[1] 唐祯安, 王立鼎. 关于微尺度理论[J]. 光学精密工程, 2001, 9(6): 493-498.
[2] 段文晖, 张刚. 纳米材料热传导[M]. 科学出版社, 2017.
[3] 华钰超. 微观与宏观结合的声子弹道扩散导热研究[D]. 清华大学, 2018.
[4] ALI S A. Phonon Boltzmann Transport Equation (BTE) Based Modeling of Heat Conduction in Semiconductor Materials at Sub-Micron Scales[D]. The Ohio State University, 2017.
[5] HANAFI M Z M, ISMAIL F S, ROSLI R. Radial plate fins heat sink model design and optimization[C]//2015 10th Asian Control Conference (ASCC). 2015: 1-5.
[6] 罗小平. 微纳导热多尺度模型及低维材料声子水动力学研究[D]. 哈尔滨工业大学, 2021.
[7] LI B, WANG J. Anomalous Heat Conduction and Anomalous Diffusion in One-Dimensional Systems[J]. Physical Review Letters, 2003, 91(4): 044301.
[8] GU X, WEI Y, YIN X, et al. Colloquium: phononic thermal properties of two-dimensional materials[J]. Reviews of Modern Physics, 2018, 90(4): 041002.
[9] XU X, PEREIRA L F C, WANG Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 2014, 5: 3689.
[10] LEE V, WU C H, LOU Z X, et al. Divergent and Ultrahigh Thermal Conductivity in Millimeter-Long Nanotubes[J]. Physical Review Letters, 2017, 118(13): 135901.
[11] GUYER R A, KRUMHANSL J A. Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals[J]. Physical Review, 1966, 148(2): 778-788.
[12] LEE S, BROIDO D, ESFARJANI K, et al. Hydrodynamic phonon transport in suspended graphene[J]. Nature Communications, 2015, 6(1): 6290.
[13] MASON W P. Phonon Viscosity and Its Effect on Acoustic Wave Attenuation and Dislocation Motion[J]. Journal of the Acoustical Society of America, 1960, 32(4): 458-472.
[14] MARIS, H. J. Phonon Viscosity[J]. Physical Review, 1969, 188(3): 1303-1307.
[15] SMONTARA A, LASJAUNIAS J C, MAYNARD R. Phonon Poiseuille Flow in Quasi-One-Dimensional Single Crystals[J]. Physical Review Letters, 1996, 77(27): 5397-5400.
[16] MACHIDA Y, SUBEDI A, AKIBA K, et al. Observation of Poiseuille flow of phonons in black phosphorus[J]. Science Advances, 2018, 4(6): eaat3374.
[17] CHESTER M. Second Sound in Solids[J]. Physical Review, 1963, 131(5): 2013-2015.
[18] NARAYANAMURTI V, DYNES R C. Observation of Second Sound in Bismuth[J]. Physical Review Letters, 1972, 28(22): 1461-1465.
[19] HUBERMAN S, DUNCAN R A, CHEN K, et al. Observation of second sound in graphite at temperatures above 100 K[J]. Science, 2019, 364(6438): 375-379.
[20] 郭洋裕, 王沫然. 声子水动力学: 进展、应用与展望[J]. 中国科学:物理学、力学、天文学, 2017, 47(7): 25.
[21] MCGAUGHEY A, KAVIANY M. Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction[J]. Advances in Heat Transfer, 2006, 39: 169-255.
[22] HENRY A, CHEN G. High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations[J]. Physical Review Letters, 2008, 101(23): 235502.
[23] 陈学坤. 准一维杂化纳米结构声子输运的分子动力学研究[D]. 湖南大学, 2016.
[24] GIANNOZZI P, DE GIRONCOLI S, PAVONE P, et al. Ab initio calculation of phonon dispersions in semiconductors[J]. Physical Review B, 1991, 43(9): 7231-7242.
[25] 马金龙. 基于第一性原理研究钎锌矿氮化物及其合金中的声子输运[D]. 华中科技大学,2016.
[26] ALVAREZ P T. Thermal transport in semiconductors: first principles and phonon hydrodynamics[D]. Universitat Autònoma de Barcelona, 2017.
[27] XU Y, WANG J S, DUAN W, et al. Nonequilibrium Green’s function method for phononphonon interactions and ballistic-diffusive thermal transport[J]. Physical Review B, 2008, 78(22): 224303.
[28] WANG J S, WANG J, ZENG N. Nonequilibrium Green’s function approach to mesoscopic thermal transport[J]. Physical Review B, 2006, 74(3): 033408.
[29] GUYER R A, KRUMHANSL J A. Solution of the Linearized Phonon Boltzmann Equation[J]. Physical Review, 1966, 148(2): 766-778.
[30] ALVAREZ F X, JOU D, SELLITTO A. Phonon Hydrodynamics and Phonon-Boundary Scattering in Nanosystems[J]. Journal of Applied Physics, 2009, 105: 014317 - 014317.
[31] CHEN G. Ballistic-Diffusive Heat-Conduction Equations[J]. Physical Review Letters, 2001, 86(11): 2297-2300.
[32] CHEN G. Ballistic-Diffusive Equations for Transient Heat Conduction From Nano to Macro scales[J]. Journal of Heat Transfer, 2001, 124(2): 320-328.
[33] TZOU D Y. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16.
[34] TZOU D Y. The generalized lagging response in small-scale and high-rate heating[J]. International Journal of Heat and Mass Transfer, 1995, 38(17): 3231-3240.
[35] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律[J]. 物理学报, 2008, 57(7): 4273-4281.
[36] 过增元, 朱宏晔. 热质的运动和传递——热子气的守恒方程和傅立叶定律[J]. 工程热物理学报, 2007, 28(1): 86-88.
[37] SIMONCELLI M, MARZARI N, CEPELLOTTI A. Generalization of Fourier’s Law into Viscous Heat Equations[J]. Physical Review X, 2020, 10(1): 011019.
[38] CHAPMAN S, COWLING T G, CERCIGNANI C. The mathematical theory of non-uniform gases[M]. 3rd ed. Cambridge University Press, 1995.
[39] BANACH Z, LARECKI W. Chapman–Enskog method for a phonon gas with finite heat flux [J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(37): 375502.
[40] FRYER M J, STRUCHTRUP H. Moment model and boundary conditions for energy transport in the phonon gas[J]. Continuum Mechanics and Thermodynamics, 2014, 26(5): 593-618.
[41] SENDRA L, BEARDO A, TORRES P, et al. Derivation of a hydrodynamic heat equation from the phonon Boltzmann equation for general semiconductors[J]. Physical Review B, 2021, 103(14): L140301.
[42] 张创. 声子输运的介观数值方法及非傅里叶导热机理研究[D]. 华中科技大学, 2021.
[43] OMINI M, SPARAVIGNA A. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity[J]. Physica B: Condensed Matter, 1995, 212(2): 101-112.
[44] CHAPUT L. Direct solution to the linearized phonon Boltzmann equation[J]. Physical Review Letters, 2013, 110(26): 265506.
[45] FUGALLO G, LAZZERI M, PAULATTO L, et al. Ab initio variational approach for evaluating lattice thermal conductivity[J]. Physical Review B, 2013, 88(4): 045430.
[46] CHEN G. Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons[M]. Oxford university press, 2005.
[47] MURTHY J Y, NARUMANCHI S V J, PASCUAL-GUTIERREZ J A, et al. Review of multiscale simulation in submicron heat transfer[J]. International Journal for Multiscale Computational Engineering, 2005, 3(1): 5-32.
[48] GUO Y, WANG M. Phonon hydrodynamics and its applications in nanoscale heat transport[J]. Physics Reports, 2015, 595: 1-44.
[49] YU C, OUYANG Y, CHEN J. A perspective on the hydrodynamic phonon transport in twodimensional materials[J]. Journal of Applied Physics, 2021, 130(1): 010902.
[50] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Physical Review, 1959, 113(4): 1046.
[51] MAZUMDER S, MAJUMDAR A. Monte Carlo study of phonon transport in solid thin films including dispersion and polarization[J]. Journal of Heat Transfer, 2001, 123(4): 749-759.
[52] HUA Y C, CAO B Y. An efficient two-step Monte Carlo method for heat conduction in nanostructures[J]. Journal of Computational Physics, 2017, 342: 253-266.
[53] NIE B D, CAO B Y. Thermal wave in phonon hydrodynamic regime by phonon Monte Carlo simulations[J]. Nanoscale and Microscale Thermophysical Engineering, 2020, 24(2): 94-122.
[54] PÉRAUD J P M, HADJICONSTANTINOU N G. Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations[J]. Physical Review B, 2011, 84(20): 205331.
[55] LI R, LEE E, LUO T. Physics-Informed Deep Learning for Solving Coupled Electron and Phonon Boltzmann Transport Equations[J]. Physical Review Applied, 2023, 19(6): 064049.
[56] LI R, WANG J X, LEE E, et al. Physics-Informed Deep Learning for solving phonon Boltzmann transport equation with large temperature non-equilibrium[J]. npj Computational Materials, 2022, 8: 29.
[57] GUO Z, SHU C. Lattice Boltzmann method and its applications in engineering[M]. World Scientific, 2013.
[58] GUO Y, WANG M. Lattice Boltzmann modeling of phonon transport[J]. Journal of Computational Physics, 2016, 315: 1-15.
[59] CHRISTENSEN A, GRAHAM S. Multiscale lattice Boltzmann modeling of phonon transport in crystalline semiconductor materials[J]. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57(2): 89-109.
[60] ALI S A, KOLLU G, MAZUMDER S, et al. Large-scale parallel computation of the phonon Boltzmann Transport Equation[J]. International Journal of Thermal Sciences, 2014, 86: 341- 351.
[61] MAJUMDAR A. Microscale Heat Conduction in Dielectric Thin Films[J]. Journal of Heat Transfer, 1993, 115(1): 7-16.
[62] GUO Y, WANG M. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway’s dual relaxation model[J]. Physical Review B, 2017, 96(13): 134312.
[63] GUO Z, XU K. Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation[J]. International Journal of Heat and Mass Transfer, 2016, 102: 944-958.
[64] LUO X P, YI H L. A discrete unified gas kinetic scheme for phonon Boltzmann transport equation accounting for phonon dispersion and polarization[J]. International Journal of Heat and Mass Transfer, 2017, 114: 970-980.
[65] ZHANG C, GUO Z. Discrete unified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difference[J]. International Journal of Heat and Mass Transfer, 2019, 134: 1127-1136.
[66] ZHANG C, GUO Z, CHEN S. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation[J]. Physical Review E, 2017, 96(6): 063311.
[67] ZHANG C, GUO Z, CHEN S. An implicit kinetic scheme for multiscale heat transfer problem accounting for phonon dispersion and polarization[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1366-1376.
[68] ADAMS M L, LARSEN E W. Fast iterative methods for discrete-ordinates particle transport calculations[J]. Progress in Nuclear Energy, 2002, 40(1): 3-159.
[69] HARTER J R, HOSSEINI S A, PALMER T S, et al. Prediction of thermal conductivity in dielectrics using fast, spectrally-resolved phonon transport simulations[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118595.
[70] LOY J M, MURTHY J Y, SINGH D. A fast hybrid Fourier-Boltzmann transport equation solver for nongray phonon transport[J]. ASME journal of heat and mass transfer, 2013, 135(1): 011008.
[71] LOY J M, MATHUR S R, MURTHY J Y. A coupled ordinates method for convergence acceleration of the phonon Boltzmann transport equation[J]. Journal of Heat Transfer, 2015, 137(1): 012402.
[72] LUO X P, GUO Y Y, WANG M R, et al. Direct simulation of second sound in graphene by solving the phonon Boltzmann equation via a multiscale scheme[J]. Physical Review B, 2019, 100(15): 155401.
[73] CEPELLOTTI A, FUGALLO G, PAULATTO L, et al. Phonon hydrodynamics in twodimensional materials[J]. Nature Communications, 2015, 6(1): 6400.
[74] ZHANG C, CHEN S, GUO Z. Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121282.
[75] ZHANG Z, OUYANG Y, CHENG Y, et al. Size-dependent phononic thermal transport in lowdimensional nanomaterials[J]. Physics Reports, 2020, 860: 1-26.
[76] CHEN G. Non-Fourier phonon heat conduction at the microscale and nanoscale[J]. Nature Reviews Physics, 2021, 3(8): 555-569.
[77] SU W, ZHU L, WU L. Fast convergence and asymptotic preserving of the general synthetic iterative scheme[J]. SIAM Journal on Scientific Computing, 2020, 42(6): B1517-B1540.
[78] LIU J, ZHANG C, YUAN H, et al. A fast-converging scheme for the phonon Boltzmann equation with dual relaxation times[J]. Journal of Computational Physics, 2022, 467: 111436.
[79] SHANG M Y, ZHANG C, GUO Z, et al. Heat vortex in hydrodynamic phonon transport of two-dimensional materials[J]. Scientific Reports, 2020, 10(1): 8272.
[80] FEDORENKO R. The speed of convergence of one iterative process[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4(3): 227-235.
[81] 朱亚军. 统一气体动理学格式加速算法研究[D]. 西北工业大学, 2020.
[82] MOUKALLED F, MANGANI L, DARWISH M. The Finite Volume Method in Computational Fluid Dynamics[M]. Springer International Publishing, 2016.
[83] MAZUMDER S. Numerical Methods for Partial Differential Equations[M]. Academic Press, 2016.
[84] SEVILLA R, HUERTA A. HDG-NEFEM with degree adaptivity for Stokes flows[J]. Journal of Scientific Computing, 2018, 77: 1953-1980.
[85] 陶文铨. 数值传热学[M]. 西安交通大学出版社, 2001.
[86] YANG R, YUE S, LIAO B. Hydrodynamic phonon transport perpendicular to diffuse-gray boundaries[J]. Nanoscale and Microscale Thermophysical Engineering, 2019, 23(1): 25-35.
[87] ZHANG C, CHEN S, GUO Z, et al. A fast synthetic iterative scheme for the stationary phonon Boltzmann transport equation[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121308.
[88] ZHU J, TANG D, WANG W, et al. Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films[J]. Journal of Applied Physics, 2010, 108(9): 094315.
[89] KOH Y K, SINGER S L, KIM W, et al. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors[J]. Journal of Applied Physics, 2009, 105(5): 2590.
[90] KOH Y K, CAO Y, CAHILL D G, et al. Heat transport mechanisms in superlattices[J]. Advanced Functional Materials, 2009, 19(4): 610-615.
[91] SCHMIDT A J, CHEN X, CHEN G. Pulse accumulation, radial heat conduction, andanisotropic thermal conductivity in pump-probe transient thermoreflectance[J]. Review of Scientific Instruments, 2008, 79(11): 114902.
[92] COSTESCU R M, WALL M A, CAHILL D G. Thermal conductance of epitaxial interfaces[J]. Physical Review B, 2003, 67(5): 054302.
[93] KOH Y K, CAHILL D G. Frequency dependence of the thermal conductivity of semiconductor alloys[J]. Physical Review B, 2007, 76(7): 075207.
[94] REGNER K T, MAJUMDAR S, MALEN J A. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions[J]. Review of Scientific Instruments, 2013, 84(6): 064901.
[95] REGNER K T, SELLAN D P, SU Z, et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance[J]. Nature communications, 2013, 4(1): 1-7.
[96] LIU J, WU L. Fast-Converging and Asymptotic-Preserving Simulation of Frequency Domain Thermoreflectance[J]. Communications in Computational Physics, 2023, 34(1): 65-93.
[97] YANG F, DAMES C. Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to ballistic regime and its relevance to phonon scattering measurements[J]. Physical Review B, 2015, 91(16): 165311.
[98] HUBERMAN S, ZHANG C, HAIBEH J A. On the question of second sound in germanium: A theoretical viewpoint[A]. 2023. arXiv: 2206.02769.
修改评论