中文版 | English
题名

旋流条件下横向射流雾化特性研究

其他题名
STUDY ON THE SPRAY CHARACTERISTICS OF JET IN SWIRLING CROSSFLOW
姓名
姓名拼音
ZHAO Bozhong
学号
12132429
学位类型
硕士
学位专业
080103 流体力学
学科门类/专业学位类别
08 工学
导师
甘晓华
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-18
论文提交日期
2024-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

航空发动机的污染排放问题越来越受到重视,贫油预混预蒸发(Lean Premixed Prevaporized, LPP)燃烧技术被证明能有效降低污染物的排放。燃油垂直喷入横向气流的雾化方式因结构简单,且能快速实现燃油混合和蒸发,在LPP燃烧室中被大量采用。现有的研究主要集中于均匀来流下的横向射流雾化,但实际燃烧室旋流空气条件下的横向射流雾化研究尚且不足。本论文对加温、加压旋流条件横向射流的雾化特性开展研究,可支持低污染燃烧室的工程研制。

本研究针对旋流数(SN)为0.550.9的两种旋流器,通过马尔文激光粒度仪测量液滴粒径,平面米散射(PMie)技术测量油雾分布,采用试验设计(DOE)方法,获取了不同旋流强度下的多影响变量、多工况组合、加温加压的雾化特性数据。主要研究了进气压力、旋流器压降、进气温度、燃油流量、燃油温度等因素耦合空气旋流强度,对油雾索太尔平均粒径(SMD)和油雾锥角的影响规律。

试验结果表明,SMD受旋流器压降、旋流强度、进气压力影响较大,其中旋流器压降影响最大,压降增大时,SMD迅速减小。油雾锥角主要受旋流强度和油气比影响,其中旋流强度增大时,油雾锥角显著增大。根据试验结果可以推测,与均匀来流相比,有旋流及旋流增强可极大改善低工况下的雾化质量,显著增大所有工况下的油雾分布的范围。

对影响雾化过程的关键无量纲参数进行了分析,发现油雾SMD与气体韦伯数(We)强烈负相关,燃油射流雷诺数(Re)也对粒径产生了较大影响,而动量比(q)对粒径的影响极小。油雾锥角方面,Re数、q升高,油雾锥角有增大趋势,而We数的影响则可忽略不计。通过粒子群优化(PSO)算法,本研究建立了加温加压旋流条件下横向射流雾化SMD和油雾锥角的经验模型,可为燃烧室横向射流喷嘴设计提供指导。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 林宇震, 李林, 张弛, 等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报, 2014,35(1):46-57.
[2] HUANG W. Transverse jet in supersonic crossflows[J]. Aerospace Science and Technology, 2016,50:183-195.
[3] 王晓洁, 王少林, 王凯兴, 等. 高温高速气流中航空煤油横向射流实验研究[J]. 推进技术, 2023,44(5):97-107.
[4] 桂韬, 夏丽敏, 邱伟, 等. 旋流器型式对空气雾化喷嘴雾化特性影响规律[J]. 航空动力学报, 2022,37(03):465-477.
[5] 吴里银. 超声速气流中液体横向射流破碎与雾化机理研究[D]. 国防科学技术大学, 2017.
[6] RAYLEIGH L. On The Instability Of Jets[J]. Proceedings of the London Mathematical Society, 1878,s1-10(1).
[7] YANG H Q. Asymmetric instability of a liquid jet[J]. Physics of Fluids A Fluid Dynamics, 1992,4(4):681-689.
[8] ZHU Y, WAN Y, HUANG Y, et al. Study on the breakup lengths of free round liquid jets[J]. 航空动力学报, 2007,22(8):1258-1263.
[9] 万云霞, 黄勇, 朱英. 液体圆柱射流破碎过程的实验[J]. 航空动力学报, 2008,23(2):208-214.
[10] 常建龙, 陈连华, 赵永娟, 等. 横向射流液滴雾化研究现状分析[J]. 战术导弹技术, 2022(02):29-36.
[11] WU P K, KIRKENDALL K A, FULLER R P, et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power, 1997,13(1):10.
[12] 史绍熙, 杜青, 秦建荣, 等. 液体燃料射流破碎机理研究中的时间模式与空间模式[J]. 内燃机学报, 1999,17(3):205-210.
[13] 史绍熙, 郗大光, 秦建荣, 等. 液体射流的非轴对称破碎[J]. 燃烧科学与技术, 1996(3):189-199.
[14] 史绍熙, 郗大光, 秦建荣, 等. 液体射流结构特征的理论分析[J]. 燃烧科学与技术, 1996(4):307-314.
[15] 朱英, 黄勇, 王方, 等. 横向气流中的液体圆形射流破碎实验[J]. 航空动力学报, 2010,25(10):2261-2266.
[16] 王雄辉, 黄勇, 王方, 等. 横向气流中液体圆柱射流的破碎特性和表面波现象[J]. 航空动力学报, 2012,27(9):1979-1987.
[17] 王雄辉, 黄勇, 王方, 等. 横向气流中液体射流袋式破碎机理[J]. 推进技术, 2012,33(2):198-204.
[18] WANG X, HUANG Y, WANG S, et al. Bag Breakup of Turbulent Liquid Jets in Crossflows[J]. Aiaa Journal, 2012,50(6):7.
[19] KRZECZKOWSKI S A. Measurement of liquid droplet disintegration mechanisms[J]. International Journal of Multiphase Flow, 1980,6(3):227-239.
[20] Behzad M, Ashgriz N, Karney B W. Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow[J]. International Journal of Multiphase Flow, 2016,80:100-117.
[21] LI X Y, SOTERIOU M C. Detailed numerical simulation of liquid jet atomization in crossflow of increasing density[J]. International Journal of Multiphase Flow, 2018,104:214-232.
[22] 刘涛. 航空煤油雾化特性实验研究[D]. 中国科学技术大学, 2018.
[23] 李春. 超声速横向气流中液体射流表面波及射流破碎机理研究[D]. 国防科技大学, 2020.
[24] 仝毅恒. 横向气流中液体射流喷注特性和破碎过程研究[D]. 国防科学技术大学, 2012.
[25] WU P K, KIRKENDALL K A, FULLER R P, et al. Spray structures of liquid jets atomized in subsonic crossflows[J]. Journal of Propulsion and Power, 1998,14(2):173-182.
[26] SALLAM K A, AALBURG C, FAETH G M. Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow[J]. Aiaa Journal, 2004,42(12):2529-2540.
[27] FU Q F, YAO M W, YANG L J, et al. Atomization Model of Liquid Jets Exposed to Subsonic Crossflows[J]. Aiaa Journal, 2020,58(5):2347-2351.
[28] 曾夜明. Ma2.1来流条件下液体横向射流喷雾特性试验研究[D]. 国防科学技术大学, 2015.
[29] PRAKASH R S, SINHA A, TOMAR G, et al. Liquid jet in crossflow - Effect of liquid entry conditions[J]. Experiment Thermal and Fluid Science, 2018,93:45-56.
[30] MASHAYEK A, BEHZAD M, ASHGRIZ N. Multiple Injector Model for Primary Breakup of a Liquid Jet in Crossflow[J]. Aiaa Journal, 2011,49(11):2407-2420.
[31] WANG Q, MONDRAGON U M, BROWN C T, et al. Characterization of trajectory, breakpoint, and break point dynamics of a plain liquid jet in a crossflow[J]. Atomization and Spray, 2011,21(3):203-219.
[32] MAZALLON J, DAI Z, FAETH G M. Primary breakup of nonturbulent round liquid jets in gas crossflows[J]. Atomization and Spray, 1999,9(3):291-311.
[33] LI F Y, SHI W D, HU C, et al. Global characteristics of transverse jets of aviation kerosene-long-chain alcohol blends[J]. Physics of Fluids, 2020,32(8).
[34] 王喜超. 超声速来流中高压射流与脉冲射流喷注雾化特性研究[D]. 国防科学技术大学, 2015.
[35] JING L, XU X. Direct Numerical Simulation of Secondary Breakup of Liquid Drops[J]. Chinese Journal of Aeronautics, 2010,23(2):153-161.
[36] BECKER J, HASSA C. Liquid fuel placement and mixing of generic aeroengine premix module at different operating conditions[J]. Journal of Engineering for Gas Turbines and Powertransaction of the ASME, 2003,125(4):8.
[37] BECKER J, HEITZ D, HASSA C. Spray dispersion in a counter-swirling double-annular air flow at gas turbine conditions[J]. Atomization and Spray, 2004,14(1):15-35.
[38] TAMBE S, JENG S M. A Study of Liquid Jets Injected Transversely into a Swirling Crossflow: Conference on Ilass Americas[C], 2008.
[39] SIKRORIA T, KUSHARI A. Effect of Cross-Flow Swirl on the Trajectory of Spray in an Annular Passage[J]. Journal of Engineering for Gas Turbines and Powertransaction of the ASME, 2021,143(5).
[40] SIKRORIA T, KUSHARI A. Experimental Analysis and Phenomenological Model for Liquid Jet Breakup in Swirling Flow of Air[J]. Journal of Engineering for Gas Turbines and Powertransaction of the ASME, 2019,141(9).
[41] SIKRORIA T, KUSHARI A, SYED S, et al. Experimental Investigation of Liquid Jet Breakup in a Cross Flow of a Swirling Air Stream[J]. Journal of Engineering for Gas Turbines and Powertransaction of the ASME, 2014,136(6).
[42] PATIL S, SAHU S. Air swirl effect on spray characteristics and droplet dispersion in a twin-jet crossflow airblast injector[J]. Physics of fluids (1994), 2021,33(7):73314.
[43] PATIL S, SAHU S. Breakup dynamics and near nozzle spray fluctuations in a twin-jet cross-flow airblast atomizer[J]. Atomization and Sprays, 2019,29(3):217-250.
[44] PATIL S, SAHU S. Spray characterization in a multi-jet airblast injector with swirling air crossflow[J]. Aerospace Science and Technology, 2023,132:108085.
[45] PATIL S, SAHU S. Liquid jet core characterization in a model crossflow airblast atomizer[J]. International Journal of Multiphase Flow, 2021,141.
[46] PATIL S, SAHU S. Insight into liquid jet atomization in a swirling crossflow airblast injector: Application of a multi-directional imaging technique[J]. International Journal of Multiphase Flow, 2023,158:104279.
[47] DOUGLAS M, STEVEN R, RONG P, et al. Design of Experiments for Reliability Achievement[M]. John Wiley & Sons, Inc., 2022.
[48] MASUDA B J , MCDONELL V G , OSKAM G W .Mixing of a Plain Jet into a Swirling Crossflow[J].Ilass Org
[2024-04-01].
[49] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006,27(2):6.
[50] KRZECZKOWSKI S A. Measurement of liquid droplet disintegration mechanisms[J]. International Journal of Multiphase Flow, 1980,6(3):227-239.
[51] LI C, ZHOU Y, CHEN H, et al. Cross-sectional droplets distribution of a liquid jet in supersonic crossflow[J]. Acta Astronautica, 2021.

所在学位评定分委会
力学
国内图书分类号
V231.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765639
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
赵博忠. 旋流条件下横向射流雾化特性研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132429-赵博忠-力学与航空航天(7228KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵博忠]的文章
百度学术
百度学术中相似的文章
[赵博忠]的文章
必应学术
必应学术中相似的文章
[赵博忠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。