[1] WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
[2] ALIAS N, MOHAMAD A A. Advances of aqueous rechargeable lithium -ion battery: A review[J]. Journal of Power Sources, 2015, 274: 237 -251.
[3] XIA C, GUO J, LI P, et al. Highly stable aqueous zinc‐ion storage using a layered calcium vanadium oxide bronze cathode[J]. Angewandte Chemie, 2018, 130(15): 4007-4012.
[4] CHAO D, QIAO S Z. Toward high-voltage aqueous batteries: super-or low concentrated electrolyte?[J]. Joule, 2020, 4(9): 1846 -1851.
[5] BLANC L E, KUNDU D, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771 -799.
[6] TAN P, CHEN B, XU H, et al. Integration of Zn –Ag and Zn–Air batteries: a hybrid battery with the advantages of both[J]. ACS applied materials & interfaces, 2018, 10(43): 36873-36881.
[7] LI P C, HU C C, YOU T-H, et al. Development and characterization of bifunctional air electrodes for rechargeable zinc -air batteries: Effects of carbons[J]. Carbon, 2017, 111: 813 -821.
[8] ZHOU W, ZHU D, HE J, et al. A scalable top -down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 W h kg -1 and 50 W h L- 1[J]. Energy & Environmental Science, 2020, 13(11): 4157 -4167.
[9] SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H + and Zn2 + coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778.
[10] WANG T, LI S, WENG X, et al. Ultrafast 3D Hybrid‐Ion Transport in Porous V2O5 Cathodes for Superior‐Rate Rechargeable Aqueous Zinc Batteries[J]. Advanced Energy Materials, 2023, 13(18): 2204358 .
[11] MCLARNON F R, CAIRNS E J. The secondary alkaline zinc electrode[J]. Journal of the Electrochemical Society, 1991, 138(2): 645.
[12] LI C, XIE X, LIANG S, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc ‐ ion batteries[J]. Energy & Environmental Materials, 200, 3(2): 146 -159.
[13] XIE J, LIANG Z, LU Y-C. Molecular crowding electrolytes for high -voltage aqueous batteries[J]. Nature Materials, 2020, 19(9): 1006 -1011.
[14] SUO L, BORODIN O, GAO T, et al. “Water-in-salt” electrolyte enables high -voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938 -943.
[15] CHEN L, ZHANG J, LI Q, et al. A 63 M superconcentrated aqueous electrolyte for high-energy Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 968 -974.
[16] SUN P, MA L, ZHOU W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite‐free Zn ion batteries achieved by a low‐cost glucose additive[J]. Angewandte Chemie, 2021, 133(33): 18395 -18403.
[17] CAO J, ZHANG D, ZHANG X, et al. Strategies of regulating Zn 2 + solvation structures for dendrite -free and side reaction-suppressed zinc -ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 499 -528.
[18] STRMCNIK D, LOPES P P, GENORIO B, et al. Design principles for hydrogen evolution reaction catalyst materials[J]. Nano Energy, 2016, 29: 29 -36.
[19] JIA X, LIU C, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795 -7866.
[20] DONG W, SHI J-L, WANG T-S, et al. 3D zinc@ carbon fiber composite framework anode for aqueous Zn –MnO2 batteries[J]. RSC Advances, 2018, 8(34): 19157-19163.
[21] ZENG Y, ZHANG X, MENG Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi ‐ solid ‐ state Zn – MnO2 battery[J]. Advanced Materials, 2017, 29(26): 1700274.
[22] LI C, SHI X, LIANG S, et al. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode[J]. Chemical Engineering Journal, 2020, 379: 122248.
[23] ZENG Y, ZHANG X, QIN R, et al. Dendrite‐free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn ‐ ion batteries[J]. Advanced Materials, 2019, 31(36): 1903675.
[24] CAI Z, OU Y, WANG J, et al. Chemically resistant Cu –Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Materials, 2020, 27: 205-211.
[25] GUO W, YANG C, ZHAO Z, et al. MOFs derived Ag/ZnO nanocomposites anode for Zn/Ni batteries[J]. Journal of Solid State Chemistry, 2019, 272: 27 -31.
[26] CUI M, XIAO Y, KANG L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc -ion batteries[J]. ACS Applied Energy Materials, 2019, 2(9): 6490 -6496.
[27] WANG S B, RAN Q, YAO R-Q, et al. Lamella -nanostructured eutectic zinc–aluminum alloys as reversible and dendrite -free anodes for aqueous rechargeable batteries[J]. Nature communications, 2020, 11(1): 1634.
[28] ELROUBY M, SHILKAMY H A E S, ELSAYED A. Development of the electrochemical performance of zinc via alloying with indium as anode for alkaline batteries application[J]. Journal of Alloys and Compounds, 2021, 854: 157285.
[29] EL-SAYED A-R, MOHRAN H S, ABD EL-LATEEF H M. Effect of minor nickel alloying with zinc on the electrochemical and corrosion behavior of zinc in alkaline solution[J]. Journal of Power Sources, 2010, 195(19): 6924 -6936.
[30] YIN Y, WANG S, ZHANG Q, et al. Dendrite‐free zinc deposition induced by tinmodified multifunctional 3D host for stable zinc‐based flow battery[J]. Advanced Materials, 2020, 32(6): 1906803.
[31] LI T C, FANG D, ZHANG J, et al. Recent progress in aqueous zinc -ion batteries: a deep insight into zinc metal anodes[J]. Journal of Materials Chemistry A, 2021, 9(10): 6013-6028.
[32] HAO J, LI X, ZENG X, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn -based batteries[J]. Energy & Environmental Science, 2020, 13(11): 3917 -3949.
[33] LI C, SUN Z, YANG T, et al. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes[J]. Advanced Materials, 2020, 32(33): 2003425.
[34] XU W, ZHAO K, HUO W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. NanoEnergy, 2019, 62: 275-281.
[35] ZHANG Q, LUAN J, FU L, et al. The three‐dimensional dendrite‐free zinc anode on a copper mesh with a zinc ‐oriented polyacrylamide electrolyte additive[J]. Angewandte Chemie International Edition, 2019, 58(44): 15841 -15847.
[36] SUN K E K, HOANG T K A, DOAN T N L, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS applied materials & interfaces, 2017, 9(11): 9681 -9687.
[37] CAO J, ZHANG D, CHANAJAREE R, et al. Stabilizing zinc anode via a chelation and desolvation electrolyte additive[J]. Advanced Powder Materials, 2022, 1(1): 100007.
[38] FENG D, CAO F, HOU L, et al. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives[J]. Small, 2021, 17(42): 2103195.
[39] ABDULLA J, CAO J, ZHANG D, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc -ion batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 4602 -4609.
[40] WAN F, ZHANG L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1): 1656.
[41] WANG L, ZHANG Y, HU H, et al. A Zn (ClO 4 ) 2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries[J]. ACS applied materials & interfaces, 2019, 11(45): 42000 -42005.
[42] HUANG S, ZHU J, TIAN J, et al. Recent progress in the electrolytes of aqueous zinc ‐ ion batteries[J]. Chemistry – A European Journal, 2019, 25(64): 14480-14494.
[43] PENG Z, WEI Q, TAN S, et al. Novel layered iron vanadate cathode for high -capacity aqueous rechargeable zinc batteries[J]. Chemical Communications, 2018, 54(32): 4041-4044.
[44] WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6): 543 -549.
[45] LI H, LIU Z, LIANG G, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148.
[46] YI Z, CHEN G, HOU F, et al. Strategies for the stabilization of Zn metal anodes for Zn‐ion batteries[J]. Advanced Energy Materials, 2021, 11(1): 2003065.
[47] MIAO Z, ZHANG F, ZHAO H, et al. Tailoring Local Electrolyte Solvation Structure via a Mesoporous Molecular Sieve for Dendrite ‐ Free Zinc Batteries[J]. Advanced Functional Materials, 2022, 32(20): 2111635.
[48] OLBASA B W, FENTA F W, CHIU S-F, et al. High-rate and long-cycle stability with a dendrite -free zinc anode in an aqueous Zn -ion battery using concentrated electrolytes[J]. ACS Applied Energy Materials, 2020, 3(5): 4499-4508.
[49] ZHANG N, CHENG F, LIU Y, et al. Cation -deficient spinel ZnMn2O4 cathode in Zn (CF3SO3 ) 2 electrolyte for rechargeable aqueous Zn -ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894 -12901.
[50] QIN R, WANG Y, ZHANG M, et al. Tuning Zn 2+ coordination environment to suppress dendrite formation for high -performance Zn-ion batteries[J]. Nano Energy, 2021, 80: 105478.
[51] HOU Z, TAN H, GAO Y, et al. Tailoring desolvation kinetics enables stable zinc metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(37): 19367 -19374.
[52] HAN S-D, RAJPUT N N, QU X, et al. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes[J]. ACS applied materials & interfaces, 2016, 8(5): 3021 -3031.
[53] SONG X, HE H, SHIRAZ M H A, et al. Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte[J]. Chemical Communications, 2021, 57(10): 1246 -1249.
[54] ETMAN A S, CARBONI M, SUN J, et al. Acetonitrile‐Based Electrolytes for Rechargeable Zinc Batteries[J]. Energy Technology, 2020, 8(9): 2000358.
[55] SHI J, XIA K, LIU L, et al. Ultrahigh coulombic efficiency and long -life aqueous Zn anodes enabled by electrolyte additive of acetonitrile[J]. Electrochimica Acta, 2020, 358: 136937.
[56] XU W, ZHAO K, HUO W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62: 275-281.
[57] MIAO L, WANG R, DI S, et al. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes[J]. ACS nano, 2022, 16(6): 9667 -9678.
[58] NAVEED A, YANG H, SHAO Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long ‐ cycle ‐ life batteries[J]. Advanced Materials, 2019, 31(36): 1900668.
[59] LIU S, MAO J, PANG W K, et al. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc ‐ ion batteries[J]. Advanced Functional Materials, 2021, 31(38): 2104281.
[60] JIN Y, HAN K S, SHAO Y, et al. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes[J]. Advanced Functional Materials, 2020, 30(43): 2003932.
[61] DING F, XU W, GRAFF G L, et al. Dendrite -free lithium deposition via self healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
[62] PAN H, SHAO Y, YAN P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1(5): 1 -7.
[63] WAN F, ZHANG L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1): 1656.
[64] HE P, YAN M, ZHANG G, et al. Layered VS 2 nanosheet‐based aqueous Zn ion battery cathode[J]. Advanced Energy Materials, 2017, 7(11): 1601920.
[65] GUAN K, TAO L, YANG R, et al. Anti‐corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries[J]. Advanced Energy Materials, 2022, 12(9): 2103557.
[66] QIAN L, YAO W, YAO R, et al. Cations coordination‐regulated reversibility enhancement for aqueous Zn‐ion battery[J]. Advanced Functional Materials, 2021, 31(40): 2105736.
[67] ZHU M, WANG H, LIN W, et al. Amphipathic molecules endowing highly structure robust and fast kinetic vanadium ‐ based cathode for high ‐performance zinc‐ion batteries[J]. Small Structures, 2022, 3(6): 2200016.
[68] HUANG Z, HOU Y, WANG T, et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery[J]. Nature Communications, 2021, 12(1): 3106.
[69] DING M S, VON CRESCE A, XU K. Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte[J]. The Journal of Physical Chemistry C, 2017, 121(4): 2149 -2153.
[70] YAMAGUCHI T, NAKAHARA E, KODA S. Quantitative analysis of conductivity and viscosity of ionic liquids in terms of their relaxation times[J]. The Journal of Physical Chemistry B, 2014, 118(21): 5752 -5759.
[71] ZHOU L, WANG F, YANG F, et al. Unshared Pair Electrons of Zincophilic Lewis Base Enable Long ‐ life Zn Anodes under “ Three High ”Conditions[J]. Angewandte Chemie International Edition, 2022, 61(40): e202208051.
[72] SHI X, WANG J, YANG F, et al. Metallic zinc anode working at 50 and 50 mAh cm−2 with high depth of discharge via electrical double layer reconstruction[J]. Advanced Functional Materials, 2023, 33(7): 2211917.
[73] CAI Z, WANG J, LU Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast ‐ charging Zn battery chemistry[J]. Angewandte Chemie International Edition, 2022, 61(14): e202116560.
[74] ZHONG Y, CHENG Z, ZHANG H, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery[J]. Nano Energy, 2022, 98: 107220.
[75] HAO J, YUAN L, ZHU Y, et al. Triple‐function electrolyte regulation toward advanced aqueous Zn‐ion batteries[J]. Advanced Materials, 2022, 34(44): 2206963.
[76] WU C, SUN C, REN K, et al. 2 -methyl imidazole electrolyte additive enabling ultra-stable Zn anode[J]. Chemical Engineering Journal, 2023, 452: 139465.
[77] YU Y, ZHANG P, WANG W, et al. Tuning the Electrode/Electrolyte Interface Enabled by a Trifunctional Inorganic Oligomer Electrolyte Additive for Highly Stable and High‐Rate Zn Anodes[J]. Small Methods, 2023, 7(10): 2300546.
[78] XIN T, ZHOU R, XU Q, et al. 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn -ion batteries[J]. Chemical Engineering Journal, 2023, 452: 139572.
[79] QUAN Y, YANG M, CHEN M, et al. Electrolyte additive of sorbitol rendering aqueous zinc -ion batteries with dendrite -free behavior and good anti-freezing ability[J]. Chemical Engineering Journal, 2023, 458: 141392.
[80] ZHAO R, WANG H, DU H, et al. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition[J]. Nature Communications, 2022, 1(1): 3252.
[81] DONG Y, MIAO L, MA G, et al. Non -concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries[J]. Chemical Science, 2021, 12(16): 5843-5852.
[82] CHEN J, ZHOU W, QUAN Y, et al. Ionic liquid additive enabling anti -freezing aqueous electrolyte and dendrite -free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Materials, 2022, 53: 629-637.
[83] ZHU Z, JIN H, XIE K, et al. Molecular ‐ Level Zn ‐ Ion Transfer Pump Specifically Functioning on (002) Facets Enables Durable Zn Anodes[J]. Small, 2022, 18(49): 2204713.
[84] MA Q, GAO R, LIU Y, et al. Regulation of outer solvation shell toward superior low ‐ temperature aqueous zinc ‐ ion batteries[J]. Advanced Materials, 2022, 34(49): 2207344.
[85] HU Y, FU J, HU H, et al. Differentiating contribution to desolvation ability from molecular structure and composition for screening highly -effective additives to boost reversibility of zinc metal anode[J]. Energy Storage Materials, 2023, 55: 669-679.
[86] WANG Y, ZHANG S, WANG H, et al. Is (002) the only one that's important? An overall consideration of the main exposed crystallographic planes on a Zn anode for obtaining dendrite -free long-life zinc ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(32): 17207-17216.
[87] SANZ E, VEGA C, ESPINOSA J, et al. Homogeneous ice nucleation at moderate supercooling from molecular simulation[J]. Journal of the American Chemical Society, 2013, 135(40): 15008 -15017.
[88] JANA A, GARCíA R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552 -565.
[89] WINAND R. Electrocrystallization: Fundamental considerations and application to high current density continuous steel sheet plating[J]. Journal of Applied Electrochemistry, 1991, 21(5): 377-385.
[90] SCHARIFKER B, HILLS G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879 -889.
[91] MA L, SCHROEDER M A, POLLARD T P, et al. Critical factors dictating reversibility of the zinc metal anode[J]. Energy & Environmental Materials, 2020, 3(4): 516-521.
[92] ADAMS B D, ZHENG J, REN X, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(7): 1702097.
[93] LUO J, XU L, ZHOU Y, et al. Regulating the Inner Helmholtz Plane with a High Donor Additive for Efficient Anode Reversibility in Aqueous Zn‐Ion Batteries[J]. Angewandte Chemie, 2023, 135(21): e202302302.
[94] ZHAO X, GAO Y, CAO Q, et al. A High‐Capacity Gradient Zn Powder Anode for Flexible Zn‐Ion Batteries[J]. Advanced Energy Materials, 2023, 13(38): 2301741.
[95] YANG Q, LI L, HUSSAIN T, et al. Stabilizing interface pH by N ‐modified graphdiyne for dendrite‐free and high‐rate aqueous Zn‐ion batteries[J]. Angewandte Chemie, 2022, 134(6): e202112304.
[96] LYU Y, YUWONO J A, WANG P, et al. Organic pH Buffer for Dendrite‐Free and Shuttle ‐ Free Zn ‐ I2 Batteries[J]. Angewandte Chemie International Edition, 2023, 62(21): e202303011.
[97] OUYANG K, CHEN S, LING W, et al. Synergistic Modulation of In‐Situ Hybrid Interface Construction and pH Buffering Enabled Ultra‐Stable Zinc Anode at High Current Density and Areal Capacity[J]. Angewandte Chemie, 2023, 135(45): e202311988.
[98] WANG N, DONG X, WANG B, et al. Zinc –organic battery with a wide operation‐temperature window from− 70 to 150° C[J]. Angewandte Chemie International Edition, 2020, 59(34): 14577 -14583.
[99] QIAN L, YAO W, YAO R, et al. Cations coordination‐regulated reversibility enhancement for aqueous Zn‐ion battery[J]. Advanced Functional Materials, 2021, 31(40): 2105736.
[100] YAO R, QIAN L, SUI Y, et al. A versatile cation additive enabled highly reversible zinc metal anode[J]. Advanced Energy Materials, 2022, 12(2): 2102780.
[101]CHEN X R, ZHAO B C, YAN C, et al. Review on Li deposition in working batteries: from nucleation to early growth[J]. Advanced Materials, 2021, 33(8): 2004128.
[102] SU J, YIN X, ZHAO H, et al. Temperature -dependent nucleation and electrochemical performance of Zn metal anodes[J]. Nano Letters, 2022, 22(4): 1549-1556.
[103] WANG H, LI H, TANG Y, et al. Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution[J]. Advanced Functional Materials, 2022, 32(48): 2207898.
[104] DING J, GAO H, JI D, et al. Vanadium-based cathodes for aqueous zinc -ion batteries: from crystal structures, diffusion channels to storage mechanisms[J]. Journal of Materials Chemistry A, 2021, 9(9): 5258 -5275.
[105]CHEN J, ZHOU W, QUAN Y, et al. Ionic liquid additive enabling anti -freezing aqueous electrolyte and dendrite -free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer[J]. Energy Storage Materials, 2022, 53: 629-637.
[106]CAO L, LI D, POLLARD T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nature Nanotechnology, 2021, 16(8): 902-910
修改评论