中文版 | English
题名

高性能 GaN p-FET 器件关键工艺研究

其他题名
RESEARCH ON KEY TECHNOLOGIES OF HIGH-PERFORMANCE GALLIUM NITRIDE P-FET DEVICE
姓名
姓名拼音
FU Chun
学号
12132441
学位类型
硕士
学位专业
080903 微电子学与固体电子学
学科门类/专业学位类别
08 工学
导师
汪青
导师单位
深港微电子学院
论文答辩日期
2024-05-10
论文提交日期
2024-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氮化镓(GaN)作为第三代半导体的代表材料,具有宽禁带,高电子 迁移率和高临界场强的优势,目前已在消耗电子、5G 通讯、军用雷达等领 域得到广泛应用。相对现在商业应用的分立器件,氮化镓单片集成技术可 以有效避免 GaN 分立器件存在的寄生效应过大的问题,充分发挥出 GaN 器 件的性能优势,已成为研究热点。基于 GaN n 沟道和 p 沟道器件的互补金 属氧化物半导体(CMOS)技术具有低静态功率损耗、低电路复杂程度、 高节能效果的优势,成为更为优选的方案和推动下一代技术应用的新爆发 点。然而,GaN p-FET 器件作为 CMOS 技术中的基本单元,依然存在 p-GaN 材料本征特性引起的难以形成低阻欧姆接触和刻蚀损伤过大等问题,造成 其各项器件性能水平与 n 沟道 GaN 器件相比仍然存在较大差距,高性能 GaN p-FET 器件的缺失严重限制了 GaN CMOS 技术的发展。本课题从 GaN p-FET 器件的关键工艺出发,针对器件的低阻欧姆接触和低损伤刻蚀技术 开展系统研究。

本课题为实现低阻欧姆接触,创新引入旋涂玻璃工艺对 GaN 表面进行 处理,处理后欧姆接触阻值由未处理的 1.3×10-3 Ω·cm2 下降到 1.2×10-4 Ω·cm2。进一步利用能量色散 X 射线光谱仪表征金属和外延界面的表面成分 变化,利用二次离子质谱测试不同 SOG 工艺退火温度下的关键元素浓度分 布,发现 SOG 处理工艺能显著提高源、漏区域镁掺杂浓度,实现工艺简单、 无损伤的选区表面镁掺杂,相应减小欧姆接触阻值。此外,本课题分别研 究了氯气连续刻蚀、含氧连续刻蚀和新型原子层刻蚀三种不同刻蚀方法, 从刻蚀速率、刻蚀深度控制和表面形貌等维度进行综合对比分析,表征刻 蚀后的表面成分,研究不同刻蚀方法的作用机理,探索不同刻蚀工艺的最 优化应用场景。在此基础上,通过结合较高速率的氯气连续刻蚀和低损伤 原子层刻蚀两种刻蚀技术,实现综合性能最优的复合刻蚀工艺。本课题主 要研究了 GaN p-FET 上的欧姆接触和刻蚀两个关键工艺及其相应机理,为 后续 GaN CMOS 技术开发奠定基础。

其他摘要

Gallium Nitride (GaN), as the typical third-generation semiconductor materials, has advantages like wide bandgap, high electron mobility, and high critical field strength. It has been widely used in the field of power electronics, 5G communication, and military radar. Compared to GaN discrete devices currently used in commercial applications, GaN monolithic integration technology can effectively avoid the issues of excessive parasitic effects. This enables GaN devices to fully leverage their performance advantages. GaN complementary metal-oxide-semiconductor (CMOS) technology based on n-channel and p-channel devices offers low static power loss, low circuit complexity and high energy efficiency. These advantages make it a preferred solution and a driving force for the next generation of technological breakthroughs. However, as the basic unit in CMOS technology, GaN p-FET devices still suffer from difficulties in forming low-resistance Ohmic contact and excessive etch damage. This results in significant performance gaps between GaN p-FET devices and n-channel GaN devices, severely limiting the development of GaN CMOS technology. This study focuses on the development and related mechanisms of low-resistance Ohmic contact and low damage etching for GaN p-FET devices.

In this study, an innovative spin-on glass (SOG) process is introduced to treat the surface of GaN to achieve low-resistance Ohmic contact. After SOG treatment, the resistance of the Ohmic contact was increased from 1.28×10-3 Ω·cm2 for untreated sample to 1.2×10-4 Ω·cm2. Furthermore, surface composition changes of the metal and epitaxial interface are characterized using energy-dispersive X-ray spectroscopy. The distribution of key element concentrations under different SOG annealing temperatures is characterized using secondary ion mass spectrometry. Experimental results show that SOG treatment significantly increases the magnesium doping concentration in the source and drain regions. This achieves selective surface doping with a simple and non-destructive approach and correspondingly decreases the resistance. Additionally, three different etching methods, including continuous chlorine etching, oxygen-containing continuous etching and novel atomic layer etching, are investigated. A comprehensive comparative analysis is conducted to analyzed etching rate, control of etching depth and surface morphology. Surface composition after etching process is characterized and the primary mechanisms of different etching methods are studied. An etching process combined higher-rate continuous chlorine etching with low-damage atomic layer etching is promoted. This study primarily focuses on Ohmic contact and etching process for GaN p-FETs, laying the foundation for the development of high-performance GaN CMOS technology.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] Mack C A. Fifty Years of Moore's Law[J]. IEEE Transactions on Semiconductor Manufacturing, 2011, 24(2): 202-207.
[2] Iucolano F, Boles T. GaN-on-Si HEMTs for wireless base stations[J]. Materials Science in Semiconductor Processing, 2019, 98: 100-105.
[3] Dang K, Wei K, Hao Y, et al. A 5.8-GHz High-Power and High-Efficiency Rectifier Circuit with Lateral GaN Schottky Diode for Wireless Power Transfer[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 2247-2252.
[4] Mishra U K, Parikh P, Wu Y-F. AlGaN/GaN HEMTs - An overview of device operation and applications[J]. Proceedings of the IEEE, 2002, 90(6): 1022-1031.
[5] Maruska H P, Tietjen J J. The preparation and properties of vapor‐deposited single‐crystal‐line GaN[J]. Applied Physics Letters, 1969, 15(10): 327-329.
[6] Manca P. A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure[J]. Journal of Physics and Chemistry of Solids, 1961, 20(3): 268-273.
[7] Tsou C W, Lin C Y, Lian Y W, et al. 101-GHz InAlN/GaN HEMTs on Silicon With High Johnson’s Figure-of-Merit[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2675-2678.
[8] Zhang J, Zhang W, Wu Y, et al. Wafer-Scale Si–GaN Monolithic Integrated E-Mode Cascode FET Realized by Transfer Printing and Self-Aligned Etching Technology[J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3304-3308.
[9] Joshin K, Kikkawa T, Masuda S, et al. Outlook for GaN HEMT Technology[J]. Fujitsu Scientific & Technical Journal, 2014, 50(1): 138-143.
[10] Keller S, Li H R, Laurent M, et al. Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides[J]. Semiconductor Science and Technology, 2014, 29(11).
[11] Hangleiter A, Im J S, Kollmer H, et al. The role of piezoelectric fields in GaN-based quantum wells[J]. Mrs Internet Journal of Nitride Semiconductor Research, 1998, 3(15).
[12] Cheng K, Leys M, Degroote S, et al. AlGaN/GaN high electron mobility transistors grown on 150 mm Si(111) substrates with high uniformity[J]. Japanese Journal of Applied Physics, 2008, 47(3): 1553-1555.
[13] Yu E T, Dang X Z, Asbeck P M, et al. Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures[J]. Journal of Vacuum Science & Technology B, 1999, 17(4): 1742-1749.
[14] Bindra A. Wide-bandgap-based power devices reshaping the power electronics landscape[J]. IEEE Power Electronics Magazine, 2015, 2(1): 42-47.
[15] Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D-Applied Physics, 2018, 51(16).
[16] Mishra U K, Shen L, Kazior T E, et al. GaN-Based RF power devices and amplifiers[J]. Proceedings of the IEEE, 2008, 96(2): 287-305.
[17] Roccaforte F, Greco G, Fiorenza P, et al. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors[J]. Materials, 2019, 12(10).
[18] Reusch D, Strydom J. Understanding the Effect of PCB Layout on Circuit Performance in a High-Frequency Gallium-Nitride-Based Point of Load Converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015.
[19] Rose M, Bergveld H J. Integration Trends in Monolithic Power ICs: Application and Technology Challenges[J]. IEEE Journal of Solid-State Circuits, 2016, 51(9): 1965-1974.
[20] Disney D, Letavic T, Trajkovic T, et al. High-Voltage Integrated Circuits: History, State of the Art, and Future Prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 659-673.
[21] Nakajima A, Sumida Y, Kawai H, et al. GaN-based Bidirectional Super HFETs Using Polarization Junction Concept on Insulator Substrate. proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, BELGIUM, F Jun 03-07, 2012 [C].
[22] del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors[J]. Nature, 2011, 479(7373): 317-323.
[23] McEwen B, Reshchikov M A, Rocco E, et al. MOCVD Growth and Characterization of Be-Doped GaN[J]. Acs Applied Electronic Materials, 2022, 4(8): 3780-3785.
[24] Marini J, Mahaboob I, Hogan K, et al. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg[J]. Journal of Electronic Materials, 2017, 46(10): 5820-5826.
[25] Demchenko D O, Reshchikov M A. Blue luminescence and Zn acceptor in GaN[J]. Physical Review B, 2013, 88(11).
[26] Kozodoy P, Xing H L, DenBaars S P, et al. Heavy doping effects in Mg-doped GaN[J]. Journal of Applied Physics, 2000, 87(4): 1832-1835.
[27] Raj A, Krishna A, Hatui N, et al. Demonstration of a GaN/AlGaN Superlattice-Based p-Channel FinFET With High ON-Current[J]. IEEE Electron Device Letters, 2020, 41(2): 220-223.
[28] Bader S J, Chaudhuri R, Hickman A, et al. GaN/AlN Schottky-gate p-channel HFETs with InGaN contacts and 100 mA/mm on-current. IEEE Annual International Electron Devices Meeting (IEDM), San Francisco, CA, Dec. 2019 [C].
[29] Krishna A, Raj A, Hatui N, et al. AlGaN/GaN Superlattice-Based p-Type Field-Effect Transistor with Tetramethylammonium Hydroxide Treatment[J]. Physica Status Solidi a-Applications and Materials Science, 2020, 217(7).
[30] Nomoto K, Chaudhuri R, Bader S J, et al. GaN/AlN p-channel HFETs with Imax >420 mA/mm and ~20 GHz fT / fMAX; proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), F 12-18 Dec. 2020 [C].
[31] Zheng Z Y, Song W J, Zhang L, et al. High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform[J]. IEEE Electron Device Letters, 2020, 41(1): 26-29.
[32] Chowdhury N, Lemettinen J, Xie Q Y, et al. p-Channel GaN Transistor Based on p-GaN/AlGaN/GaN on Si[J]. IEEE Electron Device Letters, 2019, 40(7): 1036-1039.
[33] Zheng Z, Zhang L, Song W, et al. Gallium nitride-based complementary logic integrated circuits[J]. Nature Electronics, 2021, 4(8): 595-603.
[34] Yang T H, Brown J, Fu K, et al. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) using plasma deposited BN as gate dielectric[J]. Applied Physics Letters, 2021, 118(7).
[35] Cao X A, Pearton S J, Zhang A P, et al. Electrical effects of plasma damage in p-GaN[J]. Applied Physics Letters, 1999, 75(17): 2569-2571.
[36] Cao X A, Pearton S J, Dang G T, et al. GaNN- and P-type Schottky diodes: Effect of dry etch damage[J]. IEEE Transactions on Electron Devices, 2000, 47(7): 1320-1324.
[37] Fu K, Fu H Q, Huang X Q, et al. Reverse Leakage Analysis for As-Grown and Regrown Vertical GaN-on-GaN Schottky Barrier Diodes[J]. IEEE Journal of the Electron Devices Society, 2020, 8(1).
[38] Fu K, Fu H Q, Huang X Q, et al. Demonstration of 1.27 kV Etch-Then-Regrow GaN p-n Junctions With Low Leakage for GaN Power Electronics[J]. IEEE Electron Device Letters, 2019, 40(11): 1728-1731.
[39] Foster G M, Koehler A, Ebrish M, et al. Recovery from plasma etching-induced nitrogen vacancies in p-type gallium nitride using UV/O3 treatments[J]. Applied Physics Letters, 2020, 117(8).
[40] Lin Y J, Chu Y L. Effect of reactive ion etching-induced defects on the surface band bending of heavily Mg-doped p-type GaN -: art. no. 104904[J]. Journal of Applied Physics, 2005, 97(10).
[41] Wu L L, Zhao D G, Jiang D S, et al. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN[J]. Semiconductor Science and Technology, 2013, 28(10).
[42] Bader S J, Chaudhuri R, Nomoto K, et al. Gate-Recessed E-mode p-Channel HFET With High On-Current Based on GaN/AlN 2D Hole Gas[J]. IEEE Electron Device Letters, 2018, 39(12): 1848-1851.
[43] Chowdhury N, Xie Q Y, Yuan M Y, et al. First Demonstration of a Self-Aligned GaN p-FET; proceedings of the 65th IEEE Annual International Electron Devices Meeting (IEDM), San Francisco, CA, F Dec 09-11, 2019 [C].
[44] Zheng Z Y, Song W J, Zhang L, et al. Enhancement-Mode GaN p-Channel MOSFETs for Power Integration; proceedings of the 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Electr Network, F Sep 13-18, 2020 [C].
[45] Chowdhury N, Xie Q Y, Niroula J, et al. Field-induced Acceptor Ionization in Enhancement-mode GaN p-MOSFETs; proceedings of the IEEE International Electron Devices Meeting (IEDM), Electr Network, F Dec 12-18, 2020 [C].
[46] Do H B, Zhou J G, De Souza M M. Origins of the Schottky Barrier to a 2DHG in a Au/Ni/GaN/AlGaN/ GaN Heterostructure br[J]. Acs Applied Electronic Materials, 2022, 4(10): 4808-4813.
[47] Jin H, Jiang Q M, Huang S, et al. An Enhancement-Mode GaN p-FET With Improved Breakdown Voltage[J]. IEEE Electron Device Letters, 2022, 43(8): 1191-1194.
[48] Mauduit C, Tlemcani T S, Zhang M L, et al. Importance of layer distribution in Ni and Au based ohmic contacts to p-type GaN[J]. Microelectronic Engineering, 2023, 277.
[49] Zhou Y, Zhong Y Z, Gao H W, et al. p-GaN Gate Enhancement-Mode HEMT Through a High Tolerance Self-Terminated Etching Process[J]. IEEE Journal of the Electron Devices Society, 2017, 5(5): 340-346.
[50] Taube A, Kaminski M, Ekielski M, et al. Selective etching of p-GaN over Al0.25Ga0.75N in Cl2/Ar/O2 ICP plasma for fabrication of normally-off GaN HEMTs[J]. Materials Science in Semiconductor Processing, 2021, 122.
[51] Burnham S D, Boutros K, Hashimoto P, et al. Gate-recessed normally-off GaN-on-Si HEMT using a new O2- BCl3 digital etching technique; proceedings of the 8th International Conference on Nitride Semiconductors, ICNS-8, October 18, 2009 - October 23, 2009, Jeju, Korea, Republic of, F, 2010 [C].
[52] Lin Y, Lin Y C, Lumbantoruan F, et al. A Novel Digital Etch Technique for p-GaN Gate HEMT; proceedings of the 13th IEEE International Conference on Semiconductor Electronics (IEEE ICSE), Kuala Lumpur, MALAYSIA, F Aug 15-17, 2018 [C].
[53] Du F Z, Jiang Y, Qiao Z P, et al. Atomic layer etching technique for InAlN/GaN heterostructure with AlN etch-stop layer[J]. Materials Science in Semiconductor Processing, 2022, 143.
[54] Niranjan S, Guiney I, Humphreys C J, et al. Au-free recessed Ohmic contacts to AlGaN/GaN high electron mobility transistor: Study of etch chemistry and metal scheme[J]. Journal of Vacuum Science & Technology B, 2020, 38(3)
[55] Fu K, Fu H Q, Liu H X, et al. Investigation of GaN-on-GaN vertical p-n diode with regrown p-GaN by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2018, 113(23).
[56] Hu Z Y, Nomoto K, Qi M, et al. 1.1-kV Vertical GaN p-n Diodes With p-GaN Regrown by Molecular Beam Epitaxy[J]. IEEE Electron Device Letters, 2017, 38(8): 1071-1074.
[57] Fu K, Fu H Q, Deng X G, et al. The impact of interfacial Si contamination on GaN-on-GaN regrowth for high power vertical devices[J]. Applied Physics Letters, 2021, 118(22).
[58] Zhao S R, Shi Y, Li H J, et al. The improvement of low-resistance and high-transmission ohmic contact to p-GaN by Zn+ implantation[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2010, 268(9): 1435-1439.
[59] Upadhyay P, Saha D. Improved Mg Dopant Activation in p-GaN and Enhanced Electroluminescence in InGaN/GaN LEDs by Plasma Immersion Ion Implantation of Phosphorus[J]. Physica Status Solidi a-Applications and Materials Science, 2018, 215(18).
[60] Zhang Y H, Liu Z H, Tadjer M J, et al. Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation[J]. IEEE Electron Device Letters, 2017, 38(8): 1097-1100.
[61] Zeng K, Soman R, Bian Z L, et al. Vertical Ga2O3 MOSFET With Magnesium Diffused Current Blocking Layer[J]. IEEE Electron Device Letters, 2022, 43(9): 1527-1530.
[62] Klootwijk J H, Timmering C E. Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs; proceedings of the Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat No04CH37516), F 22-25 March 2004 [C].
[63] Li X J, Zhao D G, Jiang D S, et al. The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN[J]. Journal of Applied Physics, 2014, 116(16).
[64] Yang Y J, Yen J L, Yang F S, et al. P-type GaN formation by Mg diffusion[J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2000, 39(5A): L390-L392.
[65] Zhang A P, Luo B, Johnson J W, et al. Role of annealing conditions and surface treatment on ohmic contacts to p-GaN and p-Al0.1Ga0.9N/GaN superlattices[J]. Applied Physics Letters, 2001, 79(22): 3636-3638.
[66] Moon Y T, Kim D J, Park J S, et al. Recovery of dry-etch-induced surface damage on Mg-doped GaN by NH3 ambient thermal annealing[J]. Journal of Vacuum Science & Technology B, 2004, 22(2): 489-491.
[67] He J L, Zhong Y Z, Zhou Y, et al. Recovery of p-GaN surface damage induced by dry etching for the formation of p-type Ohmic contact[J]. Applied Physics Express, 2019, 12(5).
[68] Le Roux F, Possémé N, Burtin P, et al. Characterization of AlGaN/GaN degradations during plasma etching for power devices[J]. Microelectronic Engineering, 2021, 249.
[69] Le Roux F, Possémé N, Burtin P, et al. XPS study of a selective GaN etching process using self-limiting cyclic approach for power devices application[J]. Microelectronic Engineering, 2020, 228.
[70] Zhang L, Zheng Z Y, Yang S, et al. Characterization of GaON as a surface reinforcement layer of p-GaN in Schottky-type p-GaN gate HEMTs[J]. Applied Physics Letters, 2021, 119(5).

所在学位评定分委会
电子科学与技术
国内图书分类号
TN386.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765633
专题南方科技大学
南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
傅淳. 高性能 GaN p-FET 器件关键工艺研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132441-傅淳-南方科技大学-香(4640KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[傅淳]的文章
百度学术
百度学术中相似的文章
[傅淳]的文章
必应学术
必应学术中相似的文章
[傅淳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。