中文版 | English
题名

新型低温锂电池氟化电解液设计及其电化学性能调控

其他题名
DESIGN OF NOVEL LOW-TEMPERATURE LITHIUM BATTERY FLUORINATED ELECTROLYTE AND ITS ELECTROCHEMICAL PERFORMANCE REGULATION
姓名
姓名拼音
PENG Wei
学号
12233191
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
王军
导师单位
创新创业学院
论文答辩日期
2024-05-08
论文提交日期
2024-06-17
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本研究旨在探索低温条件下锂离子电池性能衰减的问题及其对电解液/电极界面影响的深入研究,以实现在极寒地区的应用。考虑到传统加热方法能耗高,本文通过电解液设计改进,提出了一种成本效益高且直接的低温性能提升策略。使用二-(2,2-二氟乙基) 醚(BDE) 作为共溶剂,结合不同的溶剂,设计了两款适用于LiNi0.8Co0.1Mn0.1O2(NCM811)|| Li 体系和NCM811 || 硅碳复合负极(比容量450mAh/g,SiC450)体系的高性能低温氟化电解液。主要研究内容和结论如下: (1)首次尝试将具有广泛的工作温度范围和更低密度的原甲酸三乙酯(TOE)与BDE 混合使用应用于低温NCM811 || Li 电池。在-20°C 条件下,该电解液的NCM811 || Li 电池平均放电比容量为155 mAh/g,平均库伦效率保持在99.06%,并且Li || Li 对称电池可循环1000 小时以上。BDE 的引入改变了电解液的溶剂化结构,促使阴离子更有效地参与成膜过程,调控了界面的电化学反应,改善了界面膜的形貌和成分。
(2)在高离子电导率的醚类电解液乙二醇二甲醚(DME)中引入BDE 制备低温高性能的NCM811 || SiC450 电池电解液。该电解液方案克服了醚类电解液与硅碳负极不适配的问题,其在硅碳半电池中稳定循环200 圈以上,平均库伦效率达到99%,循环性能超越了商用配方酯类电解液。此外,DME/BDE 电解液在NCM811|| SiC450 全电池常温循环200 圈时,放电比容量仍保持在169.8 mAh/g,相当于首圈放电比容量的92%。而在低温环境下,DME/BDE 电解液的软包电池具有更高的放电容量,约为1000 mAh 左右,比商用碳酸酯配方电解液组别提高了60%。
本研究证明了通过优化电解液设计可显著改善锂离子电池在低温条件下的性,特别是在极端气候条件下的应用,如高纬度地区和军事应用等。这一成果不仅为低温锂离子电池技术的发展提供了新的思路,同时也为电动汽车等领域在恶劣环境下的应用提供了强有力的支持。

关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-06
参考文献列表

[1] FENG Y, TAO L, ZHENG Z, et al. Upgrading agricultural biomass for sustainable energystorage: bioprocessing, electrochemistry, mechanism[J]. Energy Storage Materials, 2020, 31:274-309.
[2] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery forelectric vehicles: a review[J]. Energy Storage Materials, 2018, 10: 246-267.
[3] WANG Q, ZHANG H, CUI Z, et al. Siloxane-based polymer electrolytes for solid-state lithiumbatteries[J]. Energy Storage Materials, 2019, 23: 466-490.
[4] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeablebatteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
[5] LYU P, LIU X, QU J, et al. Recent advances of thermal safety of lithium ion battery for energystorage[J]. Energy Storage Materials, 2020, 31: 195-220.
[6] FAN J, TAN S. Studies on charging lithium-ion cells at low temperatures[J]. Journal of theElectrochemical Society, 2006, 153(6): A1081.
[7] LAFORGUE A, YUAN X Z, PLATT A, et al. Effects of fast charging at low temperature on ahigh energy Li-ion battery[J]. Journal of the Electrochemical Society, 2020, 167(14): 140521.
[8] ZHANG S, XU K, JOW T. Poly (acrylonitrile-methyl methacrylate) as a non-fluorinated binderfor the graphite anode of Li-ion batteries[J]. Journal of Applied Electrochemistry, 2003, 33:1099-1101.
[9] VIDAL C, GROSS O, GU R, et al. XEV Li-ion battery low temperature effects - review[J].IEEE Transactions on Vehicular Technology, 2019, 68: 4560-4572.
[10] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemicalReviews, 2004, 15: 148-170.
[11] GAO P, YANG G, LIU H, et al. Lithium diffusion behavior and improved high rate capacityof LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries[J]. Solid State Ionics, 2012,207: 50-56.
[12] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemicalReviews, 2004, 104(10): 4303-4418.
[13] ZHENG X, HUANG T, PAN Y, et al. High-voltage performance of LiNi1/3Co1/3Mn1/3O2 /graphite batteries with di(methylsulfonyl) methane as a new sulfone-based electrolyte additive[J]. Journal of Power Sources, 2015, 293: 196-202.
[14] ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries[J].Chemistry of Materials, 2010, 22(3): 691-714.
[15] ZHENG J, XIAO J, GU M, et al. Interface modifications by anion receptors for high energylithium ion batteries[J]. Journal of Power Sources, 2014, 250: 313-318.
[16] SHUHONG J, XIAODI R, RUIGUO C, et al. Stable cycling of high-voltage lithium metalbatteries in ether electrolytes[J]. Nature Energy, 2018, 3: 18739.
[17] MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermalrunaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006,162(1): 690-695.
[18] SMART M C, RATNAKUMAR B V, CHIN K B, et al. Lithium-ion electrolytes containingester cosolvents for improved low temperature performance[J]. Journal of the ElectrochemicalSociety, 2010, 157(12): A1361.
[19] SMART M C, RATNAKUMAR B V, WHITCANACK L D, et al. Improved low-temperatureperformance of lithium-ion cells with quaternary carbonate-based electrolytes[J]. Journal ofPower Sources, 2003, 119: 349-358.
[20] DONGSHENG R, XIANG L, XUNING F, et al. Model-based thermal runaway prediction oflithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228:633-644.
[21] QUAN, PANG, XIAO, et al. Advances in lithium–sulfur batteries based on multifunctionalcathodes and electrolytes[J]. Nature Energy, 2016, 11: 16132.
[22] QIN M, ZENG Z, CHENG S, et al. Challenges and strategies of formulating low-temperatureelectrolytes in lithium-ion batteries[J]. Interdisciplinary Materials, 2023, 2(2): 308-336.
[23] XU K, CRESCE A V, LEE U. Differentiating contributions to ion transfer barrier from interphasialresistance and li desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538.
[24] ZHAO H P, JIANG C Y, HE X M, et al. A new process of preparing composite microstructureanode for lithium ion batteries[J]. Journal of Power Sources, 2008, 184(2): 532-537.
[25] GUO Y, LI X, GUO H, et al. Visualization of concentration polarization in thick electrodes[J].Energy Storage Materials, 2022, 51: 476-485.
[26] AKOLKAR R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature[J]. Journal of Power Sources, 2014, 246: 84-89.
[27] ZHU G, WEN K, LV W, et al. Materials insights into low-temperature performances of lithiumionbatteries[J]. Journal of Power Sources, 2015, 300: 29-40.
[28] MARCINEK M, SYZDEK J, MARCZEWSKI M, et al. Electrolytes for Li-ion transport– review[J]. Solid State Ionics, 2015, 276: 107-126.
[29] HOU J, YANG M, WANG D, et al. Lithium-ion batteries: fundamentals and challenges oflithium ion batteries at temperatures between- 40 and 60 °C[J]. Advanced Energy Materials,2020, 10(18): 2070079.
[30] DENG X, HU M, WEI X, et al. Nuclear magnetic resonance studies of the solvation structuresof a high-performance nonaqueous redox flow electrolyte[J]. Journal of Power Sources, 2016,308: 172-179.
[31] CHEN X, ZHANG X Q, LI H R, et al. Cation- solvent, cation- anion, and solvent- solventinteractions with electrolyte solvation in lithium batteries[J]. Batteries & Supercaps, 2019, 2(2): 128-131.
[32] DONG X, LIN Y, LI P, et al. High-energy rechargeable metallic lithium battery at -70 °Cenabled by a cosolvent electrolyte[J]. Angewandte Chemie International Edition, 2019, 58(17):5623-5627.
[33] KIM S C, KONG X, A.VILá R, et al. Potentiometric measurement to probe solvation energyand its correlation to lithium battery cyclability[J]. Journal of the American Chemical Society,2021, 143(27): 10301-10308.
[34] ZHANG X Q, CHEN X, HOU L P, et al. Regulating anions in the solvation sheath of lithiumions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4(2): 411-416.
[35] PIAO N, GAO X, YANG H, et al. Challenges and development of lithium-ion batteries for lowtemperature environments[J]. Etransportation, 2022, 11: 100145.
[36] PEI A, ZHENG G, SHI F, et al. Nanoscale nucleation and growth of electrodeposited lithiummetal[J]. Nano Letters, 2017, 17(2): 1132.
[37] MARASCHKY A, AKOLKAR R. Temperature dependence of dendritic lithium electrodeposition:a mechanistic study of the role of transport limitations within the SEI[J]. Journal of theElectrochemical Society, 2020, 167(6): 062503.
[38] WU F, YUAN Y X, CHENG X B, et al. Perspectives for restraining harsh lithium dendritegrowth: towards robust lithium metal anodes[J]. Energy Storage Materials, 2018, 15: 148-170.
[39] PARIMALAM B S, LUCHT B L. Reduction reactions of electrolyte salts for lithium ion batteries:LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI[J]. Journal of the Electrochemical Society,2018, 165(2): A251.
[40] ZHANG S, XU K, JOW T. Low-temperature performance of Li-ion cells with a LiBF4-basedelectrolyte[J]. Journal of Solid State Electrochemistry, 2003, 7: 147-151.
[41] LI S, LI X, LIU J, et al. A low-temperature electrolyte for lithium-ion batteries[J]. Ionics, 2015,21: 901-907.
[42] JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries usedin hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114.
[43] PHAM H Q, LEE H Y, HWANG E H, et al. Non-flammable organic liquid electrolyte for highsafetyand high-energy density Li-ion batteries[J]. Journal of Power Sources, 2018, 404: 13-19.
[44] ZHENG J, LOCHALA J A, KWOK A, et al. Research progress towards understanding theunique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032.
[45] RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ionbatteries at extreme temperatures[J]. Nature Energy, 2017, 2(8): 17108.
[46] CHO Y G, LI M, HOLOUBEK J, et al. Enabling the low-temperature cycling of NMC || graphitepouch cells with an ester-based electrolyte[J]. ACS Energy Letters, 2021, 6(5): 2016-2023.
[47] LOGAN E, TONITA E M, GERING K, et al. A study of the physical properties of Li-ion batteryelectrolytes containing esters[J]. Journal of the Electrochemical Society, 2018, 165(2): A21.
[48] 鄢习楠, 董绍俊. 锂离子与醚类共嵌石墨负极体系的副反应分析[J]. 分析化学, 2022, 50(12): 7.
[49] ZHANG W, LU Y, WAN L, et al. Engineering a passivating electric double layer for highperformance lithium metal batteries[J]. Nature Communications, 2022, 13(1): 2029.
[50] 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3):792.
[51] YANG Y, YIN Y, DAVIES D M, et al. Liquefied gas electrolytes for wide-temperature lithiummetal batteries[J]. Energy & Environmental Science, 2020, 13(7): 2209-2219.
[52] SU X, XU Y, WU Y, et al. Liquid electrolytes for low-temperature lithium batteries: mainlimitations, current advances, and future perspectives[J]. Energy Storage Materials, 2023, 56:642-663.
[53] LIU X, ZARRABEITIA M, MARIANI A, et al. Enhanced Li+ transport in ionic liquid-basedelectrolytes aided by fluorinated ethers for highly efficient lithium metal batteries with improvedrate capability[J]. Small Methods, 2021, 21: 901-921.
[54] PIAO N, JI X, XU H, et al. Countersolvent electrolytes for lithium-metal batteries[J]. AdvancedEnergy Materials, 2020, 10(10): 1903568.
[55] REN X, CHEN S, LEE H, et al. Localized high-concentration sulfone electrolytes for highefficiencylithium-metal batteries[J]. Chem, 2018, 4(8): 1877-1892.
[56] ZHOU H, YANG B, ZHANG Z, et al. Fastly PECVD-Grown vertical carbon nanosheets for acomposite SiO𝑥-C anode material[J]. Applied Surface Science, 2022, 605: 154627.
[57] LIN S, HUA H, LAI P, et al. A multifunctional dual-salt localized high-concentration electrolytefor fast dynamic high-voltage lithium battery in wide temperature range[J]. Advanced EnergyMaterials, 2021, 11(36): 2101775.
[58] GAO H, MAGLIA F, LAMP P, et al. Mechanistic study of electrolyte additives to stabilizehigh-voltage cathode–electrolyte interface in lithium-ion batteries[J]. ACS Applied Materials& Interfaces, 2017, 9(51): 44542-44549.
[59] 赵亮, 胡勇胜, 李泓, 等. 拉曼光谱在锂离子电池研究中的应用[J]. 电化学, 2011, 17(1): 12.
[60] 钟贵明, 侯旭, 陈守顺, 等. 锂离子电池电极/电解质材料的固体核磁共振研究进展[J]. 科学通报, 2013, 58(32): 14.
[61] 陈静允, 梁朋, 马琳鸽, 等. 利用XPS 氩离子刻蚀表征锂离子电池Si/C 负极材料中含硅的活性物质[J]. 化学通报, 2023, 86(7): 873-877.
[62] 庄全超, 徐守东, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(06):1044.
[63] 周如琪, 杨蕾玲. 改性LiClO4—(PEO)20 电解质锂离子迁移数的测定[J]. 电化学, 1996, 2(1): 41-46.
[64] ZHANG N, DENG T, ZHANG S, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899.
[65] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J].Chemical Society Reviews, 2013, 42(23): 9011-9034.
[66] SHIRAISHI S, KANAMURA K, TAKEHARA Z I. Surface condition changes in lithium metaldeposited in nonaqueous electrolyte containing HF by dissolution-deposition cycles[J]. Journalof the Electrochemical Society, 1999, 146(5): 1633.
[67] CROCE F, APPETECCHI G, PERSI L, et al. Nanocomposite polymer electrolytes for lithiumbatteries[J]. Nature, 1998, 394(6692): 456-458.
[68] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. NatureMaterials, 2011, 10(9): 682-686.
[69] BOUCHET R, MEZIANE R, ABOULAICH A, et al. Single-ion BAB triblock copolymers ashighly efficient electrolytes for lithium-metal batteries[J]. Nature Materials, 2013, 12(5): 452-457.
[70] STONE G, MULLIN S, TERAN A, et al. Resolution of the modulus versus adhesion dilemmain solid polymer electrolytes for rechargeable lithium metal batteries[J]. Journal of the ElectrochemicalSociety, 2011, 159(3): A222.
[71] CAO X, GAO P, REN X, et al. Effects of fluorinated solvents on electrolyte solvation structuresand electrode/electrolyte interphases for lithium metal batteries[J]. Proceedings of the NationalAcademy of Sciences, 2021, 118(9): e2020357118.
[72] HAN B, ZHANG Z, ZOU Y, et al. Poor stability of Li2CO3 in the solid electrolyte interphaseof a lithium-metal anode revealed by cryo-electron microscopy[J]. Advanced Materials, 2021,33(22): 2100404.
[73] 米成. 锂离子电池界面反应活化能应用研究[J]. 湖南有色金属, 2023, 39(1): 55-58.
[74] PELJO, PEKKA, GIRAULT, et al. Electrochemical potential window of battery electrolytes: theHOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309.
[75] SUN Z, WANG H R, WANG J, et al. Oxygen-free cell formation process obtaining LiF protectedelectrodes for improved stability in lithium-oxygen batteries[J]. Energy Storage Materials, 2019,23: 670-677.
[76] 张国庆, 马莉, 倪佩, 等. 锂离子电池低温电解液的研究进展[J]. 化工进展, 2008(2): 209-213.
[77] 张斌斌, 周园, 李翔, 等. 锂离子电池低温电解液的优化进展[J]. 电源技术, 2014, 38(6): 4.
[78] ZHOU T, ZHAO Y, EL KAZZI M, et al. Integrated ring-chain design of a new fluorinated ethersolvent for high-voltage lithium-metal batteries[J]. Angewandte Chemie International Edition,2022, 61(19): e202115884.
[79] ZHANG S, XU K, JOW T. Electrochemical impedance study on the low temperature of Li-ionbatteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
[80] 韩景立, 于燕梅, 陈健, 等. 锂离子电池电解液低温导电性能的研究[J]. 电化学, 2003, 9(2):222.
[81] QIAN G, ZHANG Y, LI L, et al. Single-crystal nickel-rich layered-oxide battery cathode materials:synthesis, electrochemistry, and intra-granular fracture[J]. Energy Storage Materials,2020, 27: 140-149.
[82] 李军, 唐盛贺, 黄际伟, 等. 高安全性锂离子电池电解质研究进展[J]. 化工新型材料, 2012,40(10): 6-8.
[83] 任旭梅, 吴川, 何国蓉, 等. 锂离子电池正负极材料研究进展[J]. 化学研究与应用, 2000,012(4): 360-364.
[84] SUN K, LI X, ZHANG Z, et al. Unexpected stable cycling performance at low temperatures ofLi-ion batteries with Si/C anodes[J]. Energy Storage Materials, 2024, 66: 103216.

所在学位评定分委会
材料与化工
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765622
专题南方科技大学
创新创业学院
推荐引用方式
GB/T 7714
彭威. 新型低温锂电池氟化电解液设计及其电化学性能调控[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233191-彭威-创新创业学院.p(33545KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[彭威]的文章
百度学术
百度学术中相似的文章
[彭威]的文章
必应学术
必应学术中相似的文章
[彭威]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。