[1] DAI H, JIANG B, HU X, et al. Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110480.
[2] LIANG J, LUO J, SUN Q, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334.
[3] MA Y, MA J, CUI G. Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries[J]. Energy Storage Materials, 2019, 20: 146-175.
[4] QUAN Y-Z, LIU Q-S, LIU M-C, et al. Flame-retardant oligomeric electrolyte additive for self-extinguishing and highly-stable lithium-ion batteries: Beyond small molecules[J]. Journal of Energy Chemistry, 2023 , 2023, 84: 374-384.
[5] JAN W, KHAN A D, IFTIKHAR F J, et al. Recent advancements and challenges in deploying lithium sulfur batteries as economical energy storage devices[J]. Journal of Energy Storage, 2023, 72: 108559.
[6] LI P, ZHAO G, ZHENG X, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446.
[7] ZHAO J, LI W, XIE M, et al. Robust 3 D Network binder for Stable and High‐Performance Si‐Based Lithium‐Ion Battery Anodes[J]. Advanced Materials Technologies, 2023, 8: 2201830.
[8] RIBEIRO C, COSTA C M, CORREIA D M, et al. Electroactive poly (vinylidene fluoride)-based structures for advanced applications[J]. Nature protocols, 2018, 13: 681-704.
[9] YANG S, GU Y, QU Q, et al. Engineered Si@ alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries[J]. Electrochimica Acta, 2018, 270: 480-489.
[10] 马璨, 吕迎春, 李泓. 锂离子电池基础科学问题 (VII)——正极材料[J]. 储能科学与技术, 2014, 4(1): 53-65.
[11] 王振华, 彭代冲, 孙克宁. 锂离子电池隔膜材料研究进展[J]. 化工学报, 2018, 69(1): 282-294.
[12] 罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题 (Ⅷ)——负极材料[J]. 储能科学与技术, 2014, 42(2): 146-163.
[13] 倪江锋, 周恒辉, 陈继涛, 等. 锂离子电池集流体的研究[J]. 电池, 2005, 35(2): 128-130.
[14] LOGAN E, DAHN J. Electrolyte design for fast-charging Li-ion batteries[J]. Trends in Chemistry, 2020, 2: 354-366.
[15] LU J, CHEN Z, PAN F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews, 2018, 1: 35-53.
[16] LEE S-M, KANG D-S, ROH J-S. Bulk graphite: materials and manufacturing process[J]. Carbon letters, 2015, 16: 135-146.
[17] LAVI O, HAIK O, HIRSHBERG D, et al. Abnormal electrochemical behavior of rounded graphite[J]. Carbon, 2019, 154: 313-321.
[18] WU J, WANG X, LIU Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries[J]. Nature communications, 2021, 12: 5746.
[19] HUANG Y, WANG C, LV H, et al. Bifunctional Interphase Promotes Li+ De‐Solvation and Transportation Enabling Fast‐Charging Graphite Anode at Low Temperature[J]. Advanced Materials, 2024, 36: 2308675.
[20] CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263.
[21] ZHANG H, YANG Y, REN D, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170.
[22] TSAI Y-J, KUO C-L. Effect of Structural Disorders on the Li Storage Capacity of Graphene Nanomaterials: A First-Principles Study[J]. ACS applied materials & interfaces, 2020, 12: 22917-22929.
[23] DATTA D, LI J, KORATKAR N, et al. Enhanced lithiation in defective graphene[J]. Carbon, 2014, 80: 305-310.
[24] YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano letters, 2008, 8: 2277-2282.
[25] PAN D, WANG S, ZHAO B, et al. Li storage properties of disordered graphene nanosheets[J]. Chemistry of materials, 2009, 21: 3136-3142.
[26] REDDY A L M, SRIVASTAVA A, GOWDA S R, et al. Synthesis of nitrogen-doped graphene films for lithium battery application[J]. ACS nano, 2010, 4: 6337-6342.
[27] 闻雷, 刘成名, 宋仁升, 等. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 72: 333-344.
[28] SUN L, LIU Y, SHAO R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries[J]. Energy Storage Materials, 2022, 46: 482-502.
[29] KWON T-W, CHOI J W, COSKUN A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47: 2145-2164.
[30] 郭峰, 陈鹏, 康拓, 等. 担载纳米硅的锂-碳复合微球作为锂二次电池负极[J]. 物理化学学报, 2019, 35: 1365-1371.
[31] JIA H, ZHENG J, SONG J, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597.
[32] 郝浩博, 陈惠敏, 夏高强, 等. 锂离子电池硅基负极材料研究与进展[J]. 电子元件与材料, 2021, 40(4): 305-327.
[33] RAMDHINY M N, JEON J W. Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries[J]. Carbon Energy, 2024, 6: e356-e380.
[34] YUAN J, HONG Z, XI Z, et al. Catalytic Pyrolysis of 2‐Chloro‐1, 1‐difluoroethane to Synthesize Vinylidene Fluoride over the Potassium‐Promoted Carbon Catalysts[J]. ChemistrySelect, 2020, 5: 5788-5793.
[35] GAIHRE B, JAYASURIYA A C. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering[J]. Materials Science and Engineering: C, 2016, 69: 733-743.
[36] WANG L E, LUO Z, YANG L, et al. Effect of styrene content on mechanical and rheological behavior of styrene butadiene rubber[J]. Materials Research Express, 2020, 8: 015302.
[37] CHEN M, HUA W, XIAO J, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density[J]. Nature Communications, 2019, 10: 1480.
[38] TONG Y, JIN S, XU H, et al. An Energy Dissipative Binder for Self‐Tuning Silicon Anodes in Lithium‐Ion Batteries[J]. Advanced Science, 2023, 10: 2205443.
[39] KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334: 75-79.
[40] WU J-N, CHEN H-X, CHEN C, et al. Construction of dual crosslinked network binder via sequential ionic crosslinking for high-performance silicon anodes[J]. Rare Metals, 2023, 42: 2238-2249.
[41] DUFFICY M K, KHAN S A, FEDKIW P S. Galactomannan binding agents for silicon anodes in Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 12023-12030.
[42] LIU J, ZHANG Q, ZHANG T, et al. A robust ion‐conductive biopolymer as a binder for Si anodes of lithium‐ion batteries[J]. Advanced Functional Materials, 2015, 25: 3599-3605.
[43] WANG K-L, KUO T-H, YAO C-F, et al. Cyclopentadithiophene-benzoic acid copolymers as conductive binders for silicon nanoparticles in anode electrodes of lithium ion batteries[J]. Chemical Communications, 2017, 53: 1856-1859.
[44] SU Y, FENG X, ZHENG R, et al. Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery[J]. ACS Nano, 2021, 15: 14570-14579.
[45] ZHANG F, XIA H, WEI T, et al. A new universal aqueous conductive binder via esterification reinforced electrostatic/H-bonded self-assembly for high areal capacity and stable lithium-ion batteries[J]. Energy & Environmental Science, 2024, 17: 238-248.
[46] ZHANG B, DONG Y, HAN J, et al. Physicochemical Dual Crosslinking Conductive Polymeric Networks Combining High Strength and High Toughness Enable Stable Operation of Silicon Microparticles Anodes[J]. Advanced Materials, 2023: 2301320.
[47] WAN X, KANG C, MU T, et al. A multilevel buffered binder network for high-performance silicon anodes[J]. ACS Energy Letters, 2022, 7: 3572-3580.
[48] WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 121-129.
[49] HE Y, JIANG L, CHEN T, et al. Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nature nanotechnology, 2021, 16: 1113-1120.
[50] CHEN J, FAN X, LI Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5: 386-397.
[51] LIU K, LIU Y, LIN D, et al. Materials for lithium-ion battery safety[J]. Science advances, 2018, 4: eaas9820-9831.
[52] ZOU F, MANTHIRAM A. A review of the design of advanced binders for high‐performance batteries[J]. Advanced Energy Materials, 2020, 10: 2002508.
[53] FENG K, LI M, LIU W, et al. Silicon‐based anodes for lithium‐ion batteries: from fundamentals to practical applications[J]. Small, 2018, 14: 1702737.
[54] WANG Y, DANG D, LI D, et al. Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling[J]. Journal of Power Sources, 2019, 438: 226938.
[55] WANG H, CAO L, WANG M, et al. Green and low-cost approach for recovering valuable metals from spent lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2023, 62: 3973-3984.
[56] TEICHERT O, LINK S, SCHNEIDER J, et al. Techno-economic cell selection for battery-electric long-haul trucks[J]. Etransportation, 2023, 16: 100225.
[57] 阿方萨 V.波邱斯.粘结与胶黏剂技术导论[M]. 化学工业出版社,北京,2005.1:240-253.
[58] 徐培林,张淑琴. 聚氨酯材料手册[M]. 化学工业出版社,北京. 2002:616-621
[59] 山西化工研究所.聚氨酯弹性体[M]. 化学工业出版社,北京.2001:105-119
[60] 李杰妹, 黄瑞, 吕小王, 等. 傅里叶变换红外光谱技术在聚氨酯行业中的应用进展[J]. 化学推进剂与高分子材料, 2008, 6(6): 30-35.
[61] LI Z, TANG W, YANG Y, et al. Engineering Prelithiation of Polyacrylic Acid Binder: A Universal Strategy to Boost Initial Coulombic Efficiency for High‐Areal‐Capacity Si‐Based Anodes[J]. Advanced Functional Materials, 2022, 32: 2206615.
[62] LI Z, LU C, XIA Z, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon, 2007, 45: 1686-1695.
[63] HATCHARD T, DAHN J. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of The Electrochemical Society, 2004, 151: A838-A842.
[64] 余红明, 郑威, 曹高劭, 等. 优化碳包覆对正极材料 LiFePO_4/C 高倍率性能的影响[J]. 物理化学学报, 2009, 8(11): 2186-2190.
[65] YUCA N, ÇOLAK Ü. A facile and functional process to enhance electrochemical performance of silicon anode in lithium ion batteries[J]. Electrochimica Acta, 2016, 222: 1538-1544.
[66] 郑浩, 高健, 王少飞, 等. 锂电池基础科学问题 (Ⅵ)——离子在固体中的输运[J]. 储能科学与技术, 2013, 31(6): 620-635.
[67] CHEN X, WANG X, FANG D. A review on C 1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28: 1048-1058.
[68] LóPEZ G P, CASTNER D G, RATNER B D. XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups[J]. Surface and interface analysis, 1991, 17: 267-272.
[69] RADVANYI E, DE VITO E, PORCHER W, et al. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries[J]. Journal of Analytical Atomic Spectrometry, 2014, 29: 1120-1131.
[70] LI C, SHI T, LI D, et al. Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries[J]. RSC advances, 2016, 6: 34715-34723.
[71] SCHULZ N, HAUSBRAND R, DIMESSO L, et al. XPS-surface analysis of SEI layers on Li-ion cathodes: Part I. Investigation of initial surface chemistry[J]. Journal of The Electrochemical Society, 2018, 165: A819-A831.
[72] SHUTTHANANDAN V, NANDASIRI M, ZHENG J, et al. Applications of XPS in the characterization of Battery materials[J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231: 2-10.
[73] WU X, VILLEVIEILLE C, NOVáK P, et al. Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20: 11123-11129.
[74] ESHETU G G, FIGGEMEIER E. Confronting the challenges of next‐generation silicon anode‐based lithium‐ion batteries: role of designer electrolyte additives and polymeric binders[J]. ChemSusChem, 2019, 12: 2515-2539.
修改评论