中文版 | English
题名

酰胺类有机物电解液添加剂用于水系锌离子电池的研究

其他题名
RESEARCH ON AMIDE ORGANICS ELECTROLYTE ADDITIVE FOR AQUEOUES ZINC-ION BATTERIES
姓名
姓名拼音
WAN Jianyong
学号
12132792
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
黄立民
导师单位
化学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

      水系锌离子电池由于安全性、对环境友好以及高成本效益等优势,近年来已成为高效可持续的储能技术领域的研究热点。金属锌因其具有较高的理论比容量和较低电极电势被视为水系锌离子电池中最具有发展前景的 负极材料。尽管如此,水系锌离子电池的工作稳定性受到水系电解液的影响,导致电化学腐蚀和枝晶生长,进而引发低可逆性以及与短路和快速容量衰减相关的电池寿命问题。为了应对这些挑战,电解液改性被认为是一 种实用且有效的策略。在水体系中,水分子围绕在锌离子周围形成动态且 无序的溶剂化结构,这直接导致了析氢副反应的发生,从而影响了电解质的稳定性和电化学窗口。近年来的突破性研究表明,通过调控有机小分子添加剂的分子结构,可以有效改善电解液的关键性质。

      本文以酰胺为例,系统研究了不同链长的有机小分子添加剂对锌离子 溶剂化结构和电池性能的影响。首先,酰胺对锌的成核和生长有显著影响, 随着碳链长度的增加,成核过电势和活化能表现出明显的增大趋势,有利 于锌的均匀沉积。其次,疏水性随着碳链的延长而增加,有助于减少水分子进入溶剂化结构,从而减少锌沉积过程中析氢反应的发生和副产物的形 成。因此,具有较长碳链的丙酰胺电解液(ZPA)表现出优异的综合性能。 利用优化后的 ZPA 电解液拓宽了电化学稳定窗口(-0.13 V 至 2.57 V), 显著提高了对称电池的循环性能(超过 1600 小时,与对照组相比提升了10 倍)。ZPA 电解质与 VS2 正极组合的全电池在 1 A g -1 的电流密度下运行了 超过 1000 次充放电循环,维持了 87.7%的容量保持率。另外,对不同碳链 长度的碳酸酯类小分子添加剂的研究也得到了相似的结果。

      本项工作提出了一种简单的小分子添加剂的分子设计策略,通过实验分析和理论计算相结合,旨在理解和调控锌离子周围的溶剂化结构,并提 升对小分子添加剂结构影响电解液关键性质的全面认识,最终提高锌负极 的可逆性,达到增强电池整体性能的目标。同时,本项工作也为开发高效 的储能装置提供了新的思路和途径。

其他摘要

   The quest for sustainable and efficient energy storage solutions has propelled aqueous zinc-ion batteries to the forefront of research due to their intrinsic safety, environmental friendliness, and cost-effectiveness. With its high gravimetric and volumetric capacities and low electrochemical potential, zinc metal emerges as a promising anode material for ZIBs. However, the operational stability of ZIBs is often compromised by the aqueous electrolytes, which induce electrochemical corrosion and dendritic growth, leading to low reversibility and lifespan concerns associated with short circuiting and rapid capacity fading. To address these challenges, electrolyte modification has been recognized as a practical and efficient strategy. In aqueous systems, the dynamic and disordered solvation structure of water molecules around ions catalyzes undesirable side reactions, such as hydrogen evolution, which in turn affects the stability and electrochemical window of the electrolyte. The recent emphasis on molecular design in electrolyte research shows that manipulating molecule structures can significantly affect the key characteristics of electrolytes.

    In this work, the impact of small molecule additives with varying chain lengths on the solvation structure of zinc ions and battery performance was systematically investigated using amides as an example. Firstly, we found that the amides significantly influence zinc nucleation and growth. As the length of the alkyl chain increases, there is a distinct trend in the nucleation potential and activation energy, which favors the uniform deposition of Zn. Secondly, the increased hydrophobicity from elongating the carbon chain can prevent the ingress of numerous water molecules into the solvation structure, mitigating issues such as hydrogen evolution or

the formation of by-products. The propionamide electrolyte (ZPA), in particular, shows superior comprehensive properties. By using optimized ZPA electrolyte, the electrochemical window was broadened (-0.13 V to 2.57 V), and the longevity of symmetric cell cycling performance was enhanced (over 1600 hours,10 times vs ZB). The full cell assembled with ZPA electrolyte and a VS2 cathode was able to operate for over 1000 cycles at 1 A g-1, while maintaining a capacity retention of 87.7%. Moreover, tests were also conducted on other small molecules in the carbonic ester class, which also yielded the similar results.

      In summary, this work presents a straightforward molecular design strategy for small molecule additives that can manipulate the solvation chemistry around zinc ions, and improve crucial electrolyte properties, ultimately improving the reversibility of zinc anode and enhancing the overall battery performance. The research involves experimental analysis and theoretical calculation, aimed at understanding and replenishing the comprehensive knowledge regarding the impact of small molecule additives' structures on crucial electrolyte properties. The findings of the study provide valuable insights for developing efficient energy storage devices.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[2] ALIAS N, MOHAMAD A A. Advances of aqueous rechargeable lithium -ion battery: A review[J]. Journal of Power Sources, 2015, 274: 237 -251.
[3] XIA C, GUO J, LI P, et al. Highly stable aqueous zinc‐ion storage using a layered calcium vanadium oxide bronze cathode[J]. Angewandte Chemie, 2018, 130(15): 4007-4012.
[4] CHAO D, QIAO S Z. Toward high-voltage aqueous batteries: super-or low concentrated electrolyte?[J]. Joule, 2020, 4(9): 1846 -1851.
[5] BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771 -799.
[6] TAN P, CHEN B, XU H, et al. Integration of Zn –Ag and Zn–Air batteries: a hybrid battery with the advantages of both[J]. ACS applied materials & interfaces, 2018, 10(43): 36873-36881.
[7] LI P C, HU C C, YOU T-H, et al. Development and characterization of bifunctional air electrodes for rechargeable zinc -air batteries: Effects of carbons[J]. Carbon, 2017, 111: 813 -821.
[8] ZHOU W, ZHU D, HE J, et al. A scalable top -down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 W h kg -1 and 50 W h L- 1[J]. Energy & Environmental Science, 2020, 13(11): 4157 -4167.
[9] SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H + and Zn2 + coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778.
[10] WANG T, LI S, WENG X, et al. Ultrafast 3D Hybrid‐Ion Transport in Porous V2O5 Cathodes for Superior‐Rate Rechargeable Aqueous Zinc Batteries[J]. Advanced Energy Materials, 2023, 13(18): 2204358 .
[11] MCLARNON F R, CAIRNS E J. The secondary alkaline zinc electrode[J]. Journal of the Electrochemical Society, 1991, 138(2): 645.
[12] LI C, XIE X, LIANG S, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc ‐ ion batteries[J]. Energy & Environmental Materials, 200, 3(2): 146 -159.
[13] XIE J, LIANG Z, LU Y-C. Molecular crowding electrolytes for high -voltage aqueous batteries[J]. Nature Materials, 2020, 19(9): 1006 -1011.
[14] SUO L, BORODIN O, GAO T, et al. “Water-in-salt” electrolyte enables high -voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938 -943.
[15] CHEN L, ZHANG J, LI Q, et al. A 63 M superconcentrated aqueous electrolyte for high-energy Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 968 -974.
[16] SUN P, MA L, ZHOU W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive[J]. Angewandte Chemie, 2021, 133(33): 18395 -18403.
[17] CAO J, ZHANG D, ZHANG X, et al. Strategies of regulating Zn 2 + solvation structures for dendrite -free and side reaction-suppressed zinc -ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 499 -528.
[18] STRMCNIK D, LOPES P P, GENORIO B, et al. Design principles for hydrogen evolution reaction catalyst materials[J]. Nano Energy, 2016, 29: 29 -36.
[19] JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795 -7866.
[20] DONG W, SHI J-L, WANG T-S, et al. 3D zinc@ carbon fiber composite framework anode for aqueous Zn –MnO2 batteries[J]. RSC Advances, 2018, 8(34): 19157-19163.
[21] ZENG Y, ZHANG X, MENG Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi ‐ solid ‐ state Zn – MnO2 battery[J]. Advanced Materials, 2017, 29(26): 1700274.
[22] LI C, SHI X, LIANG S, et al. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode[J]. Chemical Engineering Journal, 2020, 379: 122248.
[23] ZENG Y, ZHANG X, QIN R, et al. Dendrite‐free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn ‐ ion batteries[J]. Advanced Materials, 2019, 31(36): 1903675.
[24] CAI Z, OU Y, WANG J, et al. Chemically resistant Cu –Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Materials, 2020, 27: 205-211.
[25] GUO W, YANG C, ZHAO Z, et al. MOFs derived Ag/ZnO nanocomposites anode for Zn/Ni batteries[J]. Journal of Solid State Chemistry, 2019, 272: 27 -31.
[26] CUI M, XIAO Y, KANG L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc -ion batteries[J]. ACS Applied Energy Materials, 2019, 2(9): 6490 -6496.
[27] WANG S B, RAN Q, YAO R-Q, et al. Lamella -nanostructured eutectic zinc–aluminum alloys as reversible and dendrite -free anodes for aqueous rechargeable batteries[J]. Nature communications, 2020, 11(1): 1634.
[28] ELROUBY M, SHILKAMY H A E S, ELSAYED A. Development of the electrochemical performance of zinc via alloying with indium as anode for alkaline batteries application[J]. Journal of Alloys and Compounds, 2021, 854: 157285.
[29] EL-SAYED A-R, MOHRAN H S, ABD EL-LATEEF H M. Effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution[J]. Journal of Power Sources, 2010, 195(19): 6924 -6936.
[30] YIN Y, WANG S, ZHANG Q, et al. Dendrite‐free zinc deposition induced by tinmodified multifunctional 3D host for stable zinc‐based flow battery[J]. Advanced Materials, 2020, 32(6): 1906803.
[31] LI T C, FANG D, ZHANG J, et al. Recent progress in aqueous zinc -ion batteries: a deep insight into zinc metal anodes[J]. Journal of Materials Chemistry A, 2021, 9(10): 6013-6028.
[32] HAO J, LI X, ZENG X, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn -based batteries[J]. Energy & Environmental Science, 2020, 13(11): 3917 -3949.
[33] LI C, SUN Z, YANG T, et al. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes[J]. Advanced Materials, 2020, 32(33): 2003425.
[34] XU W, ZHAO K, HUO W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. NanoEnergy, 2019, 62: 275-281.
[35] ZHANG Q, LUAN J, FU L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc ‐oriented polyacrylamide electrolyte additive[J]. Angewandte Chemie International Edition, 2019, 58(44): 15841 -15847.
[36] SUN K E K, HOANG T K A, DOAN T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS applied materials & interfaces, 2017, 9(11): 9681 -9687.
[37] CAO J, ZHANG D, CHANAJAREE R, et al. Stabilizing zinc anode via a chelation and desolvation electrolyte additive[J]. Advanced Powder Materials, 2022, 1(1): 100007.
[38] FENG D, CAO F, HOU L, et al. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives[J]. Small, 2021, 17(42): 2103195.
[39] ABDULLA J, CAO J, ZHANG D, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc -ion batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 4602 -4609.
[40] WAN F, ZHANG L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1): 1656.
[41] WANG L, ZHANG Y, HU H, et al. A Zn (ClO 4 ) 2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries[J]. ACS applied materials & interfaces, 2019, 11(45): 42000 -42005.
[42] HUANG S, ZHU J, TIAN J, et al. Recent progress in the electrolytes of aqueous zinc ‐ ion batteries[J]. Chemistry – A European Journal, 2019, 25(64): 14480-14494.
[43] PENG Z, WEI Q, TAN S, et al. Novel layered iron vanadate cathode for high -capacity aqueous rechargeable zinc batteries[J]. Chemical Communications, 2018, 54(32): 4041-4044.
[44] WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6): 543 -549.
[45] LI H, LIU Z, LIANG G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148.
[46] YI Z, CHEN G, HOU F, et al. Strategies for the stabilization of Zn metal anodes for Zn‐ion batteries[J]. Advanced Energy Materials, 2021, 11(1): 2003065.
[47] MIAO Z, ZHANG F, ZHAO H, et al. Tailoring Local Electrolyte Solvation Structure via a Mesoporous Molecular Sieve for Dendrite ‐ Free Zinc Batteries[J]. Advanced Functional Materials, 2022, 32(20): 2111635.
[48] OLBASA B W, FENTA F W, CHIU S-F, et al. High-rate and long-cycle stability with a dendrite -free zinc anode in an aqueous Zn -ion battery using concentrated electrolytes[J]. ACS Applied Energy Materials, 2020, 3(5): 4499-4508.
[49] ZHANG N, CHENG F, LIU Y, et al. Cation -deficient spinel ZnMn2O4 cathode in Zn (CF3SO3 ) 2 electrolyte for rechargeable aqueous Zn -ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894 -12901.
[50] QIN R, WANG Y, ZHANG M, et al. Tuning Zn 2+ coordination environment to suppress dendrite formation for high -performance Zn-ion batteries[J]. Nano Energy, 2021, 80: 105478.
[51] HOU Z, TAN H, GAO Y, et al. Tailoring desolvation kinetics enables stable zinc metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(37): 19367 -19374.
[52] HAN S-D, RAJPUT N N, QU X, et al. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes[J]. ACS applied materials & interfaces, 2016, 8(5): 3021 -3031.
[53] SONG X, HE H, SHIRAZ M H A, et al. Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte[J]. Chemical Communications, 2021, 57(10): 1246 -1249.
[54] ETMAN A S, CARBONI M, SUN J, et al. Acetonitrile‐Based Electrolytes for Rechargeable Zinc Batteries[J]. Energy Technology, 2020, 8(9): 2000358.
[55] SHI J, XIA K, LIU L, et al. Ultrahigh coulombic efficiency and long -life aqueous Zn anodes enabled by electrolyte additive of acetonitrile[J]. Electrochimica Acta, 2020, 358: 136937.
[56] XU W, ZHAO K, HUO W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
[57] MIAO L, WANG R, DI S, et al. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes[J]. ACS nano, 2022, 16(6): 9667 -9678.
[58] NAVEED A, YANG H, SHAO Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long ‐ cycle ‐ life batteries[J]. Advanced Materials, 2019, 31(36): 1900668.
[59] LIU S, MAO J, PANG W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc ‐ ion batteries[J]. Advanced Functional Materials, 2021, 31(38): 2104281.
[60] JIN Y, HAN K S, SHAO Y, et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes[J]. Advanced Functional Materials, 2020, 30(43): 2003932.
[61] DING F, XU W, GRAFF G L, et al. Dendrite -free lithium deposition via self healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
[62] PAN H, SHAO Y, YAN P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1(5): 1 -7.
[63] WAN F, ZHANG L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1): 1656.
[64] HE P, YAN M, ZHANG G, et al. Layered VS 2 nanosheet‐based aqueous Zn ion battery cathode[J]. Advanced Energy Materials, 2017, 7(11): 1601920.
[65] GUAN K, TAO L, YANG R, et al. Anti‐corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries[J]. Advanced Energy Materials, 2022, 12(9): 2103557.
[66] QIAN L, YAO W, YAO R, et al. Cations coordination‐regulated reversibility enhancement for aqueous Zn‐ion battery[J]. Advanced Functional Materials, 2021, 31(40): 2105736.
[67] ZHU M, WANG H, LIN W, et al. Amphipathic molecules endowing highly structure robust and fast kinetic vanadium ‐ based cathode for high ‐performance zinc‐ion batteries[J]. Small Structures, 2022, 3(6): 2200016.
[68] HUANG Z, HOU Y, WANG T, et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery[J]. Nature Communications, 2021, 12(1): 3106.
[69] DING M S, VON CRESCE A, XU K. Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte[J]. The Journal of Physical Chemistry C, 2017, 121(4): 2149 -2153.
[70] YAMAGUCHI T, NAKAHARA E, KODA S. Quantitative analysis of conductivity and viscosity of ionic liquids in terms of their relaxation times[J]. The Journal of Physical Chemistry B, 2014, 118(21): 5752 -5759.
[71] ZHOU L, WANG F, YANG F, et al. Unshared Pair Electrons of Zincophilic Lewis Base Enable Long ‐ life Zn Anodes under “ Three High ”Conditions[J]. Angewandte Chemie International Edition, 2022, 61(40): e202208051.
[72] SHI X, WANG J, YANG F, et al. Metallic zinc anode working at 50 and 50 mAh cm−2 with high depth of discharge via electrical double layer reconstruction[J]. Advanced Functional Materials, 2023, 33(7): 2211917.
[73] CAI Z, WANG J, LU Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast ‐ charging Zn battery chemistry[J]. Angewandte Chemie International Edition, 2022, 61(14): e202116560.
[74] ZHONG Y, CHENG Z, ZHANG H, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery[J]. Nano Energy, 2022, 98: 107220.
[75] HAO J, YUAN L, ZHU Y, et al. Triple‐function electrolyte regulation toward advanced aqueous Zn‐ion batteries[J]. Advanced Materials, 2022, 34(44): 2206963.
[76] WU C, SUN C, REN K, et al. 2 -methyl imidazole electrolyte additive enabling ultra-stable Zn anode[J]. Chemical Engineering Journal, 2023, 452: 139465.
[77] YU Y, ZHANG P, WANG W, et al. Tuning the Electrode/Electrolyte Interface Enabled by a Trifunctional Inorganic Oligomer Electrolyte Additive for Highly Stable and High‐Rate Zn Anodes[J]. Small Methods, 2023, 7(10): 2300546.
[78] XIN T, ZHOU R, XU Q, et al. 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn -ion batteries[J]. Chemical Engineering Journal, 2023, 452: 139572.
[79] QUAN Y, YANG M, CHEN M, et al. Electrolyte additive of sorbitol rendering aqueous zinc -ion batteries with dendrite -free behavior and good anti-freezing ability[J]. Chemical Engineering Journal, 2023, 458: 141392.
[80] ZHAO R, WANG H, DU H, et al. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition[J]. Nature Communications, 2022, 1(1): 3252.
[81] DONG Y, MIAO L, MA G, et al. Non -concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries[J]. Chemical Science, 2021, 12(16): 5843-5852.
[82] CHEN J, ZHOU W, QUAN Y, et al. Ionic liquid additive enabling anti -freezing aqueous electrolyte and dendrite -free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Materials, 2022, 53: 629-637.
[83] ZHU Z, JIN H, XIE K, et al. Molecular ‐ Level Zn ‐ Ion Transfer Pump Specifically Functioning on (002) Facets Enables Durable Zn Anodes[J]. Small, 2022, 18(49): 2204713.
[84] MA Q, GAO R, LIU Y, et al. Regulation of outer solvation shell toward superior low ‐ temperature aqueous zinc ‐ ion batteries[J]. Advanced Materials, 2022, 34(49): 2207344.
[85] HU Y, FU J, HU H, et al. Differentiating contribution to desolvation ability from molecular structure and composition for screening highly -effective additives to boost reversibility of zinc metal anode[J]. Energy Storage Materials, 2023, 55: 669-679.
[86] WANG Y, ZHANG S, WANG H, et al. Is (002) the only one that's important? An overall consideration of the main exposed crystallographic planes on a Zn anode for obtaining dendrite -free long-life zinc ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(32): 17207-17216.
[87] SANZ E, VEGA C, ESPINOSA J, et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the American Chemical Society, 2013, 135(40): 15008 -15017.
[88] JANA A, GARCíA R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552 -565.
[89] WINAND R. Electrocrystallization: Fundamental considerations and application to high current density continuous steel sheet plating[J]. Journal of Applied Electrochemistry, 1991, 21(5): 377-385.
[90] SCHARIFKER B, HILLS G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879 -889.
[91] MA L, SCHROEDER M A, POLLARD T P, et al. Critical factors dictating reversibility of the zinc metal anode[J]. Energy & Environmental Materials, 2020, 3(4): 516-521.
[92] ADAMS B D, ZHENG J, REN X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(7): 1702097.
[93] LUO J, XU L, ZHOU Y, et al. Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Zn‐Ion Batteries[J]. Angewandte Chemie, 2023, 135(21): e202302302.
[94] ZHAO X, GAO Y, CAO Q, et al. A High‐Capacity Gradient Zn Powder Anode for Flexible Zn‐Ion Batteries[J]. Advanced Energy Materials, 2023, 13(38): 2301741.
[95] YANG Q, LI L, HUSSAIN T, et al. Stabilizing interface pH by N ‐modified graphdiyne for dendrite‐free and high‐rate aqueous Zn‐ion batteries[J]. Angewandte Chemie, 2022, 134(6): e202112304.
[96] LYU Y, YUWONO J A, WANG P, et al. Organic pH Buffer for Dendrite‐Free and Shuttle ‐ Free Zn ‐ I2 Batteries[J]. Angewandte Chemie International Edition, 2023, 62(21): e202303011.
[97] OUYANG K, CHEN S, LING W, et al. Synergistic Modulation of In‐Situ Hybrid Interface Construction and pH Buffering Enabled Ultra‐Stable Zinc Anode at High Current Density and Areal Capacity[J]. Angewandte Chemie, 2023, 135(45): e202311988.
[98] WANG N, DONG X, WANG B, et al. Zinc –organic battery with a wide operation‐temperature window from− 70 to 150° C[J]. Angewandte Chemie International Edition, 2020, 59(34): 14577 -14583.
[99] QIAN L, YAO W, YAO R, et al. Cations coordination‐regulated reversibility enhancement for aqueous Zn‐ion battery[J]. Advanced Functional Materials, 2021, 31(40): 2105736.
[100] YAO R, QIAN L, SUI Y, et al. A versatile cation additive enabled highly reversible zinc metal anode[J]. Advanced Energy Materials, 2022, 12(2): 2102780.
[101]CHEN X R, ZHAO B C, YAN C, et al. Review on Li deposition in working batteries: from nucleation to early growth[J]. Advanced Materials, 2021, 33(8): 2004128.
[102] SU J, YIN X, ZHAO H, et al. Temperature -dependent nucleation and electrochemical performance of Zn metal anodes[J]. Nano Letters, 2022, 22(4): 1549-1556.
[103] WANG H, LI H, TANG Y, et al. Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution[J]. Advanced Functional Materials, 2022, 32(48): 2207898.
[104] DING J, GAO H, JI D, et al. Vanadium-based cathodes for aqueous zinc -ion batteries: from crystal structures, diffusion channels to storage mechanisms[J]. Journal of Materials Chemistry A, 2021, 9(9): 5258 -5275.
[105]CHEN J, ZHOU W, QUAN Y, et al. Ionic liquid additive enabling anti -freezing aqueous electrolyte and dendrite -free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Materials, 2022, 53: 629-637.
[106]CAO L, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nature Nanotechnology, 2021, 16(8): 902-910

所在学位评定分委会
化学
国内图书分类号
O646.21
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765636
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
万建勇. 酰胺类有机物电解液添加剂用于水系锌离子电池的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132792-万建勇-化学系.pdf(5723KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[万建勇]的文章
百度学术
百度学术中相似的文章
[万建勇]的文章
必应学术
必应学术中相似的文章
[万建勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。