[1] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London A, 1985, 400(1818): 97-117.
[2] CHI-CHIH YAO A. Quantum circuit complexity[C]//Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science. 1993: 352-361.
[3] BARENCO A, DEUTSCH D, EKERT A, et al. Conditional quantum dynamics and logic gates [J]. Physical Review Letters, 1995, 74(20): 4083-4086.
[4] LLOYD S. Universal quantum simulators[J]. Science, 1996, 273(5278): 1073-1078.
[5] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC96. Philadelphia, Pennsylvania, USA: ACM Press, 1996: 212–219.
[6] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1999, 41(2): 303-332.
[7] HARROW A W, HASSIDIM A, LLOYD S. Quantum algorithm for linear systems of equations [J]. Physical Review Letters, 2009, 103(15): 150502.
[8] VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computation[J]. Reviews of Modern Physics, 2005, 76(4): 1037-1069.
[9] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.
[10] KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135-174.
[11] CHATTERJEE A, STEVENSON P, FRANCESCHI S D, et al. Semiconductor qubits in practice [J]. Nature Reviews Physics, 2021, 3(3): 157-177.
[12] BURKARD G, LADD T D, PAN A, et al. Semiconductor spin qubits[J]. Reviews of Modern Physics, 2023, 95(2): 025003.
[13] LEIBFRIED D, BLATT R, MONROE C, et al. Quantum dynamics of single trapped ions[J]. Reviews of Modern Physics, 2003, 75(1): 281-324.
[14] DUAN L M, MONROE C. Colloquium: quantum networks with trapped ions[J]. Reviews of Modern Physics, 2010, 82(2): 1209-1224.
[15] BLAIS A, GRIMSMO A L, GIRVIN S M, et al. Circuit quantum electrodynamics[J]. Reviews of Modern Physics, 2021, 93(2): 025005.
[16] WENDIN G. Quantum information processing with superconducting circuits: a review[J]. Reports on Progress in Physics, 2017, 80(10): 106001.
[17] GU X, KOCKUM A F, MIRANOWICZ A, et al. Microwave photonics with superconducting quantum circuits[J]. Physics Reports, 2017, 718-719: 1-102.
[18] GAMBETTA J M, CHOW J M, STEFFEN M. Building logical qubits in a superconducting quantum computing system[J]. NPJ Quantum Information, 2017, 3(2).
[19] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[20] WU Y, BAO W S, CAO S, et al. Strong quantum computational advantage using a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(18): 180501.
[21] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[22] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. 2010.
[23] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Reviews of Modern Physics, 2014, 86(1): 153-185.
[24] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates[J]. Physical Review Applied, 2018, 10(5): 054062.
[25] DEFENU N, DONNER T, MACRÌ T, et al. Long-range interacting quantum systems[J]. Reviews of Modern Physics, 2023, 95(3): 035002.
[26] HARRINGTON P M, MUELLER E J, MURCH K W. Engineered dissipation for quantum information science[J]. Nature Reviews Physics, 2022, 4(10): 660-671.
[27] LAS HERAS U, ALVAREZ-RODRIGUEZ U, SOLANO E, et al. Genetic algorithms for digital quantum simulations[J]. Physical Review Letters, 2016, 116: 230504.
[28] YANG X, NIE X, JI Y, et al. Improved quantum computing with higher-order Trotter decomposition[J]. Physical Review A, 2022, 106: 042401.
[29] MEZZACAPO A, HERAS U L, PEDERNALES J S, et al. Digital quantum Rabi and Dicke models in superconducting circuits[J]. Scientific Reports, 2015, 4(1): 7482.
[30] LAMATA L. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits[J]. Scientific Reports, 2017, 7(1): 43768.
[31] LAMATA L, PARRA-RODRIGUEZ A, SANZ M, et al. Digital-analog quantum simulations with superconducting circuits[J]. Advances in Physics: X, 2018, 3(1): 1457981.
[32] PARRA-RODRIGUEZ A, LOUGOVSKI P, LAMATA L, et al. Digital-analog quantum computation[J]. Physical Review A, 2020, 101(2): 022305.
[33] QIU C, NIE X, LU D. Quantum simulations with nuclear magnetic resonance system[J]. Chinese Physics B, 2021, 30(4): 048201.
[34] BROWAEYS A, LAHAYE T. Many-body physics with individually controlled Rydberg atoms [J]. Nature Physics, 2020, 16(2): 132-142.
[35] BLATT R, ROOS C F. Quantum simulations with trapped ions[J]. Nature Physics, 2012, 8(4): 277-284.
[36] KJAERGAARD M, SCHWARTZ M E, BRAUMüLLER J, et al. Superconducting qubits: current state of play[J]. Annual Review of Condensed Matter Physics, 2020, 11(1): 369-395.
[37] WU J, WANG Z, BIAO Y, et al. Non-Abelian gauge fields in circuit systems[J]. Nature Electronics, 2022, 5(10): 635-642.
[38] SU L, JIANG H, WANG Z, et al. Simulation of non-Hermitian disordered systems in linear circuits[J]. Physical Review B, 2023, 107: 184108.
[39] NAKAMURA Y, PASHKIN Y A, TSAI J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box[J]. Nature, 1999, 398(6730): 786-788.
[40] MOOIJ J E, ORLANDO T P, LEVITOV L, et al. Josephson persistent-current qubit[J]. Science, 1999, 285(5430): 1036-1039.
[41] ORLANDO T P, MOOIJ J E, TIAN L, et al. Superconducting persistent-current qubit[J]. Physical Review B, 1999, 60(22): 15398.
[42] CHIORESCU I, NAKAMURA Y, HARMANS C J P M, et al. Coherent quantum dynamics of a superconducting flux qubit[J]. Science, 2003, 299(5614): 1869-1871.
[43] MARTINIS J M, NAM S, AUMENTADO J, et al. Rabi oscillations in a large Josephson junction qubit[J]. Physical Review Letters, 2002, 89(11): 117901.
[44] SIDDIQI I. Engineering high-coherence superconducting qubits[J]. Nature Reviews Materials, 2021, 6(10): 875-891.
[45] VION D, AASSIME A, COTTET A, et al. Manipulating the quantum state of an electrical circuit[J]. Science, 2002, 296(5569): 886-889.
[46] KOCH J, YU T M, GAMBETTA J, et al. Charge-insensitive qubit design derived from the Cooper pair box[J]. Physical Review A, 2007, 76(4): 042319.
[47] BARENDS R, KELLY J, MEGRANT A, et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits[J]. Physical Review Letters, 2013, 111(8): 080502.
[48] CHEN Y, NEILL C, ROUSHAN P, et al. Qubit architecture with high coherence and fast tunable coupling[J]. Physical Review Letters, 2014, 113(22): 220502.
[49] MANUCHARYAN V E, KOCH J, GLAZMAN L I, et al. Fluxonium: single Cooper-pair circuit free of charge offsets[J]. Science, 2009, 326(5949): 113-116.
[50] GYENIS A, MUNDADA P S, DI PAOLO A, et al. Experimental realization of a protected superconducting circuit derived from the 0–𝜋 qubit[J]. PRX Quantum, 2021, 2(1): 010339.
[51] BARENDS R, KELLY J, MEGRANT A, et al. Superconducting quantum circuits at the surface code threshold for fault tolerance[J]. Nature, 2014, 508(7497): 500-503.
[52] WALLRAFF A, SCHUSTER D I, BLAIS A, et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout[J]. Physical Review Letters, 2005, 95(6): 060501.
[53] REED M D, DICARLO L, JOHNSON B R, et al. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity[J]. Physical Review Letters, 2010, 105(17): 173601.
[54] CHOW J M, CÓRCOLES A D, GAMBETTA J M, et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits[J]. Physical Review Letters, 2011, 107(8): 080502.
[55] RIGETTI C, DEVORET M. Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies[J]. Physical Review B, 2010, 81(13): 134507.
[56] SONG C, XU K, LIU W, et al. 10-Qubit entanglement and parallel logic operations with a superconducting circuit[J]. Physical Review Letters, 2017, 119(18): 180511.
[57] SONG C, XU K, LI H, et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits[J]. Science, 2019, 365(6453): 574-577.
[58] XU K, CHEN J J, ZENG Y, et al. Emulating many-body localization with a superconducting quantum processor[J]. Physical Review Letters, 2018, 120(5): 050507.
[59] GUO Q, CHENG C, SUN Z H, et al. Observation of energy-resolved many-body localization [J]. Nature Physics, 2020, 17(2): 234-239.
[60] GONG M, CHEN M C, ZHENG Y, et al. Genuine 12-Qubit entanglement on a superconducting quantum processor[J]. Physical Review Letters, 2019, 122(11): 110501.
[61] WEI K X, LAUER I, SRINIVASAN S, et al. Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences[J]. Physical Review A, 2020, 101(3): 032343.
[62] MOONEY G J, WHITE G A L, HILL C D, et al. Whole-device entanglement in a 65-qubit superconducting quantum computer[J]. Advanced Quantum Technologies, 2021, 4(10): 2100061.
[63] DOLAN G J. Offset masks for lift-off photoprocessing[J]. Applied Physics Letters, 1977, 31: 337-339.
[64] SCHREIER J A, HOUCK A A, KOCH J, et al. Suppressing charge noise decoherence in superconducting charge qubits[J]. Physical Review B, 2008, 77(18): 180502.
[65] HITA-PÉREZ M, JAUMÀ G, PINO M, et al. Ultrastrong capacitive coupling of flux qubits[J]. Physical Review Applied, 2022, 17(1): 014028.
[66] CHU J, YAN F. Coupler-assisted controlled-phase gate with enhanced adiabaticity[J]. Physical Review Applied, 2021, 16(5): 054020.
[67] KU J, XU X, BRINK M, et al. Suppression of unwanted ZZ Interactions in a hybrid two-qubit system[J]. Physical Review Letters, 2020, 125(20): 200504.
[68] MUNDADA P, ZHANG G, HAZARD T, et al. Suppression of qubit crosstalk in a tunable coupling superconducting circuit[J]. Physical Review Applied, 2019, 12(5): 054023.
[69] SUNG Y, DING L, BRAUMÜLLER J, et al. Realization of high-fidelity CZ and ZZ-Free iSWAP gates with a tunable coupler[J]. Physical Review X, 2021, 11(2): 021058.
[70] BARENDS R, QUINTANA C M, PETUKHOV A G, et al. Diabatic gates for frequency-tunable superconducting qubits[J]. Physical Review Letters, 2019, 123(21): 210501.
[71] BOIXO S, ISAKOV S V, SMELYANSKIY V N, et al. Characterizing quantum supremacy in near-term devices[J]. Nature Physics, 2018, 14(6): 595-600.
[72] CAO S, WU B, CHEN F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023, 619(7971): 738-742.
[73] XU K, ZHANG Y R, SUN Z H, et al. Metrological characterization of non-Gaussian entangled states of superconducting qubits[J]. Physical Review Letters, 2022, 128(15): 150501.
[74] LIU T, LIU S, LI H, et al. Observation of entanglement transition of pseudo-random mixed states[J]. Nature Communications, 2023, 14(1).
[75] ZHU Q, CAO S, CHEN F, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling[J]. Science Bulletin, 2022, 67(3): 240-245.
[76] KIM Y, EDDINS A, ANAND S, et al. Evidence for the utility of quantum computing before fault tolerance[J]. Nature, 2023, 618(7965): 500-505.
[77] MA R, SAXBERG B, OWENS C, et al. A dissipatively stabilized Mott insulator of photons[J]. Nature, 2019, 566(7742): 51-57.
[78] SAXBERG B, VRAJITOAREA A, ROBERTS G, et al. Disorder-assisted assembly of strongly correlated fluids of light[J]. Nature, 2022, 612(7940): 435-441.
[79] BRAUMüLLER J, KARAMLOU A H, YANAY Y, et al. Probing quantum information propagation with out-of-time-ordered correlators[J]. Nature Physics, 2021, 18(2): 172-178.
[80] KARAMLOU A H, BRAUMüLLER J, YANAY Y, et al. Quantum transport and localization in 1d and 2d tight-binding lattices[J]. NPJ Quantum Information, 2022, 8(1).
[81] ARUTE F, ARYA K, BABBUSH R, et al. Hartree-Fock on a superconducting qubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089.
[82] MI X, IPPOLITI M, QUINTANA C, et al. Time-crystalline eigenstate order on a quantum processor[J]. Nature, 2021, 601(7894): 531-536.
[83] MI X, SONNER M, NIU M Y, et al. Noise-resilient edge modes on a chain of superconducting qubits[J]. Science, 2022, 378(6621): 785-790.
[84] MORVAN A, ANDERSEN T I, MI X, et al. Formation of robust bound states of interacting microwave photons[J]. Nature, 2022, 612(7939): 240-245.
[85] NEILL C, MCCOURT T, MI X, et al. Accurately computing the electronic properties of a quantum ring[J]. Nature, 2021, 594(7864): 508-512.
[86] MI X, ROUSHAN P, QUINTANA C, et al. Information scrambling in quantum circuits[J]. Science, 2021, 374(6574): 1479-1483.
[87] SATZINGER K, LIU Y J, SMITH A, et al. Realizing topologically ordered states on a quantum processor[J]. Science, 2021, 374(6572): 1237-1241.
[88] ANDERSEN T I, LENSKY Y D, KECHEDZHI K, et al. Non-Abelian braiding of graph vertices in a superconducting processor[J]. Nature, 2023, 618(7964): 264-269.
[89] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubit superconducting processor[J]. Science, 2019, 364(6442): 753-756.
[90] GONG M, DE MORAES NETO G D, ZHA C, et al. Experimental characterization of the quantum many-body localization transition[J]. Physical Review Research, 2021, 3(3): 033043.
[91] CHEN F, SUN Z H, GONG M, et al. Observation of strong and weak thermalization in a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(2): 020602.
[92] YING C, GUO Q, LI S, et al. Floquet prethermal phase protected by U(1) symmetry on a superconducting quantum processor[J]. Physical Review A, 2022, 105(1): 012418.
[93] ZHU Q, SUN Z H, GONG M, et al. Observation of thermalization and information scrambling in a superconducting quantum processor[J]. Physical Review Letters, 2022, 128(16): 160502.
[94] WANG Z, GE Z Y, XIANG Z, et al. Observation of emergent gauge invariance in a superconducting circuit[J]. Physical Review Research, 2022, 4(2): L022060.
[95] LI H, WANG Y Y, SHI Y H, et al. Observation of critical phase transition in a generalized Aubry-André-Harper model on a superconducting quantum processor with tunable couplers[J]. NPJ Quantum Information, 2023, 9(40): 40.
[96] SHI Y H, LIU Y, ZHANG Y R, et al. Quantum simulation of topological zero modes on a 41-Qubit superconducting processor[J]. Physical Review Letters, 2023, 131(8): 080401.
[97] SHI Y H, YANG R Q, XIANG Z, et al. Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole[J]. Nature Communications, 2023, 14(1).
[98] XIANG Z C, HUANG K, ZHANG Y R, et al. Simulating Chern insulators on a superconducting quantum processor[J]. Nature Communications, 2023, 14(1).
[99] WANG Z, LI H, FENG W, et al. Controllable switching between superradiant and subradiant states in a 10-qubit superconducting circuit[J]. Physical Review Letters, 2020, 124(1): 013601.
[100] GUO Q, CHENG C, LI H, et al. Stark many-body localization on a superconducting quantum processor[J]. Physical Review Letters, 2021, 127(24): 240502.
[101] ZHANG X, JIANG W, DENG J, et al. Digital quantum simulation of Floquet symmetry-protected topological phases[J]. Nature, 2022, 607(7919): 468-473.
[102] ZHANG P, DONG H, GAO Y, et al. Many-body Hilbert space scarring on a superconducting processor[J]. Nature Physics, 2022, 19(1): 120-125.
[103] YAO Y, XIANG L, GUO Z, et al. Observation of many-body Fock space dynamics in two dimensions[J]. Nature Physics, 2023, 19(10): 1459-1465.
[104] XU S, SUN Z Z, WANG K, et al. Digital simulation of projective non-Abelian anyons with 68 superconducting qubits[J]. Chinese Physics Letters, 2023, 40(6): 060301.
[105] GONG M, WANG S, ZHA C, et al. Quantum walks on a programmable two-dimensional 62 qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[106] CHEN X, LIZUAIN I, RUSCHHAUPT A, et al. Shortcut to adiabatic passage in two- and three-level atoms[J]. Physical Review Letters, 2010, 105(12): 123003.
[107] GUÉRY-ODELIN D, RUSCHHAUPT A, KIELY A, et al. Shortcuts to adiabaticity: concepts, methods, and applications[J]. Reviews of Modern Physics, 2019, 91(4): 045001.
[108] VITANOV N V, DREWSEN M. Highly efficient detection and separation of chiral molecules through shortcuts to adiabaticity[J]. Physical Review Letters, 2019, 122(17): 173202.
[109] KE Y, QIN X, KIVSHAR Y S, et al. Multiparticle Wannier states and Thouless pumping of interacting bosons[J]. Physical Review A, 2017, 95(6): 063630.
[110] BARENDS R, SHABANI A, LAMATA L, et al. Digitized adiabatic quantum computing with a superconducting circuit[J]. Nature, 2016, 534(7606): 222-226.
[111] ALBASH T, LIDAR D A. Adiabatic quantum computation[J]. Reviews of Modern Physics, 2018, 90(1): 015002.
[112] KRANTZ P, KJAERGAARD M, YAN F, et al. A quantum engineer's guide to superconducting qubits[J]. Applied Physics Reviews, 2019, 6(2): 021318.
[113] LIU Q C, LI T F, LUO X Q, et al. Method for identifying electromagnetically induced transparency in a tunable circuit quantum electrodynamics system[J]. Physical Review A, 2016, 93 (5): 053838.
[114] WARREN W S. Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence[J]. The Journal of Chemical Physics, 1984, 81(12): 5437-5448.
[115] BLOCH F, SIEGERT A. Magnetic resonance for nonrotating fields[J]. Physical Review, 1940, 57(6): 522-527.
[116] WU Y, YANG X. Strong-coupling theory of periodically driven two-level systems[J]. Physical Review Letters, 2007, 98(1): 013601.
[117] WERNINGHAUS M, EGGER D J, ROY F, et al. Leakage reduction in fast superconducting qubit gates via optimal control[J]. NPJ Quantum Information, 2021, 7(14).
[118] GARDINER C W, COLLETT M J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation[J]. Physical Review A, 1985, 31(6): 3761-3774.
[119] BIANCHETTI R, FILIPP S, BAUR M, et al. Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics[J]. Physical Review A, 2009, 80(4): 043840.
[120] MEGRANT A, NEILL C, BARENDS R, et al. Planar superconducting resonators with internal quality factors above one million[J]. Applied Physics Letters, 2012, 100(11): 113510.
[121] PROBST S, SONG F B, BUSHEV P A, et al. Efficient and robust analysis of complex scattering data under noise in microwave resonators[J]. Review of Scientific Instruments, 2015, 86(2): 024706.
[122] ILDERTON A. Renormalization group flow of the Jaynes-Cummings model[J]. Physical Review Letters, 2020, 125(13): 130402.
[123] SCHUSTER D I, HOUCK A A, SCHREIER J A, et al. Resolving photon number states in a superconducting circuit[J]. Nature, 2007, 445(7127): 515-518.
[124] BISHOP L S, GINOSSAR E, GIRVIN S M. Response of the strongly driven Jaynes-Cummings oscillator[J]. Physical Review Letters, 2010, 105(10): 100505.
[125] GAMBETTA J, BLAIS A, BOISSONNEAULT M, et al. Quantum trajectory approach to circuit QED: quantum jumps and the Zeno effect[J]. Physical Review A, 2008, 77(1): 012112.
[126] DELANEY R D, URMEY M D, MITTAL S, et al. Superconducting-qubit readout via low-backaction electro-optic transduction[J]. Nature, 2022, 606(7914): 489-493.
[127] LUCERO E, KELLY J, BIALCZAK R C, et al. Reduced phase error through optimized control of a superconducting qubit[J]. Physical Review A, 2010, 82(4): 042339.
[128] CHEN Z, KELLY J, QUINTANA C, et al. Measuring and suppressing quantum state leakage in a superconducting qubit[J]. Physical Review Letters, 2016, 116(2): 020501.
[129] KITAEV A Y. Unpaired Majorana fermions in quantum wires[J]. Phys. Usp., 2001, 44(10S): 131-136.
[130] VODOLA D, LEPORI L, ERCOLESSI E, et al. Kitaev chains with long-range pairing[J]. Physical Review Letters, 2014, 113(15): 156402.
[131] OZAWA T, PRICE H M, AMO A, et al. Topological photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006.
[132] NIU Y, CHUNG S B, HSU C H, et al. Majorana zero modes in a quantum Ising chain with longer-ranged interactions[J]. Physical Review B, 2012, 85(3): 035110.
[133] LEPORI L, DELL’ANNA L. Long-range topological insulators and weakened bulk-boundary correspondence[J]. New Journal of Physics, 2017, 19(10): 103030.
[134] ZHANG G, SONG Z. Topological characterization of extended quantum Ising models[J]. Physical Review Letters, 2015, 115(17): 177204.
[135] SCHUCH N, SIEWERT J. Natural two-qubit gate for quantum computation using the XY interaction[J]. Physical Review A, 2003, 67(3): 032301.
[136] BIALCZAK R C, ANSMANN M, HOFHEINZ M, et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits[J]. Nature Physics, 2010, 6(6): 409-413.
[137] STRAUCH F W, JOHNSON P R, DRAGT A J, et al. Quantum logic gates for coupled superconducting phase qubits[J]. Physical Review Letters, 2003, 91(16): 167005.
[138] YAMAMOTO T, NEELEY M, LUCERO E, et al. Quantum process tomography of two-qubit controlled-z and controlled-not gates using superconducting phase qubits[J]. Physical Review B, 2010, 82(18): 184515.
[139] GHOSH J, GALIAUTDINOV A, ZHOU Z, et al. High-fidelity controlled-z gate for resonator-based superconducting quantum computers[J]. Physical Review A, 2013, 87(2): 022309.
[140] PHILLIPS D F, FLEISCHHAUER A, MAIR A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.
[141] VANIER J. Atomic clocks based on coherent population trapping: a review[J]. Applied Physics B: Photophysics and Laser Chemistry, 2005, 81(4): 421-442.
[142] CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 1997, 78(16): 3221-3224.
[143] KOSACHIOV D V, MATISOV B G, ROZHDESTVENSKY Y V. Coherent phenomena in multilevel systems with closed interaction contour[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25(11): 2473-2488.
[144] BUCKLE S J, BARNETT S M, KNIGHT P L, et al. Atomic interferometers: phase-dependence in multilevel atomic transitions[J]. Optica Acta, 1986, 33(9): 1129-1140.
[145] BARFUSS A, KöLBL J, THIEL L, et al. Phase-controlled coherent dynamics of a single spin under closed-contour interaction[J]. Nature Physics, 2018, 14(11): 1087-1091.
[146] KRÁL P, SHAPIRO M. Cyclic population transfer in quantum systems with broken symmetry [J]. Physical Review Letters, 2001, 87(18): 183002.
[147] KRÁL P, THANOPULOS I, SHAPIRO M, et al. Two-step enantio-selective optical switch[J]. Physical Review Letters, 2003, 90(3): 033001.
[148] YE C, ZHANG Q, LI Y. Real single-loop cyclic three-level configuration of chiral molecules [J]. Physical Review A, 2018, 98(6): 063401.
[149] VEPSÄLÄINEN A, DANILIN S, Sorin Paraoanu G. Superadiabatic population transfer in a three-level superconducting circuit[J]. Science Advances, 2019, 5(2): 5999.
[150] VEPSÄLÄINEN A, PARAOANU G S. Simulating spin chains using a superconducting circuit: gauge invariance, superadiabatic transport, and broken time‐reversal symmetry[J]. Advanced Quantum Technologies, 2020, 3(4): 1900121.
[151] BARENDS R, LAMATA L, KELLY J, et al. Digital quantum simulation of fermionic models with a superconducting circuit[J]. Nature Communications, 2015, 6(1): 7654.
[152] ROUSHAN P, NEILL C, MEGRANT A, et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field[J]. Nature Physics, 2016, 13(2): 146-151.
[153] WANG D W, SONG C, FENG W, et al. Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits[J]. Nature Physics, 2019, 15(4): 382-386.
[154] CAI W, HAN J, MEI F, et al. Observation of topological magnon insulator states in a superconducting circuit[J]. Physical Review Letters, 2019, 123(8): 080501.
[155] LIU W, FENG W, REN W, et al. Synthesizing three-body interaction of spin chirality with superconducting qubits[J]. Applied Physics Letters, 2020, 116(11): 114001.
[156] LANGFORD N K, SAGASTIZABAL R, KOUNALAKIS M, et al. Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling[J]. Nature Communications, 2017, 8(1): 1715.
[157] VITANOV N V, RANGELOV A A, SHORE B W, et al. Stimulated Raman adiabatic passage in physics, chemistry, and beyond[J]. Reviews of Modern Physics, 2017, 89(1): 015006.
[158] BERGMANN K, NäGERL H C, PANDA C, et al. Roadmap on STIRAP applications[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52(20): 202001.
[159] ZHANG J, VALA J, SASTRY S, et al. Geometric theory of nonlocal two-qubit operations[J]. Physical Review A, 2003, 67(4): 042313.
[160] ZHANG J, VALA J, SASTRY S, et al. Minimum construction of two-qubit quantum operations [J]. Physical Review Letters, 2004, 93(2): 020502.
[161] NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantum processors[J]. Nature Electronics, 2023, 6(3): 235-241.
[162] ZHOU Y, ZHANG Z, YIN Z, et al. Rapid and unconditional parametric reset protocol for tunable superconducting qubits[J]. Nature Communications, 2021, 12(1).
[163] JEFFREY E, SANK D, MUTUS J Y, et al. Fast accurate state measurement with superconducting qubits[J]. Physical Review Letters, 2014, 112(19): 190504.
[164] XU Y, CHU J, YUAN J, et al. High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits[J]. Physical Review Letters, 2020, 125(24): 240503.
[165] FOXEN B, NEILL C, DUNSWORTH A, et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms[J]. Physical Review Letters, 2020, 125(12): 120504.
[166] VITANOV N V, KNIGHT P L. Coherent excitation of a two-state system by a train of short pulses[J]. Physical Review A, 1995, 52(3): 2245-2261.
[167] VITANOV N V. Relations between single and repeated qubit gates: coherent error amplification for high-fidelity quantum-gate tomography[J]. New Journal of Physics, 2020, 22(2): 023015.
[168] THOULESS D J. Quantization of particle transport[J]. Physical Review B, 1983, 27(10): 6083-6087.
[169] CITRO R, AIDELSBURGER M. Thouless pumping and topology[J]. Nature Reviews Physics, 2023, 5(2): 87-101.
[170] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6): 494-497.
[171] NIU Q, THOULESS D J. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction[J]. Journal of Physics A: Mathematical and General, 1984, 17(12): 2453.
[172] WANG L, TROYER M, DAI X. Topological charge pumping in a one-dimensional optical lattice[J]. Physical Review Letters, 2013, 111(2): 026802.
[173] NAKAJIMA S, TOMITA T, TAIE S, et al. Topological Thouless pumping of ultracold fermions [J]. Nature Physics, 2016, 12(4): 296-300.
[174] LOHSE M, SCHWEIZER C, ZILBERBERG O, et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice[J]. Nature Physics, 2016, 12(4): 350-354.
[175] NAKAJIMA S, TAKEI N, SAKUMA K, et al. Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms[J]. Nature Physics, 2021, 17(7): 844-849.
[176] KAO W, LI K Y, LIN K Y, et al. Topological pumping of a 1d dipolar gas into strongly correlated prethermal states[J]. Science, 2021, 371(6526): 296-300.
[177] DREON D, BAUMGäRTNER A, LI X, et al. Self-oscillating pump in a topological dissipative atom-cavity system[J]. Nature, 2022, 608(7923): 494-498.
[178] JüRGENSEN M, MUKHERJEE S, RECHTSMAN M C. Quantized nonlinear Thouless pumping[J]. Nature, 2021, 596(7870): 63-67.
[179] SUN Y K, ZHANG X L, YU F, et al. Non-Abelian Thouless pumping in photonic waveguides [J]. Nature Physics, 2022, 18(9): 1080-1085.
[180] CHENG Q, WANG H, KE Y, et al. Asymmetric topological pumping in nonparaxial photonics [J]. Nature Communications, 2022, 13(1): 249.
[181] JÜRGENSEN M, MUKHERJEE S, JÖRG C, et al. Quantized fractional Thouless pumping of solitons[J]. Nature Physics, 2023, 19(3): 420-426.
[182] YANG Z, GAO F, SHI X, et al. Topological acoustics[J]. Physical Review Letters, 2015, 114 (11): 114301.
[183] YOU O, LIANG S, XIE B, et al. Observation of non-Abelian Thouless pump[J]. Physical Review Letters, 2022, 128(24): 244302.
[184] LOHSE M, SCHWEIZER C, PRICE H M, et al. Exploring 4d quantum Hall physics with a 2d topological charge pump[J]. Nature, 2018, 553(7686): 55-58.
[185] ZILBERBERG O, HUANG S, GUGLIELMON J, et al. Photonic topological boundary pumping as a probe of 4d quantum Hall physics[J]. Nature, 2018, 553(7686): 59-62.
[186] HO D Y H, GONG J. Quantized adiabatic transport in momentum space[J]. Physical Review Letters, 2012, 109(1): 010601.
[187] RICE M J, MELE E J. Elementary excitations of a linearly conjugated diatomic polymer[J]. Physical Review Letters, 1982, 49(19): 1455-1459.
[188] SU W P, SCHRIEFFER J R, HEEGER A J. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25): 1698-1701.
[189] GRUSDT F, HÖNING M, FLEISCHHAUER M. Topological edge states in the one-dimensional superlattice Bose-Hubbard model[J]. Physical Review Letters, 2013, 110(26): 260405.
[190] PRIVITERA L, RUSSOMANNO A, CITRO R, et al. Nonadiabatic breaking of topological pumping[J]. Physical Review Letters, 2018, 120(10): 106601.
[191] JOHANSSON J, NATION P, NORI F. Qutip: an open-source python framework for the dynamics of open quantum systems[J]. Computer Physics Communications, 2012, 183(8): 1760-1772.
[192] RACHEL S. Interacting topological insulators: a review[J]. Reports on Progress in Physics, 2018, 81(11): 116501.
[193] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional magnetotransport in the extreme quantum limit[J]. Physical Review Letters, 1982, 48(22): 1559-1562.
[194] LAUGHLIN R B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations[J]. Physical Review Letters, 1983, 50(18): 1395-1398.
[195] RAGHU S, QI X L, HONERKAMP C, et al. Topological Mott insulators[J]. Physical Review Letters, 2008, 100(15): 156401.
[196] DZERO M, SUN K, GALITSKI V, et al. Topological Kondo insulators[J]. Physical Review Letters, 2010, 104(10): 106408.
[197] ZHANG K, LI H, ZHANG P, et al. Synthesizing five-body interaction in a superconducting quantum circuit[J]. Physical Review Letters, 2022, 128(19): 190502.
[198] LINSKENS A F, HOLLEMAN I, DAM N, et al. Two-photon Rabi oscillations[J]. Physical Review A, 1996, 54(6): 4854-4862.
[199] LIN L, KE Y, LEE C. Interaction-induced topological bound states and Thouless pumping in a one-dimensional optical lattice[J]. Physical Review A, 2020, 101(2): 023620.
修改评论