[1] FURUYA M, HORIGUCHI J, NAKAJIMA H, et al. Correlation of L-type amino acidtransporter 1 and CD98 expression with triple negative breast cancer prognosis[J].Cancer Sci, 2012, 103(2): 382-389.
[2] SAKATA T, FERDOUS G, TSURUTA T, et al. L-type amino-acid transporter 1 as anovel biomarker for high-grade malignancy in prostate cancer[J]. Pathol Int, 2009,59(1): 7-18.
[3] EBARA T, KAIRA K, SAITO J-I, et al. L-type Amino-Acid Transporter 1 ExpressionPredicts the Response to Preoperative Hyperthermo-Chemoradiotherapy for AdvancedRectal Cancer[J]. Anticancer Research, 2010, 30(10): 4223-4227.
[4] KAIRA K, KAWASHIMA O, ENDOH H, et al. Expression of amino acid transporter(LAT1 and 4F2hc) in pulmonary pleomorphic carcinoma[J]. Hum Pathol, 2019, 84:142-149.
[5] ODA K, HOSODA N, ENDO H, et al. L‐ type amino acid transporter 1 inhibitors inhibittumor cell growth[J]. Cancer science, 2010, 101(1): 173-179.
[6] OTSUKI H, KIMURA T, YAMAGA T, et al. Prostate Cancer Cells in DifferentAndrogen Receptor Status Employ Different Leucine Transporters[J]. Prostate, 2017,77(2): 222-233.
[7] LIANG Z, CHO H T, WILLIAMS L, et al. Potential biomarker of L -type amino acidtransporter 1 in breast cancer progression[J]. Nuclear medicine and molecular imaging,2011, 45: 93-102.
[8] ALTAN B, KAIRA K, WATANABE A, et al. Relationship between LAT1 expressionand resistance to chemotherapy in pancreatic ductal adenocarcinoma[J]. Cancerchemotherapy and pharmacology, 2018, 81: 141-153.
[9] SMITH Q R. Transport of glutamate and other amino acids at the blood -brain barrier[J].The Journal of nutrition, 2000, 130(4): 1016S-1022S.
[10] KAGEYAMA T, NAKAMURA M, MATSUO A, et al. The 4F2hc/LAT1 complextransports L-DOPA across the blood–brain barrier[J]. Brain research, 2000, 879(1-2):115-121.
[11] O'NEILL L A, KISHTON R J and RATHMELL J. A guide to immunometabolism forimmunologists[J]. Nat Rev Immunol, 2016, 16(9): 553-565.
[12] PAULUSMA C C, LAMERS W H, BROER S, et al. Amino acid metabolism, transportand signalling in the liver revisited[J]. Biochem Pharmacol, 2022, 201: 115074.
[13] HORTON R, MORAN, L. A., SCRIMGEOUR, G., PERRY, M., AND RAWN, D., Ed.(2006). Principles of Biochemistry, Pearson Press.
[14] LIEU E L, NGUYEN T, RHYNE S, et al. Amino acids in cancer[J]. Exp Mol Med,2020, 52(1): 15-30.
[15] VETTORE L, WESTBROOK R L and TENNANT D A. New aspects of amino acidmetabolism in cancer[J]. Br J Cancer, 2020, 122(2): 150-156.
[16] SUN L, SADIGHI AKHA A A, MILLER R A, et al. Life -span extension in mice bypreweaning food restriction and by methionine restriction in middle age[J]. J GerontolA Biol Sci Med Sci, 2009, 64(7): 711-722.
[17] MILLER R A, BUEHNER G, CHANG Y, et al. Methionine-deficient diet extendsmouse lifespan, slows immune and lens aging, alters glucose, T4, IGF -I and insulinlevels, and increases hepatocyte MIF levels and stress resistance[J]. Aging Cell, 2005,4(3): 119-125.
[18] ORENTREICH N, MATIAS J R, DEFELICE A, et al. Low methionine ingestion byrats extends life span[J]. J Nutr, 1993, 123(2): 269-274.
[19] CHOI B H and COLOFF J L. The Diverse Functions of Non-Essential Amino Acids inCancer[J]. Cancers (Basel), 2019, 11(5).
[20] NEWGARD C B. Metabolomics and Metabolic Diseases: Where Do We Stand?[J]. CellMetab, 2017, 25(1): 43-56.
[21] WHITE P J, MCGARRAH R W, HERMAN M A, et al. Insulin action, type 2 diabetes,and branched-chain amino acids: A two-way street[J]. Mol Metab, 2021, 52: 101261.
[22] WU B, ZHAO T V, JIN K, et al. Mitochondrial aspartate regulates TNF biogenesis andautoimmune tissue inflammation[J]. Nat Immunol, 2021, 22(12): 1551-1562.
[23] RUZZO E K, CAPO-CHICHI J M, BEN-ZEEV B, et al. Deficiency of asparaginesynthetase causes congenital microcephaly and a progressive form ofencephalopathy[J]. Neuron, 2013, 80(2): 429-441.
[24] BEN-SALEM S, GLEESON J G, AL-SHAMSI A M, et al. Asparagine synthetasedeficiency detected by whole exome sequencing causes congenital microcephaly,epileptic encephalopathy and psychomotor delay[J]. Metab Brain Dis, 2015, 30(3):687-694.
[25] PALMER E E, HAYNER J, SACHDEV R, et al. Asparagine Synthetase Deficiencycauses reduced proliferation of cells under conditions of limited asparagine[ J]. MolGenet Metab, 2015, 116(3): 178-186.
[26] GATAULLINA S, LAUER-ZILLHARDT J, KAMINSKA A, et al. Epileptic Phenotypeof Two Siblings with Asparagine Synthesis Deficiency Mimics Neonatal Pyridoxine -Dependent Epilepsy[J]. Neuropediatrics, 2016, 47(6): 399-403.
[27] CHRISTENSEN H N. Role of amino acid transport and countertransport in nutritionand metabolism[J]. Physiol Rev, 1990, 70(1): 43-77.
[28] KANAI Y and HEDIGER M A. The glutamate/neutral amino acid transporter familySLC1: molecular, physiological and pharmacological aspects[J]. Pflugers Arch, 2004,447(5): 469-479.
[29] BRöER S. Adaptation of plasma membrane amino acid transport mechanisms tophysiological demands[J]. Pflugers Arch, 2002, 444(4): 457-466.
[30] HEDIGER M A, CLéMENçON B, BURRIER R E, et al. The ABCs of membranetransporters in health and disease (SLC series): introduction[J]. Mol Aspects Med,2013, 34(2-3): 95-107.
[31] BRöER S and PALACíN M. The role of amino acid transporters in inherited andacquired diseases[J]. Biochem J, 2011, 436(2): 193-211.
[32] HYDE R, TAYLOR P M and HUNDAL H S. Amino acid transporters: roles in aminoacid sensing and signalling in animal cells[J]. Biochem J, 2003, 373(Pt 1): 1-18.
[33] KANDASAMY P, GYIMESI G, KANAI Y, et al. Amino acid transporters revisited:New views in health and disease[J]. Trends Biochem Sci, 2018, 43(10): 752-789.
[34] KANAI Y, SEGAWA H, MIYAMOTO K, et al. Expression cloning andcharacterization of a transporter for large neutral amino acids activated by the heavychain of 4F2 antigen (CD98)[J]. J Biol Chem, 1998, 273(37): 23629-23632.
[35] MASTROBERARDINO L, SPINDLER B, PFEIFFER R, et al. Amino-acid transportby heterodimers of 4F2hc/CD98 and members of a permease family[J]. Nature, 1998,395(6699): 288-291.
[36] SHIKANO N, KANAI Y, KAWAI K, et al. Isoform selectivity of 3-125I-iodo-alphamethyl-L-tyrosine membrane transport in human L-type amino acid transporters[J]. JNucl Med, 2003, 44(2): 244-246.
[37] ROSELL A, MEURY M, ÁLVAREZ-MARIMON E, et al. Structural bases for theinteraction and stabilization of the human amino acid transporter LAT2 with itsancillary protein 4F2hc[J]. Proc Natl Acad Sci U S A, 2014, 111(8): 2966-2971.
[38] VERREY F, CLOSS E I, WAGNER C A, et al. CATs and HATs: the SLC7 family ofamino acid transporters[J]. Pflugers Arch, 2004, 447(5): 532-542.
[39] PALACíN M, NUNES V, FONT-LLITJóS M, et al. The genetics of heteromeric aminoacid transporters[J]. Physiology (Bethesda), 2005, 20: 112-124.
[40] FERAL C C, NISHIYA N, FENCZIK C A, et al. CD98hc (SLC3A2) mediates integrinsignaling[J]. Proc Natl Acad Sci U S A, 2005, 102(2): 355-360.
[41] FAIRWEATHER S J, SHAH N and BRӦER S. Heteromeric Solute Carriers: Function,Structure, Pathology and Pharmacology[J]. Adv Exp Med Biol, 2021, 21: 13-127.
[42] BRöER S and WAGNER C A. Structure-function relationships of heterodimeric aminoacid transporters[J]. Cell Biochem Biophys, 2002, 36(2-3): 155-168.
[43] FOTIADIS D, KANAI Y and PALACíN M. The SLC3 and SLC7 families of aminoacid transporters[J]. Mol Aspects Med, 2013, 34(2-3): 139-158.
[44] BABU E, KANAI Y, CHAIROUNGDUA A, et al. Identification of a novel system Lamino acid transporter structurally distinct from heterodimeric amino acidtransporters[J]. J Biol Chem, 2003, 278(44): 43838-43845.
[45] BHUTIA Y D, BABU E, RAMACHANDRAN S, et al. Amino Acid transporters incancer and their relevance to "glutamine addiction": novel targets for the design of anew class of anticancer drugs[J]. Cancer Res, 2015, 75(9): 1782-1788.
[46] BRöER A, RAHIMI F and BRöER S. Deletion of Amino Acid Transporter ASCT2(SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2(SLC38A2) to Sustain Glutaminolysis in Cancer Cells[J]. J Biol Chem, 2016, 291(25):13194-13205.
[47] CORMERAIS Y, PAGNUZZI-BONCOMPAGNI M, SCHRöTTER S, et al. Inhibitionof the amino-acid transporter LAT1 demonstrates anti-neoplastic activity inmedulloblastoma[J]. J Cell Mol Med, 2019, 23(4): 2711-2718.
[48] HU H, TAKANO N, XIANG L, et al. Hypoxia-inducible factors enhance glutamatesignaling in cancer cells[J]. Oncotarget, 2014, 5(19): 8853-8868.
[49] CANTOR J, BROWNE C D, RUPPERT R, et al. CD98hc facilitates B cell proliferationand adaptive humoral immunity[J]. Nat Immunol, 2009, 10(4): 412-419.
[50] FOGELSTRAND P, FéRAL C C, ZARGHAM R, et al. Dependence of proliferativevascular smooth muscle cells on CD98hc (4F2hc, SLC3A2)[J]. J Exp Med, 2009,206(11): 2397-2406.
[51] FERNáNDEZ E, JIMéNEZ-VIDAL M, CALVO M, et al. The structural and functionalunits of heteromeric amino acid transporters. The heavy subunit rBAT dictatesoligomerization of the heteromeric amino acid transporters[J]. J Biol Chem, 2006,281(36): 26552-26561.
[52] JANEČEK Š and GABRIŠKO M. Remarkable evolutionary relatedness among theenzymes and proteins from the α-amylase family[J]. Cell Mol Life Sci, 2016, 73(14):2707-2725.
[53] HAYNES B F. Human T lymphocyte antigens as defined by monoclonal antibodies[ J].Immunol Rev, 1981, 57: 127-161.
[54] TAKESONO A, MOGER J, FAROOQ S, et al. Solute carrier family 3 member 2(Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubulenetworks in the zebrafish embryo[J]. Proc Natl Acad Sci U S A, 2012, 109(9): 3371-3376.
[55] FENCZIK C A, ZENT R, DELLOS M, et al. Distinct domains of CD98hc regulateintegrins and amino acid transport[J]. J Biol Chem, 2001, 276(12): 8746-8752.
[56] ZENT R, FENCZIK C A, CALDERWOOD D A, et al. Class- and splice variant-specificassociation of CD98 with integrin beta cytoplasmic domains[J]. J Biol Chem, 2000,275(7): 5059-5064.
[57] DALTON P, CHRISTIAN H C, REDMAN C W, et al. Membrane trafficking of CD98and its ligand galectin 3 in BeWo cells--implication for placental cell fusion[J]. Febsj, 2007, 274(11): 2715-2727.
[58] CLOSS E I, BOISSEL J P, HABERMEIER A, et al. Structure and function of cationic amino acid transporters (CATs)[J]. J Membr Biol, 2006, 213(2): 67-77.
[59] GASOL E, JIMéNEZ-VIDAL M, CHILLARóN J, et al. Membrane topology of systemxc- light subunit reveals a re-entrant loop with substrate-restricted accessibility[J]. JBiol Chem, 2004, 279(30): 31228-31236.
[60] HANSEN I A, BOUDKO D Y, SHIAO S H, et al. AaCAT1 of the yellow fever mosquito,Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7family[J]. J Biol Chem, 2011, 286(12): 10803-10813.
[61] KAHLHOFER J and TEIS D. The human LAT1-4F2hc (SLC7A5-SLC3A2) transportercomplex: Physiological and pathophysiological implications[J]. Basic Clin PharmacolToxicol, 2023, 133(5): 459-472.
[62] YAN R, ZHOU J, LI Y, et al. Structural insight into the substrate recognition andtransport mechanism of the human LAT2-4F2hc complex[J]. Cell Discov, 2020, 6(1):82.
[63] YAN R, LI Y, SHI Y, et al. Cryo-EM structure of the human heteromeric amino acidtransporter b(0,+)AT-rBAT[J]. Sci Adv, 2020, 6(16): eaay6379.
[64] YAN R, ZHAO X, LEI J, et al. Structure of the human LAT1-4F2hc heteromeric aminoacid transporter complex[J]. Nature, 2019, 568(7750): 127-130.
[65] YAN R, LI Y, MüLLER J, et al. Mechanism of substrate transport and inhibition ofthe human LAT1-4F2hc amino acid transporter[J]. Cell Discov, 2021, 7(1): 16.
[66] LEE Y, WIRIYASERMKUL P, JIN C, et al. Cryo-EM structure of the human L-typeamino acid transporter 1 in complex with glycoprotein CD98hc[J]. Nat Struct Mol Biol,2019, 26(6): 510-517.
[67] JECKELMANN J M, LEMMIN T, SCHLAPSCHY M, et al. Structure of the humanheterodimeric transporter 4F2hc-LAT2 in complex with Anticalin, an alternativebinding protein for applications in single-particle cryo-EM[J]. Sci Rep, 2022, 12(1):18269.
[68] ODA K, LEE Y, WIRIYASERMKUL P, et al. Consensus mutagenesis approachimproves the thermal stability of system x(c) (-) transporter, xCT, and enables cryoEM analyses[J]. Protein Sci, 2020, 29(12): 2398-2407.
[69] PARKER J L, DEME J C, KOLOKOURIS D, et al. Molecular basis for redox controlby the human cystine/glutamate antiporter system xc()[J]. Nat Commun, 2021, 12(1):7147.
[70] YAN R, XIE E, LI Y, et al. The structure of erastin-bound xCT-4F2hc complex revealsmolecular mechanisms underlying erastin-induced ferroptosis[J]. Cell Res, 2022,32(7): 687-690.
[71] LEE Y, WIRIYASERMKUL P, KONGPRACHA P, et al. Ca(2+)-mediated higherorder assembly of heterodimers in amino acid transport system b(0,+) biogenesis andcystinuria[J]. Nat Commun, 2022, 13(1): 2708.
[72] REIG N, DEL RIO C, CASAGRANDE F, et al. Functional and structural characterization of the first prokaryotic member of the L-amino acid transporter (LAT)family: a model for APC transporters[J]. J Biol Chem, 2007, 282(18): 13270-13281.
[73] PURIS E, GYNTHER M, AURIOLA S, et al. L-Type amino acid transporter 1 as atarget for drug delivery[J]. Pharm Res, 2020, 37(5): 88.
[74] KAGEYAMA T, NAKAMURA M, MATSUO A, et al. The 4F2hc/LAT1 complextransports L-DOPA across the blood-brain barrier[J]. Brain Res, 2000, 879(1-2): 115-121.
[75] RITCHIE J W and TAYLOR P M. Role of the System L permease LAT1 in amino acidand iodothyronine transport in placenta[J]. Biochem J, 2001, 356(Pt 3): 719-725.
[76] DICKENS D, WEBB S D, ANTONYUK S, et al. Transport of gabapentin by LAT1(SLC7A5)[J]. Biochem Pharmacol, 2013, 85(11): 1672-1683.
[77] BOADO R J, LI J Y, NAGAYA M, et al. Selective expression of the large neutralamino acid transporter at the blood-brain barrier[J]. Proc Natl Acad Sci U S A, 1999,96(21): 12079-12084.
[78] TOMI M, MORI M, TACHIKAWA M, et al. L-type amino acid transporter 1-mediatedL-leucine transport at the inner blood-retinal barrier[J]. Invest Ophthalmol Vis Sci,2005, 46(7): 2522-2530.
[79] SINCLAIR L V, ROLF J, EMSLIE E, et al. Control of amino -acid transport by antigenreceptors coordinates the metabolic reprogramming essential for T celldifferentiation[J]. Nat Immunol, 2013, 14(5): 500-508.
[80] TSUMURA H, SUZUKI N, SAITO H, et al. The targeted disruption of the CD98 generesults in embryonic lethality[J]. Biochem Biophys Res Commun, 2003, 308(4): 847-851.
[81] PONCET N, HALLEY P A, LIPINA C, et al. Wnt regulates amino acid transporterSlc7a5 and so constrains the integrated stress response in mouse embryos[J]. EMBORep, 2020, 21(1): e48469.
[82] OHGAKI R, OHMORI T, HARA S, et al. Essential Roles of L-Type Amino AcidTransporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc[ J].Mol Cell Biol, 2017, 37(11).
[83] KANAI Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancerdiagnosis and therapeutics[J]. Pharmacol Ther, 2022, 230: 107964.
[84] SCALISE M, GALLUCCIO M, CONSOLE L, et al. The Human SLC7A5 (LAT1): TheIntriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance toHuman Health[J]. Front Chem, 2018, 6: 243.
[85] ZHANG J, XU Y, LI D, et al. Review of the Correlation of LAT1 With Diseases:Mechanism and Treatment[J]. Front Chem, 2020, 8: 564809.
[86] YANAGIDA O, KANAI Y, CHAIROUNGDUA A, et al. Human L-type amino acidtransporter 1 (LAT1): characterization of function and expression in tumor cell lines[J].Biochim Biophys Acta, 2001, 1514(2): 291-302.
[87] NAKANISHI K, MATSUO H, KANAI Y, et al. LAT1 expression in normal lung andin atypical adenomatous hyperplasia and adenocarcinoma of the lung[J]. VirchowsArch, 2006, 448(2): 142-150.
[88] IMAI H, KAIRA K, ORIUCHI N, et al. L-type amino acid transporter 1 expression isa prognostic marker in patients with surgically resected stage I non-small cell lungcancer[J]. Histopathology, 2009, 54(7): 804-813.
[89] INOUE T, KOYAMA K, ORIUCHI N, et al. Detection of malignant tumors: whole -body PET with fluorine 18 alpha-methyl tyrosine versus FDG--preliminary study[J].Radiology, 2001, 220(1): 54-62.
[90] WIRIYASERMKUL P, NAGAMORI S, TOMINAGA H, et al. Transport of 3-fluoroL-α-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause ofthe tumor uptake in PET[J]. J Nucl Med, 2012, 53(8): 1253-1261.
[91] SATO M, HARADA-SHOJI N, TOYOHARA T, et al. L-type amino acid transporter 1is associated with chemoresistance in breast cancer via the promotion of amino acidmetabolism[J]. Sci Rep, 2021, 11(1): 589.
[92] OTANI R, TAKIGAWA H, YUGE R, et al. The Anti-Tumor Effect of the NewlyDeveloped LAT1 Inhibitor JPH203 in Colorectal Carcinoma, According to aComprehensive Analysis[J]. Cancers (Basel), 2023, 15(5).
[93] HAYASHI K, JUTABHA P, ENDOU H, et al. LAT1 is a critical transporter of essentialamino acids for immune reactions in activated human T cells[J]. J Immunol, 2013,191(8): 4080-4085.
[94] LINDSTEN T, JUNE C H, THOMPSON C B, et al. Regulation of 4F2 heavy -chaingene expression during normal human T-cell activation can be mediated by multipledistinct molecular mechanisms[J]. Mol Cell Biol, 1988, 8(9): 3820-3826.
[95] YOON B R, OH Y J, KANG S W, et al. Role of SLC7A5 in Metabolic Reprogrammingof Human Monocyte/Macrophage Immune Responses[J]. Front Immunol, 2018, 9: 53.
[96] TORIGOE M, MAESHIMA K, OZAKI T, et al. l-Leucine influx through Slc7a5regulates inflammatory responses of human B cells via mammalian target of rapamycincomplex 1 signaling[J]. Mod Rheumatol, 2019, 29(5): 885-891.
[97] LOFTUS R M, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMycexpression is essential for NK cell metabolic and functional responses in mice[ J]. NatCommun, 2018, 9(1): 2341.
[98] HAYASHI K and ANZAI N. L-type amino acid transporter 1 as a target forinflammatory disease and cancer immunotherapy[J]. J Pharmacol Sci, 2022, 148(1):31-40.
[99] GOLDENBERG G J, LAM H Y and BEGLEITER A. Active carrier-mediated transportof melphalan by two separate amino acid transport systems in LPC-1 plasmacytomacells in vitro[J]. J Biol Chem, 1979, 254(4): 1057-1064.
修改评论