electronic structure and dynamics[J]. ACS Energy Letters, 2016, 1(1): 182-188.
[169]FANG H-H, YANG J, TAO S, et al. Unravelling light-induced degradation of layered perovskite crystals and design of efficient encapsulation for improved photostability[J]. Advanced Functional Materials, 2018, 28(21): 1800305.
[170]FERDANI D W, PERING S R, GHOSH D, et al. Patrial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells[J]. Energy & Environmental Science, 2019, 12(7): 2264-2272.
[171]KLIMOV V I, MIKHAILOVSKY A A, MCBRANCH D W, et al.Quantization of multiparticle Auger rates in semiconductor quantum dots[J].Science, 2000, 287(5455): 1011-1013.
[172]LI J, JING Q, XIAO S, et al. Spectral dynamics and multiphoton absorption properties of all-inorganic perovskite nanorods[J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4817-4825.
[173]KONG D, JIA Y, REN Y, et al. Shell-thickness-dependent biexciton lifetime in type I and quasi-type II CdSe@CdS core/shell quantum dots[J]. The Journal of Physical Chemistry C, 2018, 122(25): 14091-14098.
[174]MANSER J S, KAMAT P V. Band filling with free charge carriers in organometal halide perovskites[J]. Nature Photonics, 2014, 8(9): 737-743.
[175]FU J, XU Q, HAN G, et al. Hot carrier cooling mechanisms in halide perovskites[J]. Nature Communications, 2017, 8(1): 1300.
[176]REN Y J, NIE Z H, DENG F, et al. Deciphering the excited-state dynamics and multicarrier interactions in perovskite core-shell type hetero-nanocrystals[J]. Nanoscale, 2021, 13(1): 292-299.
[177]RABOUW F T, VAXENBURG R, BAKULIN A A, et al. Dynamics of intraband and interband Auger processes in colloidal core-shell quantum dots[J]. ACS Nano, 2015, 9(10): 10366-10376.
[178]DANG C, LEE J, BREEN C, et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films[J]. Nature Nanotechnology, 2012, 7(5): 335-339.
[179]SHE C, FEDIN I, DOLZHNIKOV D S, et al. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets[J]. ACS Nano, 2015, 9(10): 9475-9485.
[180]LI X, WEI Q, WANG K Y, et al. Charge carrier dynamics and broad wavelength tunable amplified spontaneous emission in ZnxCd1-xSe nanowires[J]. Journal of Chemistry Letters, 2019, 10(23): 7516-7522.
[181]SHE C, FEDIN I, DOLZHNIKOV D S, et al. Low-threshold stimulated emission using colloidal quantum wells[J]. Nano Letters, 2014, 14(5): 2772-2777.
[182]LIANG Y, SHANG Q Y, LI M, et al. Solvent recrystallization-enabled green amplified spontaneous emissions with an ultra-low threshold from pinhole-free perovskite films[J]. Advanced Functional Materials, 2021, 31(48): 2106108.
[183]HUANG C-Y, ZOU C, MAO C, et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J]. ACS Photonics, 2017, 4(9): 2281-2289.
[184]ZHU H, FU Y, MENG F, et al. Lead halide perovskite nanowire lasers withlow lasing thresholds and high quality factors[J]. Nature Materials, 2015, 14(6): 636-642.
[185]PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence[J]. Journal of the American Chemical Society, 2016, 138(43): 14202-14205.
[186]LI M, SHANG Q, LI C, et al. High optical gain of solution-processed mixed-cation CsPbBr3 thin films towards enhanced amplified spontaneous emission[J]. Advanced Functional Materials, 2021, 31(25): 2102210.
[187]DENK W, STRICKLER J H, WEBB W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.
[188]HELMCHEN F, DENK W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.
[189]PALCZEWSKA G, MAEDA T, IMANISHI Y, et al. Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes[J]. Nature Medicine, 2010, 16(12): 1444-1449.
[190]HOOVER E E, SQUIER J A. Advances in multiphoton microscopy technology[J]. Nature Photonics, 2013, 7(2): 93-101.
[191]PAWLICKI M, COLLINS H A, DENNING R G, et al. Two-photon absorption and the design of two-photon dyes[J]. Angewandte Chemie International Edition, 2009, 48(18): 3244-3266.
[192]EHRLICH J E, WU X L, LEE I Y S, et al. Two-photon absorption and broadband optical limiting with bis-donor stilbenes[J]. Optics Letters, 1997, 22(24): 1843-1845.
[193]POND S J K, TSUTSUMI O, RUMI M, et al. Metal-ion sensing fluorophores with large two-photon absorption cross sections: Aza-crown ether substituted donor-acceptor-donor distyrylbenzenes[J]. Journal of the American Chemical Society, 2004, 126(30): 9291-9306.
[194]AGARWAL G S, HARSHAWARDHAN W. Inhibition and enhancement of two photon absorption[J]. Physical Review Letters, 1996, 77(6): 1039-1042.
[195]HE G S, XU G C, PRASAD P N, et al. Two-photon absorption and optical-limiting properties of novel organic compounds[J]. Optics Letters, 1995, 20(5): 435-437.
[196]WALTERS G, SUTHERLAND B R, HOOGLAND S, et al. Two-photon absorption in organometallic bromide perovskites[J]. ACS Nano, 2015, 9(9): 9340-9346.
[197]HE J, QU Y, LI H, et al. Three-photon absorption in ZnO and ZnS crystals[J]. Optics Express, 2005, 13(23): 9235-9247.
[198]LI J, ZHAO F, XIAO S, et al. Giant two- to five-photon absorption in CsPbBr2.7I0.3 two-dimensional nanoplatelets[J]. Optics Letters, 2019, 44(15): 3873-3876.
[199]HE H, CUI Y, LI B, et al. Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence[J]. Advanced Materials, 2019, 31(6): 1806897.
[200]LI M, XU Y, HAN S, et al. Giant and broadband multiphoton absorption nonlinearities of a 2D organometallic perovskite ferroelectric[J]. Advanced Materials, 2020, 32(36): 2002972.
[201]WEBSTER S, FU J, PADILHA L A, et al. Comparison of nonlinear absorption in three similar dyes: Polymethine, squaraine and tetraone[J]. Chemical Physics, 2008, 348(1): 143-151.
[202]EGGELING C, VOLKMER A, SEIDEL C A M. Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy[J]. ChemPhysChem, 2005, 6(5): 791-804.
[203]WU L, WANG X, GONG H, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency[J]. Journal of Materials Chemistry C, 2015, 3(4): 750-758.
[204]EMELYANOV A Y, PERTSEV N A, HOFFMANN-EIFERT S, et al. Grain-boundary effect on the curie-weiss law of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective medium[J]. Journal of Electroceramics, 2002, 9(1): 5-16.
[205]VASILAKAKI M, BINNS C, TROHIDOU K N. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: A Monte Carlo study of shape and size effects[J]. Nanoscale, 2015, 7(17): 7753-7762.
[206]MORELLO G, DELLA SALA F, CARBONE L, et al. Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field[J]. Physical Review B, 2008, 78(19): 195313.
[207]ZEGRYA G G, ANDREEV A D. Mechanism of suppression of Auger recombination process in type-II heterostructures[J]. Applied Physics Letters, 1995, 67(18): 2681-2683.
[208]MOHSENI H, LITVINOV V I, RAZEGHI M. Interface-induced suppression of the Auger recombination in type-II InAs/GaSb superlattices[J]. Physical Review B, 1998, 58(23): 15378-15380.
[209]GARCíA-SANTAMARíA F, CHEN Y, VELA J, et al. Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance[J]. Nano Letters, 2009, 9(10): 3482-3488.
[210]PARK Y-S, BAE W K, PIETRYGA J M, et al. Auger recombination of biexcitons and negative and positive trions in individual quantum dots[J]. ACS Nano, 2014, 8(7): 7288-7296.
[211]RABOUW F T, LUNNEMANN P, VAN DIJK-MOES R J A, et al. Reduced Auger recombination in single CdSe/CdS nanorods by one-dimensional electron delocalization[J]. Nano Letters, 2013, 13(10): 4884-4892.
[212]XING G C, CHAKRABORTTY S, CHOU K L, et al. Enhanced tunability of the multiphoton absorption cross-section in seeded CdSe/CdS nanorod heterostructures[J]. Applied Physics Letters, 2010, 97(6): 061112.
[213]VILLENEUVE D M, IVANOV M Y, CORKUM P B. Enhanced ionization of diatomic molecules in strong laser fields: A classical model[J]. Physical Review A, 1996, 54(1): 736-741.

所在学位评定分委会
物理学
国内图书分类号
O433.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765602
专题南方科技大学
工学院_电子与电气工程系
推荐引用方式
GB/T 7714
张轩宇. 金属卤化物钙钛矿纳米晶的结构调控及光学特性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031192-张轩宇-电子与电气工程(8418KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张轩宇]的文章
百度学术
百度学术中相似的文章
[张轩宇]的文章
必应学术
必应学术中相似的文章
[张轩宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。