中文版 | English
题名

基于可扩展超导量子线路的量子模拟

其他题名
Quantum simulation with scalable superconducting circuits
姓名
姓名拼音
TAO Ziyu
学号
11930470
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
陈远珍
导师单位
物理系
论文答辩日期
2024-05-09
论文提交日期
2024-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

量子计算基于量子力学原理实现量子信息的处理,以在特定问题上实现超越 经典计算的量子优势为远景目标。量子计算实验方向在近二十年中出现了多种技术路线并开始迅速发展,超导量子线路是其中最具可扩展优势的平台之一。超导量子线路的实验基于线路量子电动力学的理论和微纳加工技术设计和制造量子芯片,能实现量子比特阵列的大规模扩展。近年来,更多的国内外科研团队开始参与超导量子线路的研究,使得多比特扩展的实验技术迅速发展。实验最多能控制的物理比特数量已经从101迈入了102量级。

基于超导量子线路的实验平台,本论文针对量子系统的实验调控与相应模型的量子模拟问题展开了研究。我们首先从单个超导量子比特开始,研究了二能级系统的含时调控。实验通过绝热捷径方案缩短了二能级系统含时调控的演化时间, 实现了系统在参数空间沿绝热捷径的演化,并研究了所对应的一维链模型在动量空间中的拓扑性质。

在进一步引入比特的更高能级后,我们在实验中实现了多能级闭合回路耦合系统的量子模拟。通过系统哈密顿量的连续演化与量子门结合的混合方法,实验在原本不具有回路耦合的超导比特中等效实现了闭合回路耦合系统,观测了受相位调控的手征演化,并展示了绝热捷径方案用于区分系统手征性的应用。在扩展至两比特的四能级系统中,实验也实现了相似的耦合机制与手征演化。

在多比特系统的实验中,我们通过改良样品结构和多次的样品迭代成功实现了基于一维链结构的36比特芯片,并将二能级系统中含时调控量子模型的方法应用于多比特系统中。实验将比特的第一激发态作为格点中的单粒子态,通过控制比特和耦合器的频率模拟了无相互作用单粒子系统的拓扑泵浦。在此基础上,我们通过更高能级非谐性引入哈伯德相互作用,在不同的势能调制参数区间中分别 实现了双粒子束缚态的拓扑泵浦、相互作用粒子的共振隧穿、以及双粒子的边界态泵浦,进一步探讨了相互作用粒子的拓扑泵浦。我们的实验研究分别对参数含时调控的二能级、多能级、以及多比特系统进行了探索。实验通过含时调控与更高能级的激发态,实现了相互作用系统的量子模拟,这些方法和技术在未来还可以被进一步应用于二维阵列多比特系统的实验中。

其他摘要

Quantum computation implements information processing based on the principles of quantum mechanics, with the long-term goal of surpassing classical computing in specific problems. Over the past two decades, various physical realizations have emerged and rapidly developed, where the superconducting circuit is one of the most scalable platform. The experiments develop qubit chips based on the circuit quantum electrodynamics theory and microfabrication technology, which enable the development of a large-scale qubit array. In recent years, more research teams have participated in this researches, leading to rapid developments and the increased qubit number from the level of 101 to 102.

In this thesis, we focus on the experimental quantum control and relevant models of quantum simulation in superconducting circuits. Starting from the time-dependent control of two-level system, we realized adiabatic evolution using the shortcut to adiabaticity method and explored the topological properties in parameter space. 

Then we introduced higher energy levels and simulated the closed-contour coupling in multi-level systems. The experiments effectively constructed a three-level system with such coupling by the hybrid digital-analog method. We observed phase-controlled chiral dynamics, then demonstrated separation of chiral enantiomers, and finally discussed the similar dynamics in four-level system of two qubits. 

In the experiment of multi-qubit system, we developed the chip comprising a one-dimensional array of 36 qubits, and introduced the previously used time-dependent control. By periodically modulating the qubit and coupler frequencies, we simulated the topological pumping of noninteracting particles, where the first-excited state of each qubit acts as a single-particle state on the lattice site. Moreover, we demonstrated the related phenomena for the topological pumping of interacting particles, including the bound states evolution, resonant tunneling, and edge-state transport. Our researches experimentally explored the time-dependent control of two-level, multi-level, and multi-qubit system. We simulated the interacting system by introducing the higher excited states. These methods can further be applied in future experiments with two-dimensional array of qubits.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London A, 1985, 400(1818): 97-117.
[2] CHI-CHIH YAO A. Quantum circuit complexity[C]//Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science. 1993: 352-361.
[3] BARENCO A, DEUTSCH D, EKERT A, et al. Conditional quantum dynamics and logic gates [J]. Physical Review Letters, 1995, 74(20): 4083-4086.
[4] LLOYD S. Universal quantum simulators[J]. Science, 1996, 273(5278): 1073-1078.
[5] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC96. Philadelphia, Pennsylvania, USA: ACM Press, 1996: 212–219.
[6] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1999, 41(2): 303-332.
[7] HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103(15): 150502.
[8] VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computation[J]. Reviews of Modern Physics, 2005, 76(4): 1037-1069.
[9] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.
[10] KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135-174.
[11] CHATTERJEE A, STEVENSON P, FRANCESCHI S D, et al. Semiconductor qubits in practice [J]. Nature Reviews Physics, 2021, 3(3): 157-177.
[12] BURKARD G, LADD T D, PAN A, et al. Semiconductor spin qubits[J]. Reviews of Modern Physics, 2023, 95(2): 025003.
[13] LEIBFRIED D, BLATT R, MONROE C, et al. Quantum dynamics of single trapped ions[J]. Reviews of Modern Physics, 2003, 75(1): 281-324.
[14] DUAN L M, MONROE C. Colloquium: quantum networks with trapped ions[J]. Reviews of Modern Physics, 2010, 82(2): 1209-1224.
[15] BLAIS A, GRIMSMO A L, GIRVIN S M, et al. Circuit quantum electrodynamics[J]. Reviews of Modern Physics, 2021, 93(2): 025005.
[16] WENDIN G. Quantum information processing with superconducting circuits: a review[J]. Reports on Progress in Physics, 2017, 80(10): 106001.
[17] GU X, KOCKUM A F, MIRANOWICZ A, et al. Microwave photonics with superconducting quantum circuits[J]. Physics Reports, 2017, 718-719: 1-102.
[18] GAMBETTA J M, CHOW J M, STEFFEN M. Building logical qubits in a superconducting quantum computing system[J]. NPJ Quantum Information, 2017, 3(2).
[19] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[20] WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(18): 180501.
[21] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[22] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. 2010.
[23] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1): 153-185.
[24] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[25] DEFENU N, DONNER T, MACRÌ T, et al. Long-range interacting quantum systems[J]. Reviews of Modern Physics, 2023, 95(3): 035002.
[26] HARRINGTON P M, MUELLER E J, MURCH K W. Engineered dissipation for quantum information science[J]. Nature Reviews Physics, 2022, 4(10): 660-671.
[27] LAS HERAS U, ALVAREZ-RODRIGUEZ U, SOLANO E, et al. Genetic algorithms for digital quantum simulations[J]. Physical Review Letters, 2016, 116: 230504.
[28] YANG X, NIE X, JI Y, et al. Improved quantum computing with higher-order Trotter decomposition[J]. Physical Review A, 2022, 106: 042401.
[29] MEZZACAPO A, HERAS U L, PEDERNALES J S, et al. Digital quantum Rabi and Dicke models in superconducting circuits[J]. Scientific Reports, 2015, 4(1): 7482.
[30] LAMATA L. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits[J]. Scientific Reports, 2017, 7(1): 43768.
[31] LAMATA L, PARRA-RODRIGUEZ A, SANZ M, et al. Digital-analog quantum simulations with superconducting circuits[J]. Advances in Physics: X, 2018, 3(1): 1457981.
[32] PARRA-RODRIGUEZ A, LOUGOVSKI P, LAMATA L, et al. Digital-analog quantum computation[J]. Physical Review A, 2020, 101(2): 022305.
[33] QIU C, NIE X, LU D. Quantum simulations with nuclear magnetic resonance system[J]. Chinese Physics B, 2021, 30(4): 048201.
[34] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms [J]. Nature Physics, 2020, 16(2): 132-142.
[35] BLATT R, ROOS C F. Quantum simulations with trapped ions[J]. Nature Physics, 2012, 8(4): 277-284.
[36] KJAERGAARD M, SCHWARTZ M E, BRAUMüLLER J, et al. Superconducting qubits: current state of play[J]. Annual Review of Condensed Matter Physics, 2020, 11(1): 369-395.
[37] WU J, WANG Z, BIAO Y, et al. Non-Abelian gauge fields in circuit systems[J]. Nature Electronics, 2022, 5(10): 635-642.
[38] SU L, JIANG H, WANG Z, et al. Simulation of non-Hermitian disordered systems in linear circuits[J]. Physical Review B, 2023, 107: 184108.
[39] NAKAMURA Y, PASHKIN Y A, TSAI J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box[J]. Nature, 1999, 398(6730): 786-788.
[40] MOOIJ J E, ORLANDO T P, LEVITOV L, et al. Josephson persistent-current qubit[J]. Science, 1999, 285(5430): 1036-1039.
[41] ORLANDO T P, MOOIJ J E, TIAN L, et al. Superconducting persistent-current qubit[J]. Physical Review B, 1999, 60(22): 15398.
[42] CHIORESCU I, NAKAMURA Y, HARMANS C J P M, et al. Coherent quantum dynamics of a superconducting flux qubit[J]. Science, 2003, 299(5614): 1869-1871.
[43] MARTINIS J M, NAM S, AUMENTADO J, et al. Rabi oscillations in a large Josephson junction qubit[J]. Physical Review Letters, 2002, 89(11): 117901.
[44] SIDDIQI I. Engineering high-coherence superconducting qubits[J]. Nature Reviews Materials, 2021, 6(10): 875-891.
[45] VION D, AASSIME A, COTTET A, et al. Manipulating the quantum state of an electrical circuit[J]. Science, 2002, 296(5569): 886-889.
[46] KOCH J, YU T M, GAMBETTA J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J]. Physical Review A, 2007, 76(4): 042319.
[47] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits[J]. Physical Review Letters, 2013, 111(8): 080502.
[48] CHEN Y, NEILL C, ROUSHAN P, et al. Qubit architecture with high coherence and fast tunable coupling[J]. Physical Review Letters, 2014, 113(22): 220502.
[49] MANUCHARYAN V E, KOCH J, GLAZMAN L I, et al. Fluxonium: single Cooper-pair circuit free of charge offsets[J]. Science, 2009, 326(5949): 113-116.
[50] GYENIS A, MUNDADA P S, DI PAOLO A, et al. Experimental realization of a protected superconducting circuit derived from the 0–𝜋 qubit[J]. PRX Quantum, 2021, 2(1): 010339.
[51] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[52] WALLRAFF A, SCHUSTER D I, BLAIS A, et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout[J]. Physical Review Letters, 2005, 95(6): 060501.
[53] REED M D, DICARLO L, JOHNSON B R, et al. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity[J]. Physical Review Letters, 2010, 105(17): 173601.
[54] CHOW J M, CÓRCOLES A D, GAMBETTA J M, et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits[J]. Physical Review Letters, 2011, 107(8): 080502.
[55] RIGETTI C, DEVORET M. Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies[J]. Physical Review B, 2010, 81(13): 134507.
[56] SONG C, XU K, LIU W, et al. 10-Qubit entanglement and parallel logic operations with a superconducting circuit[J]. Physical Review Letters, 2017, 119(18): 180511.
[57] SONG C, XU K, LI H, et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits[J]. Science, 2019, 365(6453): 574-577.
[58] XU K, CHEN J J, ZENG Y, et al. Emulating many-body localization with a superconducting quantum processor[J]. Physical Review Letters, 2018, 120(5): 050507.
[59] GUO Q, CHENG C, SUN Z H, et al. Observation of energy-resolved many-body localization [J]. Nature Physics, 2020, 17(2): 234-239.
[60] GONG M, CHEN M C, ZHENG Y, et al. Genuine 12-Qubit entanglement on a superconducting quantum processor[J]. Physical Review Letters, 2019, 122(11): 110501.
[61] WEI K X, LAUER I, SRINIVASAN S, et al. Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences[J]. Physical Review A, 2020, 101(3): 032343.
[62] MOONEY G J, WHITE G A L, HILL C D, et al. Whole-device entanglement in a 65-qubit superconducting quantum computer[J]. Advanced Quantum Technologies, 2021, 4(10): 2100061.
[63] DOLAN G J. Offset masks for lift-off photoprocessing[J]. Applied Physics Letters, 1977, 31: 337-339.
[64] SCHREIER J A, HOUCK A A, KOCH J, et al. Suppressing charge noise decoherence in superconducting charge qubits[J]. Physical Review B, 2008, 77(18): 180502.
[65] HITA-PÉREZ M, JAUMÀ G, PINO M, et al. Ultrastrong capacitive coupling of flux qubits[J]. Physical Review Applied, 2022, 17(1): 014028.
[66] CHU J, YAN F. Coupler-assisted controlled-phase gate with enhanced adiabaticity[J]. Physical Review Applied, 2021, 16(5): 054020.
[67] KU J, XU X, BRINK M, et al. Suppression of unwanted ZZ Interactions in a hybrid two-qubit system[J]. Physical Review Letters, 2020, 125(20): 200504.
[68] MUNDADA P, ZHANG G, HAZARD T, et al. Suppression of qubit crosstalk in a tunable coupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023.
[69] SUNG Y, DING L, BRAUMÜLLER J, et al. Realization of high-fidelity CZ and ZZ-Free iSWAP gates with a tunable coupler[J]. Physical Review X, 2021, 11(2): 021058.
[70] BARENDS R, QUINTANA C M, PETUKHOV A G, et al. Diabatic gates for frequency-tunable superconducting qubits[J]. Physical Review Letters, 2019, 123(21): 210501.
[71] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al. Characterizing quantum supremacy in near-term devices[J]. Nature Physics, 2018, 14(6): 595-600.
[72] CAO S, WU B, CHEN F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023, 619(7971): 738-742.
[73] XU K, ZHANG Y R, SUN Z H, et al. Metrological characterization of non-Gaussian entangled states of superconducting qubits[J]. Physical Review Letters, 2022, 128(15): 150501.
[74] LIU T, LIU S, LI H, et al. Observation of entanglement transition of pseudo-random mixed states[J]. Nature Communications, 2023, 14(1).
[75] ZHU Q, CAO S, CHEN F, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling[J]. Science Bulletin, 2022, 67(3): 240-245.
[76] KIM Y, EDDINS A, ANAND S, et al. Evidence for the utility of quantum computing before fault tolerance[J]. Nature, 2023, 618(7965): 500-505.
[77] MA R, SAXBERG B, OWENS C, et al. A dissipatively stabilized Mott insulator of photons[J]. Nature, 2019, 566(7742): 51-57.
[78] SAXBERG B, VRAJITOAREA A, ROBERTS G, et al. Disorder-assisted assembly of strongly correlated fluids of light[J]. Nature, 2022, 612(7940): 435-441.
[79] BRAUMüLLER J, KARAMLOU A H, YANAY Y, et al. Probing quantum information propagation with out-of-time-ordered correlators[J]. Nature Physics, 2021, 18(2): 172-178.
[80] KARAMLOU A H, BRAUMüLLER J, YANAY Y, et al. Quantum transport and localization in 1d and 2d tight-binding lattices[J]. NPJ Quantum Information, 2022, 8(1).
[81] ARUTE F, ARYA K, BABBUSH R, et al. Hartree-Fock on a superconducting qubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[82] MI X, IPPOLITI M, QUINTANA C, et al. Time-crystalline eigenstate order on a quantum processor[J]. Nature, 2021, 601(7894): 531-536.
[83] MI X, SONNER M, NIU M Y, et al. Noise-resilient edge modes on a chain of superconducting qubits[J]. Science, 2022, 378(6621): 785-790.
[84] MORVAN A, ANDERSEN T I, MI X, et al. Formation of robust bound states of interacting microwave photons[J]. Nature, 2022, 612(7939): 240-245.
[85] NEILL C, MCCOURT T, MI X, et al. Accurately computing the electronic properties of a quantum ring[J]. Nature, 2021, 594(7864): 508-512.
[86] MI X, ROUSHAN P, QUINTANA C, et al. Information scrambling in quantum circuits[J]. Science, 2021, 374(6574): 1479-1483.
[87] SATZINGER K, LIU Y J, SMITH A, et al. Realizing topologically ordered states on a quantum processor[J]. Science, 2021, 374(6572): 1237-1241.
[88] ANDERSEN T I, LENSKY Y D, KECHEDZHI K, et al. Non-Abelian braiding of graph vertices in a superconducting processor[J]. Nature, 2023, 618(7964): 264-269.
[89] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubit superconducting processor[J]. Science, 2019, 364(6442): 753-756.
[90] GONG M, DE MORAES NETO G D, ZHA C, et al. Experimental characterization of the quantum many-body localization transition[J]. Physical Review Research, 2021, 3(3): 033043.
[91] CHEN F, SUN Z H, GONG M, et al. Observation of strong and weak thermalization in a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(2): 020602.
[92] YING C, GUO Q, LI S, et al. Floquet prethermal phase protected by U(1) symmetry on a superconducting quantum processor[J]. Physical Review A, 2022, 105(1): 012418.
[93] ZHU Q, SUN Z H, GONG M, et al. Observation of thermalization and information scrambling in a superconducting quantum processor[J]. Physical Review Letters, 2022, 128(16): 160502.
[94] WANG Z, GE Z Y, XIANG Z, et al. Observation of emergent gauge invariance in a superconducting circuit[J]. Physical Review Research, 2022, 4(2): L022060.
[95] LI H, WANG Y Y, SHI Y H, et al. Observation of critical phase transition in a generalized Aubry-André-Harper model on a superconducting quantum processor with tunable couplers[J]. NPJ Quantum Information, 2023, 9(40): 40.
[96] SHI Y H, LIU Y, ZHANG Y R, et al. Quantum simulation of topological zero modes on a 41-Qubit superconducting processor[J]. Physical Review Letters, 2023, 131(8): 080401.
[97] SHI Y H, YANG R Q, XIANG Z, et al. Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole[J]. Nature Communications, 2023, 14(1).
[98] XIANG Z C, HUANG K, ZHANG Y R, et al. Simulating Chern insulators on a superconducting quantum processor[J]. Nature Communications, 2023, 14(1).
[99] WANG Z, LI H, FENG W, et al. Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit[J]. Physical Review Letters, 2020, 124(1): 013601.
[100] GUO Q, CHENG C, LI H, et al. Stark many-body localization on a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(24): 240502.
[101] ZHANG X, JIANG W, DENG J, et al. Digital quantum simulation of Floquet symmetry-protected topological phases[J]. Nature, 2022, 607(7919): 468-473.
[102] ZHANG P, DONG H, GAO Y, et al. Many-body Hilbert space scarring on a superconducting processor[J]. Nature Physics, 2022, 19(1): 120-125.
[103] YAO Y, XIANG L, GUO Z, et al. Observation of many-body Fock space dynamics in two dimensions[J]. Nature Physics, 2023, 19(10): 1459-1465.
[104] XU S, SUN Z Z, WANG K, et al. Digital simulation of projective non-Abelian anyons with 68 superconducting qubits[J]. Chinese Physics Letters, 2023, 40(6): 060301.
[105] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62 qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[106] CHEN X, LIZUAIN I, RUSCHHAUPT A, et al. Shortcut to adiabatic passage in two- and three-level atoms[J]. Physical Review Letters, 2010, 105(12): 123003.
[107] GUÉRY-ODELIN D, RUSCHHAUPT A, KIELY A, et al. Shortcuts to adiabaticity: concepts, methods, and applications[J]. Reviews of Modern Physics, 2019, 91(4): 045001.
[108] VITANOV N V, DREWSEN M. Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity[J]. Physical Review Letters, 2019, 122(17): 173202.
[109] KE Y, QIN X, KIVSHAR Y S, et al. Multiparticle Wannier states and Thouless pumping of interacting bosons[J]. Physical Review A, 2017, 95(6): 063630.
[110] BARENDS R, SHABANI A, LAMATA L, et al. Digitized adiabatic quantum computing with a superconducting circuit[J]. Nature, 2016, 534(7606): 222-226.
[111] ALBASH T, LIDAR D A. Adiabatic quantum computation[J]. Reviews of Modern Physics, 2018, 90(1): 015002.
[112] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer's guide to superconducting qubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[113] LIU Q C, LI T F, LUO X Q, et al. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system[J]. Physical Review A, 2016, 93 (5): 053838.
[114] WARREN W S. Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence[J]. The Journal of Chemical Physics, 1984, 81(12): 5437-5448.
[115] BLOCH F, SIEGERT A. Magnetic resonance for nonrotating fields[J]. Physical Review, 1940, 57(6): 522-527.
[116] WU Y, YANG X. Strong-coupling theory of periodically driven two-level systems[J]. Physical Review Letters, 2007, 98(1): 013601.
[117] WERNINGHAUS M, EGGER D J, ROY F, et al. Leakage reduction in fast superconducting qubit gates via optimal control[J]. NPJ Quantum Information, 2021, 7(14).
[118] GARDINER C W, COLLETT M J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation[J]. Physical Review A, 1985, 31(6): 3761-3774.
[119] BIANCHETTI R, FILIPP S, BAUR M, et al. Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics[J]. Physical Review A, 2009, 80(4): 043840.
[120] MEGRANT A, NEILL C, BARENDS R, et al. Planar superconducting resonators with internal quality factors above one million[J]. Applied Physics Letters, 2012, 100(11): 113510.
[121] PROBST S, SONG F B, BUSHEV P A, et al. Efficient and robust analysis of complex scattering data under noise in microwave resonators[J]. Review of Scientific Instruments, 2015, 86(2): 024706.
[122] ILDERTON A. Renormalization group flow of the Jaynes-Cummings model[J]. Physical Review Letters, 2020, 125(13): 130402.
[123] SCHUSTER D I, HOUCK A A, SCHREIER J A, et al. Resolving photon number states in a superconducting circuit[J]. Nature, 2007, 445(7127): 515-518.
[124] BISHOP L S, GINOSSAR E, GIRVIN S M. Response of the strongly driven Jaynes-Cummings oscillator[J]. Physical Review Letters, 2010, 105(10): 100505.
[125] GAMBETTA J, BLAIS A, BOISSONNEAULT M, et al. Quantum trajectory approach to circuit QED: quantum jumps and the Zeno effect[J]. Physical Review A, 2008, 77(1): 012112.
[126] DELANEY R D, URMEY M D, MITTAL S, et al. Superconducting-qubit readout via low-backaction electro-optic transduction[J]. Nature, 2022, 606(7914): 489-493.
[127] LUCERO E, KELLY J, BIALCZAK R C, et al. Reduced phase error through optimized control of a superconducting qubit[J]. Physical Review A, 2010, 82(4): 042339.
[128] CHEN Z, KELLY J, QUINTANA C, et al. Measuring and suppressing quantum state leakage in a superconducting qubit[J]. Physical Review Letters, 2016, 116(2): 020501.
[129] KITAEV A Y. Unpaired Majorana fermions in quantum wires[J]. Phys. Usp., 2001, 44(10S): 131-136.
[130] VODOLA D, LEPORI L, ERCOLESSI E, et al. Kitaev chains with long-range pairing[J]. Physical Review Letters, 2014, 113(15): 156402.
[131] OZAWA T, PRICE H M, AMO A, et al. Topological photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006.
[132] NIU Y, CHUNG S B, HSU C H, et al. Majorana zero modes in a quantum Ising chain with longer-ranged interactions[J]. Physical Review B, 2012, 85(3): 035110.
[133] LEPORI L, DELL’ANNA L. Long-range topological insulators and weakened bulk-boundary correspondence[J]. New Journal of Physics, 2017, 19(10): 103030.
[134] ZHANG G, SONG Z. Topological characterization of extended quantum Ising models[J]. Physical Review Letters, 2015, 115(17): 177204.
[135] SCHUCH N, SIEWERT J. Natural two-qubit gate for quantum computation using the XY interaction[J]. Physical Review A, 2003, 67(3): 032301.
[136] BIALCZAK R C, ANSMANN M, HOFHEINZ M, et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits[J]. Nature Physics, 2010, 6(6): 409-413.
[137] STRAUCH F W, JOHNSON P R, DRAGT A J, et al. Quantum logic gates for coupled superconducting phase qubits[J]. Physical Review Letters, 2003, 91(16): 167005.
[138] YAMAMOTO T, NEELEY M, LUCERO E, et al. Quantum process tomography of two-qubit controlled-z and controlled-not gates using superconducting phase qubits[J]. Physical Review B, 2010, 82(18): 184515.
[139] GHOSH J, GALIAUTDINOV A, ZHOU Z, et al. High-fidelity controlled-z gate for resonator-based superconducting quantum computers[J]. Physical Review A, 2013, 87(2): 022309.
[140] PHILLIPS D F, FLEISCHHAUER A, MAIR A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.
[141] VANIER J. Atomic clocks based on coherent population trapping: a review[J]. Applied Physics B: Photophysics and Laser Chemistry, 2005, 81(4): 421-442.
[142] CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 1997, 78(16): 3221-3224.
[143] KOSACHIOV D V, MATISOV B G, ROZHDESTVENSKY Y V. Coherent phenomena in multilevel systems with closed interaction contour[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25(11): 2473-2488.
[144] BUCKLE S J, BARNETT S M, KNIGHT P L, et al. Atomic interferometers: phase-dependence in multilevel atomic transitions[J]. Optica Acta, 1986, 33(9): 1129-1140.
[145] BARFUSS A, KöLBL J, THIEL L, et al. Phase-controlled coherent dynamics of a single spin under closed-contour interaction[J]. Nature Physics, 2018, 14(11): 1087-1091.
[146] KRÁL P, SHAPIRO M. Cyclic population transfer in quantum systems with broken symmetry [J]. Physical Review Letters, 2001, 87(18): 183002.
[147] KRÁL P, THANOPULOS I, SHAPIRO M, et al. Two-step enantio-selective optical switch[J]. Physical Review Letters, 2003, 90(3): 033001.
[148] YE C, ZHANG Q, LI Y. Real single-loop cyclic three-level configuration of chiral molecules [J]. Physical Review A, 2018, 98(6): 063401.
[149] VEPSÄLÄINEN A, DANILIN S, Sorin Paraoanu G. Superadiabatic population transfer in a three-level superconducting circuit[J]. Science Advances, 2019, 5(2): 5999.
[150] VEPSÄLÄINEN A, PARAOANU G S. Simulating spin chains using a superconducting circuit: gauge invariance, superadiabatic transport, and broken time‐reversal symmetry[J]. Advanced Quantum Technologies, 2020, 3(4): 1900121.
[151] BARENDS R, LAMATA L, KELLY J, et al. Digital quantum simulation of fermionic models with a superconducting circuit[J]. Nature Communications, 2015, 6(1): 7654.
[152] ROUSHAN P, NEILL C, MEGRANT A, et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field[J]. Nature Physics, 2016, 13(2): 146-151.
[153] WANG D W, SONG C, FENG W, et al. Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits[J]. Nature Physics, 2019, 15(4): 382-386.
[154] CAI W, HAN J, MEI F, et al. Observation of topological magnon insulator states in a superconducting circuit[J]. Physical Review Letters, 2019, 123(8): 080501.
[155] LIU W, FENG W, REN W, et al. Synthesizing three-body interaction of spin chirality with superconducting qubits[J]. Applied Physics Letters, 2020, 116(11): 114001.
[156] LANGFORD N K, SAGASTIZABAL R, KOUNALAKIS M, et al. Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling[J]. Nature Communications, 2017, 8(1): 1715.
[157] VITANOV N V, RANGELOV A A, SHORE B W, et al. Stimulated Raman adiabatic passage in physics, chemistry, and beyond[J]. Reviews of Modern Physics, 2017, 89(1): 015006.
[158] BERGMANN K, NäGERL H C, PANDA C, et al. Roadmap on STIRAP applications[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52(20): 202001.
[159] ZHANG J, VALA J, SASTRY S, et al. Geometric theory of nonlocal two-qubit operations[J]. Physical Review A, 2003, 67(4): 042313.
[160] ZHANG J, VALA J, SASTRY S, et al. Minimum construction of two-qubit quantum operations [J]. Physical Review Letters, 2004, 93(2): 020502.
[161] NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantum processors[J]. Nature Electronics, 2023, 6(3): 235-241.
[162] ZHOU Y, ZHANG Z, YIN Z, et al. Rapid and unconditional parametric reset protocol for tunable superconducting qubits[J]. Nature Communications, 2021, 12(1).
[163] JEFFREY E, SANK D, MUTUS J Y, et al. Fast accurate state measurement with superconducting qubits[J]. Physical Review Letters, 2014, 112(19): 190504.
[164] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[165] FOXEN B, NEILL C, DUNSWORTH A, et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms[J]. Physical Review Letters, 2020, 125(12): 120504.
[166] VITANOV N V, KNIGHT P L. Coherent excitation of a two-state system by a train of short pulses[J]. Physical Review A, 1995, 52(3): 2245-2261.
[167] VITANOV N V. Relations between single and repeated qubit gates: coherent error amplification for high-fidelity quantum-gate tomography[J]. New Journal of Physics, 2020, 22(2): 023015.
[168] THOULESS D J. Quantization of particle transport[J]. Physical Review B, 1983, 27(10): 6083-6087.
[169] CITRO R, AIDELSBURGER M. Thouless pumping and topology[J]. Nature Reviews Physics, 2023, 5(2): 87-101.
[170] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[171] NIU Q, THOULESS D J. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction[J]. Journal of Physics A: Mathematical and General, 1984, 17(12): 2453.
[172] WANG L, TROYER M, DAI X. Topological charge pumping in a one-dimensional optical lattice[J]. Physical Review Letters, 2013, 111(2): 026802.
[173] NAKAJIMA S, TOMITA T, TAIE S, et al. Topological Thouless pumping of ultracold fermions [J]. Nature Physics, 2016, 12(4): 296-300.
[174] LOHSE M, SCHWEIZER C, ZILBERBERG O, et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice[J]. Nature Physics, 2016, 12(4): 350-354.
[175] NAKAJIMA S, TAKEI N, SAKUMA K, et al. Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms[J]. Nature Physics, 2021, 17(7): 844-849.
[176] KAO W, LI K Y, LIN K Y, et al. Topological pumping of a 1d dipolar gas into strongly correlated prethermal states[J]. Science, 2021, 371(6526): 296-300.
[177] DREON D, BAUMGäRTNER A, LI X, et al. Self-oscillating pump in a topological dissipative atom-cavity system[J]. Nature, 2022, 608(7923): 494-498.
[178] JüRGENSEN M, MUKHERJEE S, RECHTSMAN M C. Quantized nonlinear Thouless pumping[J]. Nature, 2021, 596(7870): 63-67.
[179] SUN Y K, ZHANG X L, YU F, et al. Non-Abelian Thouless pumping in photonic waveguides [J]. Nature Physics, 2022, 18(9): 1080-1085.
[180] CHENG Q, WANG H, KE Y, et al. Asymmetric topological pumping in nonparaxial photonics [J]. Nature Communications, 2022, 13(1): 249.
[181] JÜRGENSEN M, MUKHERJEE S, JÖRG C, et al. Quantized fractional Thouless pumping of solitons[J]. Nature Physics, 2023, 19(3): 420-426.
[182] YANG Z, GAO F, SHI X, et al. Topological acoustics[J]. Physical Review Letters, 2015, 114 (11): 114301.
[183] YOU O, LIANG S, XIE B, et al. Observation of non-Abelian Thouless pump[J]. Physical Review Letters, 2022, 128(24): 244302.
[184] LOHSE M, SCHWEIZER C, PRICE H M, et al. Exploring 4d quantum Hall physics with a 2d topological charge pump[J]. Nature, 2018, 553(7686): 55-58.
[185] ZILBERBERG O, HUANG S, GUGLIELMON J, et al. Photonic topological boundary pumping as a probe of 4d quantum Hall physics[J]. Nature, 2018, 553(7686): 59-62.
[186] HO D Y H, GONG J. Quantized adiabatic transport in momentum space[J]. Physical Review Letters, 2012, 109(1): 010601.
[187] RICE M J, MELE E J. Elementary excitations of a linearly conjugated diatomic polymer[J]. Physical Review Letters, 1982, 49(19): 1455-1459.
[188] SU W P, SCHRIEFFER J R, HEEGER A J. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25): 1698-1701.
[189] GRUSDT F, HÖNING M, FLEISCHHAUER M. Topological edge states in the one-dimensional superlattice Bose-Hubbard model[J]. Physical Review Letters, 2013, 110(26): 260405.
[190] PRIVITERA L, RUSSOMANNO A, CITRO R, et al. Nonadiabatic breaking of topological pumping[J]. Physical Review Letters, 2018, 120(10): 106601.
[191] JOHANSSON J, NATION P, NORI F. Qutip: an open-source python framework for the dynamics of open quantum systems[J]. Computer Physics Communications, 2012, 183(8): 1760-1772.
[192] RACHEL S. Interacting topological insulators: a review[J]. Reports on Progress in Physics, 2018, 81(11): 116501.
[193] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extreme quantum limit[J]. Physical Review Letters, 1982, 48(22): 1559-1562.
[194] LAUGHLIN R B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations[J]. Physical Review Letters, 1983, 50(18): 1395-1398.
[195] RAGHU S, QI X L, HONERKAMP C, et al. Topological Mott insulators[J]. Physical Review Letters, 2008, 100(15): 156401.
[196] DZERO M, SUN K, GALITSKI V, et al. Topological Kondo insulators[J]. Physical Review Letters, 2010, 104(10): 106408.
[197] ZHANG K, LI H, ZHANG P, et al. Synthesizing five-body interaction in a superconducting quantum circuit[J]. Physical Review Letters, 2022, 128(19): 190502.
[198] LINSKENS A F, HOLLEMAN I, DAM N, et al. Two-photon Rabi oscillations[J]. Physical Review A, 1996, 54(6): 4854-4862.
[199] LIN L, KE Y, LEE C. Interaction-induced topological bound states and Thouless pumping in a one-dimensional optical lattice[J]. Physical Review A, 2020, 101(2): 023620.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765611
专题南方科技大学
理学院_物理系
推荐引用方式
GB/T 7714
陶子予. 基于可扩展超导量子线路的量子模拟[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930470-陶子予-物理系.pdf(11908KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陶子予]的文章
百度学术
百度学术中相似的文章
[陶子予]的文章
必应学术
必应学术中相似的文章
[陶子予]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。