[1] Mack C A. Fifty Years of Moore's Law[J]. IEEE Transactions on Semiconductor Manufacturing, 2011, 24(2): 202-207.
[2] Iucolano F, Boles T. GaN-on-Si HEMTs for wireless base stations[J]. Materials Science in Semiconductor Processing, 2019, 98: 100-105.
[3] Dang K, Wei K, Hao Y, et al. A 5.8-GHz High-Power and High-Efficiency Rectifier Circuit with Lateral GaN Schottky Diode for Wireless Power Transfer[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2247-2252.
[4] Mishra U K, Parikh P, Wu Y-F. AlGaN/GaN HEMTs - An overview of device operation and applications[J]. Proceedings of the IEEE, 2002, 90(6): 1022-1031.
[5] Maruska H P, Tietjen J J. The preparation and properties of vapor‐deposited single‐crystal‐line GaN[J]. Applied Physics Letters, 1969, 15(10): 327-329.
[6] Manca P. A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure[J]. Journal of Physics and Chemistry of Solids, 1961, 20(3): 268-273.
[7] Tsou C W, Lin C Y, Lian Y W, et al. 101-GHz InAlN/GaN HEMTs on Silicon With High Johnson’s Figure-of-Merit[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2675-2678.
[8] Zhang J, Zhang W, Wu Y, et al. Wafer-Scale Si–GaN Monolithic Integrated E-Mode Cascode FET Realized by Transfer Printing and Self-Aligned Etching Technology[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3304-3308.
[9] Joshin K, Kikkawa T, Masuda S, et al. Outlook for GaN HEMT Technology[J]. Fujitsu Scientific & Technical Journal, 2014, 50(1): 138-143.
[10] Keller S, Li H R, Laurent M, et al. Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides[J]. Semiconductor Science and Technology, 2014, 29(11).
[11] Hangleiter A, Im J S, Kollmer H, et al. The role of piezoelectric fields in GaN-based quantum wells[J]. Mrs Internet Journal of Nitride Semiconductor Research, 1998, 3(15).
[12] Cheng K, Leys M, Degroote S, et al. AlGaN/GaN high electron mobility transistors grown on 150 mm Si(111) substrates with high uniformity[J]. Japanese Journal of Applied Physics, 2008, 47(3): 1553-1555.
[13] Yu E T, Dang X Z, Asbeck P M, et al. Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures[J]. Journal of Vacuum Science & Technology B, 1999, 17(4): 1742-1749.
[14] Bindra A. Wide-bandgap-based power devices reshaping the power electronics landscape[J]. IEEE Power Electronics Magazine, 2015, 2(1): 42-47.
[15] Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D-Applied Physics, 2018, 51(16).
[16] Mishra U K, Shen L, Kazior T E, et al. GaN-Based RF power devices and amplifiers[J]. Proceedings of the IEEE, 2008, 96(2): 287-305.
[17] Roccaforte F, Greco G, Fiorenza P, et al. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors[J]. Materials, 2019, 12(10).
[18] Reusch D, Strydom J. Understanding the Effect of PCB Layout on Circuit Performance in a High-Frequency Gallium-Nitride-Based Point of Load Converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015.
[19] Rose M, Bergveld H J. Integration Trends in Monolithic Power ICs: Application and Technology Challenges[J]. IEEE Journal of Solid-State Circuits, 2016, 51(9): 1965-1974.
[20] Disney D, Letavic T, Trajkovic T, et al. High-Voltage Integrated Circuits: History, State of the Art, and Future Prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 659-673.
[21] Nakajima A, Sumida Y, Kawai H, et al. GaN-based Bidirectional Super HFETs Using Polarization Junction Concept on Insulator Substrate. proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, BELGIUM, F Jun 03-07, 2012 [C].
[22] del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors[J]. Nature, 2011, 479(7373): 317-323.
[23] McEwen B, Reshchikov M A, Rocco E, et al. MOCVD Growth and Characterization of Be-Doped GaN[J]. Acs Applied Electronic Materials, 2022, 4(8): 3780-3785.
[24] Marini J, Mahaboob I, Hogan K, et al. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg[J]. Journal of Electronic Materials, 2017, 46(10): 5820-5826.
[25] Demchenko D O, Reshchikov M A. Blue luminescence and Zn acceptor in GaN[J]. Physical Review B, 2013, 88(11).
[26] Kozodoy P, Xing H L, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN[J]. Journal of Applied Physics, 2000, 87(4): 1832-1835.
[27] Raj A, Krishna A, Hatui N, et al. Demonstration of a GaN/AlGaN Superlattice-Based p-Channel FinFET With High ON-Current[J]. IEEE Electron Device Letters, 2020, 41(2): 220-223.
[28] Bader S J, Chaudhuri R, Hickman A, et al. GaN/AlN Schottky-gate p-channel HFETs with InGaN contacts and 100 mA/mm on-current. IEEE Annual International Electron Devices Meeting (IEDM), San Francisco, CA, Dec. 2019 [C].
[29] Krishna A, Raj A, Hatui N, et al. AlGaN/GaN Superlattice-Based p-Type Field-Effect Transistor with Tetramethylammonium Hydroxide Treatment[J]. Physica Status Solidi a-Applications and Materials Science, 2020, 217(7).
[30] Nomoto K, Chaudhuri R, Bader S J, et al. GaN/AlN p-channel HFETs with Imax >420 mA/mm and ~20 GHz fT / fMAX; proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), F 12-18 Dec. 2020 [C].
[31] Zheng Z Y, Song W J, Zhang L, et al. High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform[J]. IEEE Electron Device Letters, 2020, 41(1): 26-29.
[32] Chowdhury N, Lemettinen J, Xie Q Y, et al. p-Channel GaN Transistor Based on p-GaN/AlGaN/GaN on Si[J]. IEEE Electron Device Letters, 2019, 40(7): 1036-1039.
[33] Zheng Z, Zhang L, Song W, et al. Gallium nitride-based complementary logic integrated circuits[J]. Nature Electronics, 2021, 4(8): 595-603.
[34] Yang T H, Brown J, Fu K, et al. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) using plasma deposited BN as gate dielectric[J]. Applied Physics Letters, 2021, 118(7).
[35] Cao X A, Pearton S J, Zhang A P, et al. Electrical effects of plasma damage in p-GaN[J]. Applied Physics Letters, 1999, 75(17): 2569-2571.
[36] Cao X A, Pearton S J, Dang G T, et al. GaNN- and P-type Schottky diodes: Effect of dry etch damage[J]. IEEE Transactions on Electron Devices, 2000, 47(7): 1320-1324.
[37] Fu K, Fu H Q, Huang X Q, et al. Reverse Leakage Analysis for As-Grown and Regrown Vertical GaN-on-GaN Schottky Barrier Diodes[J]. IEEE Journal of the Electron Devices Society, 2020, 8(1).
[38] Fu K, Fu H Q, Huang X Q, et al. Demonstration of 1.27 kV Etch-Then-Regrow GaN p-n Junctions With Low Leakage for GaN Power Electronics[J]. IEEE Electron Device Letters, 2019, 40(11): 1728-1731.
[39] Foster G M, Koehler A, Ebrish M, et al. Recovery from plasma etching-induced nitrogen vacancies in p-type gallium nitride using UV/O3 treatments[J]. Applied Physics Letters, 2020, 117(8).
[40] Lin Y J, Chu Y L. Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN -: art. no. 104904[J]. Journal of Applied Physics, 2005, 97(10).
[41] Wu L L, Zhao D G, Jiang D S, et al. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN[J]. Semiconductor Science and Technology, 2013, 28(10).
[42] Bader S J, Chaudhuri R, Nomoto K, et al. Gate-Recessed E-mode p-Channel HFET With High On-Current Based on GaN/AlN 2D Hole Gas[J]. IEEE Electron Device Letters, 2018, 39(12): 1848-1851.
[43] Chowdhury N, Xie Q Y, Yuan M Y, et al. First Demonstration of a Self-Aligned GaN p-FET; proceedings of the 65th IEEE Annual International Electron Devices Meeting (IEDM), San Francisco, CA, F Dec 09-11, 2019 [C].
[44] Zheng Z Y, Song W J, Zhang L, et al. Enhancement-Mode GaN p-Channel MOSFETs for Power Integration; proceedings of the 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Electr Network, F Sep 13-18, 2020 [C].
[45] Chowdhury N, Xie Q Y, Niroula J, et al. Field-induced Acceptor Ionization in Enhancement-mode GaN p-MOSFETs; proceedings of the IEEE International Electron Devices Meeting (IEDM), Electr Network, F Dec 12-18, 2020 [C].
[46] Do H B, Zhou J G, De Souza M M. Origins of the Schottky Barrier to a 2DHG in a Au/Ni/GaN/AlGaN/ GaN Heterostructure br[J]. Acs Applied Electronic Materials, 2022, 4(10): 4808-4813.
[47] Jin H, Jiang Q M, Huang S, et al. An Enhancement-Mode GaN p-FET With Improved Breakdown Voltage[J]. IEEE Electron Device Letters, 2022, 43(8): 1191-1194.
[48] Mauduit C, Tlemcani T S, Zhang M L, et al. Importance of layer distribution in Ni and Au based ohmic contacts to p-type GaN[J]. Microelectronic Engineering, 2023, 277.
[49] Zhou Y, Zhong Y Z, Gao H W, et al. p-GaN Gate Enhancement-Mode HEMT Through a High Tolerance Self-Terminated Etching Process[J]. IEEE Journal of the Electron Devices Society, 2017, 5(5): 340-346.
[50] Taube A, Kaminski M, Ekielski M, et al. Selective etching of p-GaN over Al0.25Ga0.75N in Cl2/Ar/O2 ICP plasma for fabrication of normally-off GaN HEMTs[J]. Materials Science in Semiconductor Processing, 2021, 122.
[51] Burnham S D, Boutros K, Hashimoto P, et al. Gate-recessed normally-off GaN-on-Si HEMT using a new O2- BCl3 digital etching technique; proceedings of the 8th International Conference on Nitride Semiconductors, ICNS-8, October 18, 2009 - October 23, 2009, Jeju, Korea, Republic of, F, 2010 [C].
[52] Lin Y, Lin Y C, Lumbantoruan F, et al. A Novel Digital Etch Technique for p-GaN Gate HEMT; proceedings of the 13th IEEE International Conference on Semiconductor Electronics (IEEE ICSE), Kuala Lumpur, MALAYSIA, F Aug 15-17, 2018 [C].
[53] Du F Z, Jiang Y, Qiao Z P, et al. Atomic layer etching technique for InAlN/GaN heterostructure with AlN etch-stop layer[J]. Materials Science in Semiconductor Processing, 2022, 143.
[54] Niranjan S, Guiney I, Humphreys C J, et al. Au-free recessed Ohmic contacts to AlGaN/GaN high electron mobility transistor: Study of etch chemistry and metal scheme[J]. Journal of Vacuum Science & Technology B, 2020, 38(3)
[55] Fu K, Fu H Q, Liu H X, et al. Investigation of GaN-on-GaN vertical p-n diode with regrown p-GaN by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2018, 113(23).
[56] Hu Z Y, Nomoto K, Qi M, et al. 1.1-kV Vertical GaN p-n Diodes With p-GaN Regrown by Molecular Beam Epitaxy[J]. IEEE Electron Device Letters, 2017, 38(8): 1071-1074.
[57] Fu K, Fu H Q, Deng X G, et al. The impact of interfacial Si contamination on GaN-on-GaN regrowth for high power vertical devices[J]. Applied Physics Letters, 2021, 118(22).
[58] Zhao S R, Shi Y, Li H J, et al. The improvement of low-resistance and high-transmission ohmic contact to p-GaN by Zn+ implantation[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2010, 268(9): 1435-1439.
[59] Upadhyay P, Saha D. Improved Mg Dopant Activation in p-GaN and Enhanced Electroluminescence in InGaN/GaN LEDs by Plasma Immersion Ion Implantation of Phosphorus[J]. Physica Status Solidi a-Applications and Materials Science, 2018, 215(18).
[60] Zhang Y H, Liu Z H, Tadjer M J, et al. Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation[J]. IEEE Electron Device Letters, 2017, 38(8): 1097-1100.
[61] Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET With Magnesium Diffused Current Blocking Layer[J]. IEEE Electron Device Letters, 2022, 43(9): 1527-1530.
[62] Klootwijk J H, Timmering C E. Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs; proceedings of the Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat No04CH37516), F 22-25 March 2004 [C].
[63] Li X J, Zhao D G, Jiang D S, et al. The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN[J]. Journal of Applied Physics, 2014, 116(16).
[64] Yang Y J, Yen J L, Yang F S, et al. P-type GaN formation by Mg diffusion[J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2000, 39(5A): L390-L392.
[65] Zhang A P, Luo B, Johnson J W, et al. Role of annealing conditions and surface treatment on ohmic contacts to p-GaN and p-Al0.1Ga0.9N/GaN superlattices[J]. Applied Physics Letters, 2001, 79(22): 3636-3638.
[66] Moon Y T, Kim D J, Park J S, et al. Recovery of dry-etch-induced surface damage on Mg-doped GaN by NH3 ambient thermal annealing[J]. Journal of Vacuum Science & Technology B, 2004, 22(2): 489-491.
[67] He J L, Zhong Y Z, Zhou Y, et al. Recovery of p-GaN surface damage induced by dry etching for the formation of p-type Ohmic contact[J]. Applied Physics Express, 2019, 12(5).
[68] Le Roux F, Possémé N, Burtin P, et al. Characterization of AlGaN/GaN degradations during plasma etching for power devices[J]. Microelectronic Engineering, 2021, 249.
[69] Le Roux F, Possémé N, Burtin P, et al. XPS study of a selective GaN etching process using self-limiting cyclic approach for power devices application[J]. Microelectronic Engineering, 2020, 228.
[70] Zhang L, Zheng Z Y, Yang S, et al. Characterization of GaON as a surface reinforcement layer of p-GaN in Schottky-type p-GaN gate HEMTs[J]. Applied Physics Letters, 2021, 119(5).
修改评论