[1] LI T, LI G, LIANG Y, et al. Review of materials and structures in soft obotics[J/OL]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766.
[2] WHITESIDES G M. Soft Robotics[J/OL]. Angewandte Chemie International Edition, 2018, 57(16): 4258-4273.
[3] SCHAFFNER M, FABER J A, PIANEGONDA L, et al. 3D printing of robotic soft actuators with programmable bioinspired architectures[J/OL]. Nature Communications 2018 9:1, 2018, 9(1): 1-9.
[4] ZAIDI S, MASELLI M, LASCHI C, et al. Actuation Technologies for Soft Robot Grippers and Manipulators: A Review[J/OL]. Current Robotics Reports 2021 2:3, 2021, 2(3): 355-369.
[5] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J/OL]. Composites Part B: Engineering, 2018, 143: 172-196.
[6] XU X, ROBLES-MARTINEZ P, MADLA C M, et al. Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction[J/OL]. Additive Manufacturing, 2020, 33: 101071.
[7] SHAHZAD A, LAZOGLU I. Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges[J/OL]. Composites Part B: Engineering, 2021, 225: 109249.
[8] OLIVEIRA J P, LALONDE A D, MA J. Processing parameters in laser powder bed fusion metal additive manufacturing[J/OL]. Materials & Design, 2020, 193: 108762.
[9] GOH G D, YAP Y L, AGARWALA S, et al. Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite[J/OL]. Advanced Materials Technologies, 2019, 4(1): 1800271.
[10] MOMENI F, M.MEHDI HASSANI.N S, LIU X, et al. A review of 4D printing[J/OL]. Materials and Design, 2017, 122: 42-79.
[11] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D Printing with Tailorable Shape Memory Polymers[J/OL]. Scientific Reports 2016 6:1, 2016, 6(1): 1-11.
[12] KUANG X, ROACH D J, WU J, et al. Advances in 4D Printing: Materials and Applications[J/OL]. Advanced Functional Materials, 2019, 29(2): 1-23.
[13] GENNES P De, PROST J. The physics of liquid crystals[J/OL]. Book in Physics Today, 1993. 10. 12808028.
[14] GUO G, WU Q, LIU F, et al. Solvent-Cast-Assisted Printing of Biomimetic Morphing Hydrogel Structures with Solvent Evaporation-Induced Swelling Mismatch[J/OL]. Advanced Functional Materials, 2022, 32(2): 2108548.
[15] ZHAO Q, QI H J, XIE T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding[J/OL]. Progress in Polymer Science, 2015, 49-50: 79-120.
[16] WANG Z, TIAN H, HE Q, et al. Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds[J/OL]. ACS Applied Materials and Interfaces, 2017, 9(38): 33119-33128.
[17] UBE T, KAWASAKI K, IKEDA T. Photomobile Liquid-Crystalline Elastomers with Rearrangeable Networks[J/OL]. Advanced Materials, 2016, 28(37): 8212-8217.
[18] PEI Z, YANG Y, CHEN Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds[J/OL]. Nature Materials 2013 13:1, 2013, 13(1): 36-41.
[19] CHEN M, GAO M, BAI L, et al. Recent Advances in 4D Printing of Liquid Crystal Elastomers[J/OL]. Advanced Materials, 2023, 35(23): 2209566.
[20] GRAY G W, HARRISON K J, NASH J A. New family of imematic liquid crystals for displays[J/OL]. Electronics Letters, 1973, 9(6): 130-131.
[21] SHEN W, DU B, LIU J, et al. A facile approach for the preparation of liquid crystalline polyurethane for light-responsive actuator films with self-healing performance[J/OL]. Materials Chemistry Frontiers, 2021, 5(7): 3192-3200.
[22] GUIN T, SETTLE M J, KOWALSKI B A, et al. Layered liquid crystal elastomer actuators[J/OL]. Nature Communications 2018 9:1, 2018, 9(1): 1-7.
[23] CHEN L, BISOYI H K, HUANG Y, et al. Healable and Rearrangeable Networks of Liquid Crystal Elastomers Enabled by Diselenide Bonds[J/OL]. Angewandte Chemie International Edition, 2021, 60(30): 16394-16398.
[24] YIN L, MIAO T F, CHENG X X, et al. Chiral Liquid Crystalline Elastomer for Twisting Motion without Preset Alignment of Mesogens[J/OL]. ACS Macro Letters, 2021, 10(6): 690-696.
[25] BRÖMMEL F, KRAMER D, FINKELMANN H. Preparation of Liquid Crystalline Elastomers[J/OL]. Adv Polym Sci, 2012, 250: 1-48.
[26] WANG Y, LIU J, YANG S. Multi-functional liquid crystal elastomer composites[J/OL]. Applied Physics Reviews, 2022, 9(1): 011301.
[27] WU J, YAO S, ZHANG H, et al. Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration[J/OL]. Advanced Materials, 2021, 33(45): 2106175.
[28] MOL G N, HARRIS K D, BASTIAANSEN C W M, et al. Thermo-Mechanical Responses of Liquid-Crystal Networks with a Splayed Molecular Organization[J/OL]. Advanced Functional Materials, 2005, 15(7): 1155-1159.
[29] WU Y, ZHANG S, YANG Y, et al. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions[J/OL]. Science Advances, 2022, 8(25): 6021.
[30] ZHANG J, GUO Y, HU W, et al. Liquid Crystal Elastomer-Based Magnetic Composite Films for Reconfigurable Shape-Morphing Soft Miniature Machines[J/OL]. Advanced Materials, 2021, 33(8): 2006191.
[31] PALAGI S, MARK A G, REIGH S Y, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots[J/OL]. Nature Materials 2016 15:6, 2016, 15(6): 647-653.
[32] WANG Z, LI K, HE Q, et al. A Light-Powered Ultralight Tensegrity Robot with High Deformability and Load Capacity[J/OL]. Advanced Materials, 2019, 31(7): 1806849.
[33] DE HAAN L T, VERJANS J M N, BROER D J, et al. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl[J/OL]. Journal of the American Chemical Society, 2014, 136(30): 10585-10588.
[34] STUMPEL J E, WOUTERS C, HERZER N, et al. An Optical Sensor for Volatile Amines Based on an Inkjet-Printed, Hydrogen-Bonded, Cholesteric Liquid Crystalline Film[J/OL]. Advanced Optical Materials, 2014, 2(5): 459-464.
[35] YAKACKI C M, SAED M, NAIR D P, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction[J/OL]. RSC Advances, 2015, 5(25): 18997-19001.
[36] KUMAR S, KIM J H, SHI Y. What Aligns Liquid Crystals on Solid Substrates? The Role of Surface Roughness Anisotropy[J/OL]. Physical Review Letters, 2005, 94(7): 077803.
[37] BRANNUM M T, STEELE A M, VENETOS M C, et al. Light Control with Liquid Crystalline Elastomers[J/OL]. Advanced Optical Materials, 2019, 7(6): 1801683.
[38] TAN L J, ZHU W, ZHOU K. Recent Progress on Polymer Materials for Additive Manufacturing[J/OL]. Advanced Functional Materials, 2020, 30(43): 2003062.
[39] CHEN J, LIU X, TIAN Y, et al. 3D-Printed Anisotropic Polymer Materials for Functional Applications[J/OL]. Advanced Materials, 2022, 34(5): 2102877.
[40] MA S, LI X, HUANG S, et al. A Light-Activated Polymer Composite Enables On-Demand Photocontrolled Motion: Transportation at the Liquid/Air Interface[J/OL]. Angewandte Chemie, 2019, 131(9): 2681-2685.
[41] VAN OOSTEN C L, BASTIAANSEN C W M, BROER D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light[J/OL]. Nature Materials 2009 8:8, 2009, 8(8): 677-682.
[42] POTEKHINA A, WANG C. Numerical simulation and experimental validation of bending and curling behaviors of liquid crystal elastomer beams under thermal actuation[J/OL]. Applied Physics Letters, 2021, 118(24): 241903.
[43] IAMSAARD S, ASSHOFF S J, MATT B, et al. Conversion of light into macroscopic helical motion[J/OL]. Nature Chemistry 2014 6:3, 2014, 6(3): 229-235.
[44] WIE J J, SHANKAR M R, WHITE T J. Photomotility of polymers[J/OL]. Nature Communications 2016 7:1, 2016, 7(1): 1-8.
[45] NOCENTINI S, MARTELLA D, WIERSMA D S, et al. Beam steering by liquid crystal elastomer fibres[J/OL]. Soft Matter, 2017, 13(45): 8590-8596.
[46] LEE K M, BUNNING T J, WHITE T J. Autonomous, Hands-Free Shape Memory in Glassy, Liquid Crystalline Polymer Networks[J/OL]. Advanced Materials, 2012, 24(21): 2839-2843.
[47] KUMAR K, KNIE C, BLÉGER D, et al. A chaotic self-oscillating sunlight-driven polymer actuator[J/OL]. Nature Communications 2016 7:1, 2016, 7(1): 1-8.
[48] AHN S K, WARE T H, LEE K M, et al. Photoinduced Topographical Feature Development in Blueprinted Azobenzene-Functionalized Liquid Crystalline Elastomers[J/OL]. Advanced Functional Materials, 2016, 26(32): 5819-5826.
[49] SAADI M A S R, MAGUIRE A, POTTACKAL N T, et al. Direct Ink Writing: A 3D Printing Technology for Diverse Materials[J/OL]. Advanced Materials, 2022, 34(28): 2108855.
[50] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D Printing and Customized Additive Manufacturing[J/OL]. Chemical Reviews, 2017, 117(15): 10212-10290.
[51] GANTENBEIN S, MASANIA K, WOIGK W, et al. Three-dimensional printing of hierarchical liquid-crystal-polymer structures[J/OL]. Nature 2018 561:7722, 2018, 561(7722): 226-230.
[52] HERBERT K M, FOWLER H E, MCCRACKEN J M, et al. Synthesis and alignment of liquid crystalline elastomers[J/OL]. Nature Reviews Materials 2021 7:1, 2021, 7(1): 23-38.
[53] WAN X, LUO L, LIU Y, et al. Direct Ink Writing Based 4D Printing of Materials and Their Applications[J/OL]. Advanced Science, 2020, 7(16): 1-29.
[54] WANG Z, WANG Z, ZHENG Y, et al. Three-dimensional printing of functionally graded liquid crystal elastomer[J/OL]. Science Advances, 2020, 6(39) : eabc0034.
[55] ZHANG C, LU X, FEI G, et al. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient[J/OL]. ACS Applied Materials and Interfaces, 2019, 11(47): 44774-44782.
[56] PENG X, WU S, SUN X, et al. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing[J/OL]. Advanced Materials, 2022, 34(39): 2204890.
[57] MA J, YANG Y, VALENZUELA C, et al. Mechanochromic, Shape-Programmable and Self-Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds[J/OL]. Angewandte Chemie International Edition, 2022, 61(9): e202116219.
[58] KOTIKIAN A, MCMAHAN C, DAVIDSON E C, et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Science Robotics, 2019: 7044
[2023-01-20].
[59] ZHAI F, FENG Y, LI Z, et al. 4D-printed untethered self-propelling soft robot with tactile perception: Rolling, racing, and exploring[J/OL]. Matter, 2021, 4(10): 3313-3326.
[60] DAVIDSON E C, KOTIKIAN A, LI S, et al. 3D Printable and Reconfigurable Liquid Crystal Elastomers with Light-Induced Shape Memory via Dynamic Bond Exchange[J/OL]. Advanced Materials, 2020, 32(1): 1905682.
[61] CHEN G, JIN B, SHI Y, et al. Rapidly and Repeatedly Reprogrammable Liquid Crystalline Elastomer via a Shape Memory Mechanism[J/OL]. Advanced Materials, 2022, 34(21): 2201679.
[62] ROACH D J, SUN X, PENG X, et al. 4D Printed Multifunctional Composites with Cooling-Rate Mediated Tunable Shape Morphing[J/OL]. Advanced Functional Materials, 2022, 32(36): 2203236.
[63] LIU H, TIAN H, LI X, et al. Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low–melting point alloy[J/OL]. Science Advances, 2022, 8(20): 5722.
[64] KIM H, AH LEE J, AMBULO C P, et al. Intelligently Actuating Liquid Crystal Elastomer-Carbon Nanotube Composites[J/OL]. Advanced Functional Materials, 2019, 29(48): 1905063.
[65] FORD M J, AMBULO C P, KENT T A, et al. A multifunctional shape-morphing elastomer with liquid metal inclusions[J/OL]. Proceedings of the National Academy of Sciences, 2019, 116(43): 21438-21444.
[66] DITTER D, BLÜMLER P, KLÖCKNER B, et al. Microfluidic Synthesis of Liquid Crystalline Elastomer Particle Transport Systems which Can Be Remote-Controlled Magnetically[J/OL]. Advanced Functional Materials, 2019, 29(29): 1902454.
[67] WANG Y, DANG A, ZHANG Z, et al. Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers[J/OL]. Advanced Materials, 2020, 32(46): 2004270.
[68] KOHLMEYER R R, CHEN J. Wavelength-Selective, IR Light-Driven Hinges Based on Liquid Crystalline Elastomer Composites[J/OL]. Angewandte Chemie, 2013, 125(35): 9404-9407.
[69] WANG M, CHENG Z W, ZUO B, et al. Liquid Crystal Elastomer Electric Locomotives[J/OL]. ACS Macro Letters, 2020, 9(6): 860-865.
[70] LIU J, GAO Y, WANG H, et al. Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites[J/OL]. Advanced Intelligent Systems, 2020, 2(6): 1900163.
[71] AMBULO C P, FORD M J, SEARLES K, et al. 4D-Printable Liquid Metal-Liquid Crystal Elastomer Composites.[J/OL]. ACS applied materials & interfaces, 2021, 13(11): 12805-12813.
[72] WENG S, KUANG X, ZHANG Q, et al. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness[M/OL]//ACS Applied Materials and Interfaces. American Chemical Society, 2021: 12797-12804.
[73] YU Y, LIU H, QIAN K, et al. Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing [J/OL]. Computer-Aided Design, 2020, 122: 102817.
[74] YU Y, QIAN K, YANG H, et al. Hybrid IGA-FEA of fiber reinforced thermoplastic composites for forward design of AI-enabled 4D printing[J/OL]. Journal of Materials Processing Technology, 2022, 302: 117497.
[75] WANG Q, TIAN X, ZHANG D, et al. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites[J/OL]. Nature Communications 2023 14:1, 2023, 14(1): 1-11.
[76] ZENG C, LIU L, BIAN W, et al. 4D printed electro-induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance[J/OL]. Composites Part B: Engineering, 2020, 194: 108034.
[77] PYO Y, KANG M, JANG J young, et al. Design of a shape memory composite(SMC) using 4D printing technology[J/OL]. Sensors and Actuators, A: Physical, 2018, 283: 187-195.
[78] DONG K, PANAHI-SARMAD M, CUI Z, et al. Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis[J/OL]. Composites Part B: Engineering, 2021, 220: 108994.
[79] WANG Q, TIAN X, HUANG L, et al. Programmable morphing composites with embedded continuous fibers by 4D printing[J/OL]. Materials and Design, 2018, 155: 404-413.
[80] ZHANG B, LI H, CHENG J, et al. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing[J/OL]. Advanced Materials, 2021, 33(27): 2101298.
[81] LE DUIGOU A, FRULEUX T, MATSUZAKI R, et al. 4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: Towards sustainable metamaterials[J/OL]. Materials and Design, 2021, 211: 110158.
[82] CHEN H, ZHANG F, SUN Y, et al. Electrothermal shape memory behavior and recovery force of four-dimensional printed continuous carbon fiber/polylactic acid composite[J/OL]. Smart Materials and Structures, 2021, 30(2): 025040.
[83] PUTHANVEETIL S, LIU W C, RILEY K S, et al. Programmable multistability for 3D printed reinforced multifunctional composites with reversible shape change[J/OL]. Composites Science and Technology, 2022, 217: 109097.
[84] CORREA D, PAPADOPOULOU A, GUBERAN C, et al. 3D-Printed Wood: Programming Hygroscopic Material Transformations[J/OL]. 3D Printing and Additive Manufacturing, 2015, 2(3): 106-116.
[85] CORREA D, POPPINGA S, MYLO M D, et al. 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement[J/OL]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378(2167): 20190445.
[86] KRÜGER F, THIERER R, TAHOUNI Y, et al. Development of a material design space for 4d-printed bio-inspired hygroscopically actuated bilayer structures with unequal effective layer widths[J/OL]. Biomimetics, 2021, 6(4): 58-69.
[87] CHENG T, THIELEN M, POPPINGA S, et al. Bio-Inspired Motion Mechanisms: Computational Design and Material Programming of Self-Adjusting 4D-Printed Wearable Systems[J/OL]. Advanced Science, 2021, 8(13): 2100411.
[88] MULAKKAL M C, TRASK R S, TING V P, et al. Responsive cellulose-hydrogel composite ink for 4D printing[J/OL]. Materials and Design, 2018, 160: 108-118.
[89] ZHOU Y, YANG Y, JIAN A, et al. Co-extrusion 4D printing of shape memory polymers with continuous metallic fibers for selective deformation[J/OL]. Composites Science and Technology, 2022, 227(May): 109603.
[90] WEI H, CAUCHY X, NAVAS I O, et al. Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications[J/OL]. ACS Applied Materials and Interfaces, 2019, 11(27): 24523-24532.
[91] GLADMAN A S, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J/OL]. 2016, 15(April): 413-418.
[92] LIU Q, SMALYUKH I I. Liquid crystalline cellulose-based nematogels[J/OL]. Science Advances, 2017, 3(8): e1700981.
[93] ZHAO N, WANG X, YAO L, et al. Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers[J/OL]. Soft Matter, 2022, 18(6): 1264-1274.
[94] HUANG Y Y, BIGGINS J, JI Y, et al. Mechanical bistability in liquid crystal elastomer-wire composite actuators[J/OL]. Journal of Applied Physics, 2010, 107(8): 083515.
[95] HE Q, WANG Z, SONG Z, et al. Bioinspired Design of Vascular Artificial Muscle[J/OL]. Advanced Materials Technologies, 2019, 4(1): 1800244
修改评论