中文版 | English
题名

LAT1-4F2hc 复合物底物识别与转运机制的研究

其他题名
RESEARCH ON THE SUBSTRATE RECOGNITION AND TRANSPORT MECHANISM OF LAT1-4F2HC COMPLEX
姓名
姓名拼音
SHI Tianhao
学号
12133148
学位类型
硕士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
导师
鄢仁鸿
导师单位
生物化学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-18
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氨基酸在维持生命运行中扮演着不可或缺的角色。除了构成蛋白质外,它们还参与了代谢、信号传导以及细胞结构的维持等关键生物功能。氨基酸的代谢紊乱往往会导致多种疾病的发生,包括苯丙酮尿症、帕金森病和癌症等。在氨基酸的运输过程中,转运蛋白 LAT1( SLC7A5)与其伴侣蛋白 4F2hc( SLC3A2)形成的异二聚体起着重要作用。 近年来,许多研究表明 LAT1 除了在癌症、肥胖、糖尿病等疾病中的异常表达与疾病的发生和发展密切相关, 其在各种活跃的免疫细胞中也发挥了关键作用。 尽管之前的研究已经解析了 LAT1-4F2hc 复合物与抑制剂结合的结构,并对 LAT1 的功能进行了分析,但对于该复合物的转运机制仍存在许多未解之谜。
在本篇论文中,我们利用冷冻电镜技术,解析了 LAT1-4F2hc 复合物与底物酪氨酸、色氨酸、左旋多巴和亮氨酸结合状态下的结构,分辨率分别为 3.2 Å、 3.57 Å、 3.56 Å 和 3.1 Å。 通过对这些结构进行分析,我们发现LAT1 在朝向胞外开口的构象状态中存在一系列中间态,并且观察到 LAT1与底物结合模式受到底物侧链的影响。 同时, 结合生化实验,我们也发现了关键氨基酸 Tyr259 和 Phe400 的突变会抑制 LAT1 的转运能力。这些发现为深入理解 LAT1 的结构与功能提供了重要线索。最后,我们在前人的研究基础上,进一步完善了 LAT1-4F2hc 复合物的转运机制模型。这一模型的建立将有助于我们更全面地理解氨基酸转运的分子机制,为未来设计更有效的药物治疗方案提供有力支持。

其他摘要

Amino acids are integral to maintaining essential biological functions. Beyond their role in protein synthesis, they are key participants in critical biological processes including metabolism, signal transduction, and cellular structure maintenance. Dysregulation of amino acid metabolism frequently underlies the onset of diverse diseases, such as phenylketonuria, Parkinson's disease, and cancer. In the process of amino acid transport, the transporter protein LAT1 (SLC7A5), in conjunction with its partner protein 4F2hc (SLC3A2), forms a vital heterodimeric complex. Recent studies have highlighted LAT1's pivotal role not only in diseases like cancer, obesity, and diabetes where its expression is dysregulated, but also in various active immune cells. While structural elucidation of the LAT1-4F2hc complex and functional analysis of LAT1 have been conducted in previous research, significant mysteries persist regarding the transport mechanism of this complex.
In this study, employing cryo-electron microscopy, we elucidated the structures of the LAT1-4F2hc complex bound to substrates including tyrosine, tryptophan, levodopa, and leucine, at resolutions of 3.2 Å, 3.57 Å, 3.56 Å, and 3.1 Å respectively. Analysis of these structures revealed a series of intermediate states of LAT1 in a conformation facing the extracellular side, with substrate binding mode influenced by substrate side chains. Additionally, biochemical experiments highlighted the inhibitory effect on LAT1 transport capability upon mutation of key amino acids Tyr259 and Phe400. These findings provide crucial insights into the structure and function of LAT1. Furthermore, building upon previous research, we refined the transport mechanism model of the LAT1-4F2hc complex. This model contributes to a comprehensive understanding of the molecular mechanism underlying amino acid transport and provides a solid foundation for designing more effective drug therapies in the future.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-05
参考文献列表

[1] FURUYA M, HORIGUCHI J, NAKAJIMA H, et al. Correlation of L-type amino acidtransporter 1 and CD98 expression with triple negative breast cancer prognosis[J].Cancer Sci, 2012, 103(2): 382-389.
[2] SAKATA T, FERDOUS G, TSURUTA T, et al. L-type amino-acid transporter 1 as anovel biomarker for high-grade malignancy in prostate cancer[J]. Pathol Int, 2009,59(1): 7-18.
[3] EBARA T, KAIRA K, SAITO J-I, et al. L-type Amino-Acid Transporter 1 ExpressionPredicts the Response to Preoperative Hyperthermo-Chemoradiotherapy for AdvancedRectal Cancer[J]. Anticancer Research, 2010, 30(10): 4223-4227.
[4] KAIRA K, KAWASHIMA O, ENDOH H, et al. Expression of amino acid transporter(LAT1 and 4F2hc) in pulmonary pleomorphic carcinoma[J]. Hum Pathol, 2019, 84:142-149.
[5] ODA K, HOSODA N, ENDO H, et al. L‐ type amino acid transporter 1 inhibitors inhibittumor cell growth[J]. Cancer science, 2010, 101(1): 173-179.
[6] OTSUKI H, KIMURA T, YAMAGA T, et al. Prostate Cancer Cells in DifferentAndrogen Receptor Status Employ Different Leucine Transporters[J]. Prostate, 2017,77(2): 222-233.
[7] LIANG Z, CHO H T, WILLIAMS L, et al. Potential biomarker of L -type amino acidtransporter 1 in breast cancer progression[J]. Nuclear medicine and molecular imaging,2011, 45: 93-102.
[8] ALTAN B, KAIRA K, WATANABE A, et al. Relationship between LAT1 expressionand resistance to chemotherapy in pancreatic ductal adenocarcinoma[J]. Cancerchemotherapy and pharmacology, 2018, 81: 141-153.
[9] SMITH Q R. Transport of glutamate and other amino acids at the blood -brain barrier[J].The Journal of nutrition, 2000, 130(4): 1016S-1022S.
[10] KAGEYAMA T, NAKAMURA M, MATSUO A, et al. The 4F2hc/LAT1 complextransports L-DOPA across the blood–brain barrier[J]. Brain research, 2000, 879(1-2):115-121.
[11] O'NEILL L A, KISHTON R J and RATHMELL J. A guide to immunometabolism forimmunologists[J]. Nat Rev Immunol, 2016, 16(9): 553-565.
[12] PAULUSMA C C, LAMERS W H, BROER S, et al. Amino acid metabolism, transportand signalling in the liver revisited[J]. Biochem Pharmacol, 2022, 201: 115074.
[13] HORTON R, MORAN, L. A., SCRIMGEOUR, G., PERRY, M., AND RAWN, D., Ed.(2006). Principles of Biochemistry, Pearson Press.
[14] LIEU E L, NGUYEN T, RHYNE S, et al. Amino acids in cancer[J]. Exp Mol Med,2020, 52(1): 15-30.
[15] VETTORE L, WESTBROOK R L and TENNANT D A. New aspects of amino acidmetabolism in cancer[J]. Br J Cancer, 2020, 122(2): 150-156.
[16] SUN L, SADIGHI AKHA A A, MILLER R A, et al. Life -span extension in mice bypreweaning food restriction and by methionine restriction in middle age[J]. J GerontolA Biol Sci Med Sci, 2009, 64(7): 711-722.
[17] MILLER R A, BUEHNER G, CHANG Y, et al. Methionine-deficient diet extendsmouse lifespan, slows immune and lens aging, alters glucose, T4, IGF -I and insulinlevels, and increases hepatocyte MIF levels and stress resistance[J]. Aging Cell, 2005,4(3): 119-125.
[18] ORENTREICH N, MATIAS J R, DEFELICE A, et al. Low methionine ingestion byrats extends life span[J]. J Nutr, 1993, 123(2): 269-274.
[19] CHOI B H and COLOFF J L. The Diverse Functions of Non-Essential Amino Acids inCancer[J]. Cancers (Basel), 2019, 11(5).
[20] NEWGARD C B. Metabolomics and Metabolic Diseases: Where Do We Stand?[J]. CellMetab, 2017, 25(1): 43-56.
[21] WHITE P J, MCGARRAH R W, HERMAN M A, et al. Insulin action, type 2 diabetes,and branched-chain amino acids: A two-way street[J]. Mol Metab, 2021, 52: 101261.
[22] WU B, ZHAO T V, JIN K, et al. Mitochondrial aspartate regulates TNF biogenesis andautoimmune tissue inflammation[J]. Nat Immunol, 2021, 22(12): 1551-1562.
[23] RUZZO E K, CAPO-CHICHI J M, BEN-ZEEV B, et al. Deficiency of asparaginesynthetase causes congenital microcephaly and a progressive form ofencephalopathy[J]. Neuron, 2013, 80(2): 429-441.
[24] BEN-SALEM S, GLEESON J G, AL-SHAMSI A M, et al. Asparagine synthetasedeficiency detected by whole exome sequencing causes congenital microcephaly,epileptic encephalopathy and psychomotor delay[J]. Metab Brain Dis, 2015, 30(3):687-694.
[25] PALMER E E, HAYNER J, SACHDEV R, et al. Asparagine Synthetase Deficiencycauses reduced proliferation of cells under conditions of limited asparagine[ J]. MolGenet Metab, 2015, 116(3): 178-186.
[26] GATAULLINA S, LAUER-ZILLHARDT J, KAMINSKA A, et al. Epileptic Phenotypeof Two Siblings with Asparagine Synthesis Deficiency Mimics Neonatal Pyridoxine -Dependent Epilepsy[J]. Neuropediatrics, 2016, 47(6): 399-403.
[27] CHRISTENSEN H N. Role of amino acid transport and countertransport in nutritionand metabolism[J]. Physiol Rev, 1990, 70(1): 43-77.
[28] KANAI Y and HEDIGER M A. The glutamate/neutral amino acid transporter familySLC1: molecular, physiological and pharmacological aspects[J]. Pflugers Arch, 2004,447(5): 469-479.
[29] BRöER S. Adaptation of plasma membrane amino acid transport mechanisms tophysiological demands[J]. Pflugers Arch, 2002, 444(4): 457-466.
[30] HEDIGER M A, CLéMENçON B, BURRIER R E, et al. The ABCs of membranetransporters in health and disease (SLC series): introduction[J]. Mol Aspects Med,2013, 34(2-3): 95-107.
[31] BRöER S and PALACíN M. The role of amino acid transporters in inherited andacquired diseases[J]. Biochem J, 2011, 436(2): 193-211.
[32] HYDE R, TAYLOR P M and HUNDAL H S. Amino acid transporters: roles in aminoacid sensing and signalling in animal cells[J]. Biochem J, 2003, 373(Pt 1): 1-18.
[33] KANDASAMY P, GYIMESI G, KANAI Y, et al. Amino acid transporters revisited:New views in health and disease[J]. Trends Biochem Sci, 2018, 43(10): 752-789.
[34] KANAI Y, SEGAWA H, MIYAMOTO K, et al. Expression cloning andcharacterization of a transporter for large neutral amino acids activated by the heavychain of 4F2 antigen (CD98)[J]. J Biol Chem, 1998, 273(37): 23629-23632.
[35] MASTROBERARDINO L, SPINDLER B, PFEIFFER R, et al. Amino-acid transportby heterodimers of 4F2hc/CD98 and members of a permease family[J]. Nature, 1998,395(6699): 288-291.
[36] SHIKANO N, KANAI Y, KAWAI K, et al. Isoform selectivity of 3-125I-iodo-alphamethyl-L-tyrosine membrane transport in human L-type amino acid transporters[J]. JNucl Med, 2003, 44(2): 244-246.
[37] ROSELL A, MEURY M, ÁLVAREZ-MARIMON E, et al. Structural bases for theinteraction and stabilization of the human amino acid transporter LAT2 with itsancillary protein 4F2hc[J]. Proc Natl Acad Sci U S A, 2014, 111(8): 2966-2971.
[38] VERREY F, CLOSS E I, WAGNER C A, et al. CATs and HATs: the SLC7 family ofamino acid transporters[J]. Pflugers Arch, 2004, 447(5): 532-542.
[39] PALACíN M, NUNES V, FONT-LLITJóS M, et al. The genetics of heteromeric aminoacid transporters[J]. Physiology (Bethesda), 2005, 20: 112-124.
[40] FERAL C C, NISHIYA N, FENCZIK C A, et al. CD98hc (SLC3A2) mediates integrinsignaling[J]. Proc Natl Acad Sci U S A, 2005, 102(2): 355-360.
[41] FAIRWEATHER S J, SHAH N and BRӦER S. Heteromeric Solute Carriers: Function,Structure, Pathology and Pharmacology[J]. Adv Exp Med Biol, 2021, 21: 13-127.
[42] BRöER S and WAGNER C A. Structure-function relationships of heterodimeric aminoacid transporters[J]. Cell Biochem Biophys, 2002, 36(2-3): 155-168.
[43] FOTIADIS D, KANAI Y and PALACíN M. The SLC3 and SLC7 families of aminoacid transporters[J]. Mol Aspects Med, 2013, 34(2-3): 139-158.
[44] BABU E, KANAI Y, CHAIROUNGDUA A, et al. Identification of a novel system Lamino acid transporter structurally distinct from heterodimeric amino acidtransporters[J]. J Biol Chem, 2003, 278(44): 43838-43845.
[45] BHUTIA Y D, BABU E, RAMACHANDRAN S, et al. Amino Acid transporters incancer and their relevance to "glutamine addiction": novel targets for the design of anew class of anticancer drugs[J]. Cancer Res, 2015, 75(9): 1782-1788.
[46] BRöER A, RAHIMI F and BRöER S. Deletion of Amino Acid Transporter ASCT2(SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2(SLC38A2) to Sustain Glutaminolysis in Cancer Cells[J]. J Biol Chem, 2016, 291(25):13194-13205.
[47] CORMERAIS Y, PAGNUZZI-BONCOMPAGNI M, SCHRöTTER S, et al. Inhibitionof the amino-acid transporter LAT1 demonstrates anti-neoplastic activity inmedulloblastoma[J]. J Cell Mol Med, 2019, 23(4): 2711-2718.
[48] HU H, TAKANO N, XIANG L, et al. Hypoxia-inducible factors enhance glutamatesignaling in cancer cells[J]. Oncotarget, 2014, 5(19): 8853-8868.
[49] CANTOR J, BROWNE C D, RUPPERT R, et al. CD98hc facilitates B cell proliferationand adaptive humoral immunity[J]. Nat Immunol, 2009, 10(4): 412-419.
[50] FOGELSTRAND P, FéRAL C C, ZARGHAM R, et al. Dependence of proliferativevascular smooth muscle cells on CD98hc (4F2hc, SLC3A2)[J]. J Exp Med, 2009,206(11): 2397-2406.
[51] FERNáNDEZ E, JIMéNEZ-VIDAL M, CALVO M, et al. The structural and functionalunits of heteromeric amino acid transporters. The heavy subunit rBAT dictatesoligomerization of the heteromeric amino acid transporters[J]. J Biol Chem, 2006,281(36): 26552-26561.
[52] JANEČEK Š and GABRIŠKO M. Remarkable evolutionary relatedness among theenzymes and proteins from the α-amylase family[J]. Cell Mol Life Sci, 2016, 73(14):2707-2725.
[53] HAYNES B F. Human T lymphocyte antigens as defined by monoclonal antibodies[ J].Immunol Rev, 1981, 57: 127-161.
[54] TAKESONO A, MOGER J, FAROOQ S, et al. Solute carrier family 3 member 2(Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubulenetworks in the zebrafish embryo[J]. Proc Natl Acad Sci U S A, 2012, 109(9): 3371-3376.
[55] FENCZIK C A, ZENT R, DELLOS M, et al. Distinct domains of CD98hc regulateintegrins and amino acid transport[J]. J Biol Chem, 2001, 276(12): 8746-8752.
[56] ZENT R, FENCZIK C A, CALDERWOOD D A, et al. Class- and splice variant-specificassociation of CD98 with integrin beta cytoplasmic domains[J]. J Biol Chem, 2000,275(7): 5059-5064.
[57] DALTON P, CHRISTIAN H C, REDMAN C W, et al. Membrane trafficking of CD98and its ligand galectin 3 in BeWo cells--implication for placental cell fusion[J]. Febsj, 2007, 274(11): 2715-2727.
[58] CLOSS E I, BOISSEL J P, HABERMEIER A, et al. Structure and function of cationic amino acid transporters (CATs)[J]. J Membr Biol, 2006, 213(2): 67-77.
[59] GASOL E, JIMéNEZ-VIDAL M, CHILLARóN J, et al. Membrane topology of systemxc- light subunit reveals a re-entrant loop with substrate-restricted accessibility[J]. JBiol Chem, 2004, 279(30): 31228-31236.
[60] HANSEN I A, BOUDKO D Y, SHIAO S H, et al. AaCAT1 of the yellow fever mosquito,Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7family[J]. J Biol Chem, 2011, 286(12): 10803-10813.
[61] KAHLHOFER J and TEIS D. The human LAT1-4F2hc (SLC7A5-SLC3A2) transportercomplex: Physiological and pathophysiological implications[J]. Basic Clin PharmacolToxicol, 2023, 133(5): 459-472.
[62] YAN R, ZHOU J, LI Y, et al. Structural insight into the substrate recognition andtransport mechanism of the human LAT2-4F2hc complex[J]. Cell Discov, 2020, 6(1):82.
[63] YAN R, LI Y, SHI Y, et al. Cryo-EM structure of the human heteromeric amino acidtransporter b(0,+)AT-rBAT[J]. Sci Adv, 2020, 6(16): eaay6379.
[64] YAN R, ZHAO X, LEI J, et al. Structure of the human LAT1-4F2hc heteromeric aminoacid transporter complex[J]. Nature, 2019, 568(7750): 127-130.
[65] YAN R, LI Y, MüLLER J, et al. Mechanism of substrate transport and inhibition ofthe human LAT1-4F2hc amino acid transporter[J]. Cell Discov, 2021, 7(1): 16.
[66] LEE Y, WIRIYASERMKUL P, JIN C, et al. Cryo-EM structure of the human L-typeamino acid transporter 1 in complex with glycoprotein CD98hc[J]. Nat Struct Mol Biol,2019, 26(6): 510-517.
[67] JECKELMANN J M, LEMMIN T, SCHLAPSCHY M, et al. Structure of the humanheterodimeric transporter 4F2hc-LAT2 in complex with Anticalin, an alternativebinding protein for applications in single-particle cryo-EM[J]. Sci Rep, 2022, 12(1):18269.
[68] ODA K, LEE Y, WIRIYASERMKUL P, et al. Consensus mutagenesis approachimproves the thermal stability of system x(c) (-) transporter, xCT, and enables cryoEM analyses[J]. Protein Sci, 2020, 29(12): 2398-2407.
[69] PARKER J L, DEME J C, KOLOKOURIS D, et al. Molecular basis for redox controlby the human cystine/glutamate antiporter system xc()[J]. Nat Commun, 2021, 12(1):7147.
[70] YAN R, XIE E, LI Y, et al. The structure of erastin-bound xCT-4F2hc complex revealsmolecular mechanisms underlying erastin-induced ferroptosis[J]. Cell Res, 2022,32(7): 687-690.
[71] LEE Y, WIRIYASERMKUL P, KONGPRACHA P, et al. Ca(2+)-mediated higherorder assembly of heterodimers in amino acid transport system b(0,+) biogenesis andcystinuria[J]. Nat Commun, 2022, 13(1): 2708.
[72] REIG N, DEL RIO C, CASAGRANDE F, et al. Functional and structural characterization of the first prokaryotic member of the L-amino acid transporter (LAT)family: a model for APC transporters[J]. J Biol Chem, 2007, 282(18): 13270-13281.
[73] PURIS E, GYNTHER M, AURIOLA S, et al. L-Type amino acid transporter 1 as atarget for drug delivery[J]. Pharm Res, 2020, 37(5): 88.
[74] KAGEYAMA T, NAKAMURA M, MATSUO A, et al. The 4F2hc/LAT1 complextransports L-DOPA across the blood-brain barrier[J]. Brain Res, 2000, 879(1-2): 115-121.
[75] RITCHIE J W and TAYLOR P M. Role of the System L permease LAT1 in amino acidand iodothyronine transport in placenta[J]. Biochem J, 2001, 356(Pt 3): 719-725.
[76] DICKENS D, WEBB S D, ANTONYUK S, et al. Transport of gabapentin by LAT1(SLC7A5)[J]. Biochem Pharmacol, 2013, 85(11): 1672-1683.
[77] BOADO R J, LI J Y, NAGAYA M, et al. Selective expression of the large neutralamino acid transporter at the blood-brain barrier[J]. Proc Natl Acad Sci U S A, 1999,96(21): 12079-12084.
[78] TOMI M, MORI M, TACHIKAWA M, et al. L-type amino acid transporter 1-mediatedL-leucine transport at the inner blood-retinal barrier[J]. Invest Ophthalmol Vis Sci,2005, 46(7): 2522-2530.
[79] SINCLAIR L V, ROLF J, EMSLIE E, et al. Control of amino -acid transport by antigenreceptors coordinates the metabolic reprogramming essential for T celldifferentiation[J]. Nat Immunol, 2013, 14(5): 500-508.
[80] TSUMURA H, SUZUKI N, SAITO H, et al. The targeted disruption of the CD98 generesults in embryonic lethality[J]. Biochem Biophys Res Commun, 2003, 308(4): 847-851.
[81] PONCET N, HALLEY P A, LIPINA C, et al. Wnt regulates amino acid transporterSlc7a5 and so constrains the integrated stress response in mouse embryos[J]. EMBORep, 2020, 21(1): e48469.
[82] OHGAKI R, OHMORI T, HARA S, et al. Essential Roles of L-Type Amino AcidTransporter 1 in Syncytiotrophoblast Development by Presenting Fusogenic 4F2hc[ J].Mol Cell Biol, 2017, 37(11).
[83] KANAI Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancerdiagnosis and therapeutics[J]. Pharmacol Ther, 2022, 230: 107964.
[84] SCALISE M, GALLUCCIO M, CONSOLE L, et al. The Human SLC7A5 (LAT1): TheIntriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance toHuman Health[J]. Front Chem, 2018, 6: 243.
[85] ZHANG J, XU Y, LI D, et al. Review of the Correlation of LAT1 With Diseases:Mechanism and Treatment[J]. Front Chem, 2020, 8: 564809.
[86] YANAGIDA O, KANAI Y, CHAIROUNGDUA A, et al. Human L-type amino acidtransporter 1 (LAT1): characterization of function and expression in tumor cell lines[J].Biochim Biophys Acta, 2001, 1514(2): 291-302.
[87] NAKANISHI K, MATSUO H, KANAI Y, et al. LAT1 expression in normal lung andin atypical adenomatous hyperplasia and adenocarcinoma of the lung[J]. VirchowsArch, 2006, 448(2): 142-150.
[88] IMAI H, KAIRA K, ORIUCHI N, et al. L-type amino acid transporter 1 expression isa prognostic marker in patients with surgically resected stage I non-small cell lungcancer[J]. Histopathology, 2009, 54(7): 804-813.
[89] INOUE T, KOYAMA K, ORIUCHI N, et al. Detection of malignant tumors: whole -body PET with fluorine 18 alpha-methyl tyrosine versus FDG--preliminary study[J].Radiology, 2001, 220(1): 54-62.
[90] WIRIYASERMKUL P, NAGAMORI S, TOMINAGA H, et al. Transport of 3-fluoroL-α-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause ofthe tumor uptake in PET[J]. J Nucl Med, 2012, 53(8): 1253-1261.
[91] SATO M, HARADA-SHOJI N, TOYOHARA T, et al. L-type amino acid transporter 1is associated with chemoresistance in breast cancer via the promotion of amino acidmetabolism[J]. Sci Rep, 2021, 11(1): 589.
[92] OTANI R, TAKIGAWA H, YUGE R, et al. The Anti-Tumor Effect of the NewlyDeveloped LAT1 Inhibitor JPH203 in Colorectal Carcinoma, According to aComprehensive Analysis[J]. Cancers (Basel), 2023, 15(5).
[93] HAYASHI K, JUTABHA P, ENDOU H, et al. LAT1 is a critical transporter of essentialamino acids for immune reactions in activated human T cells[J]. J Immunol, 2013,191(8): 4080-4085.
[94] LINDSTEN T, JUNE C H, THOMPSON C B, et al. Regulation of 4F2 heavy -chaingene expression during normal human T-cell activation can be mediated by multipledistinct molecular mechanisms[J]. Mol Cell Biol, 1988, 8(9): 3820-3826.
[95] YOON B R, OH Y J, KANG S W, et al. Role of SLC7A5 in Metabolic Reprogrammingof Human Monocyte/Macrophage Immune Responses[J]. Front Immunol, 2018, 9: 53.
[96] TORIGOE M, MAESHIMA K, OZAKI T, et al. l-Leucine influx through Slc7a5regulates inflammatory responses of human B cells via mammalian target of rapamycincomplex 1 signaling[J]. Mod Rheumatol, 2019, 29(5): 885-891.
[97] LOFTUS R M, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMycexpression is essential for NK cell metabolic and functional responses in mice[ J]. NatCommun, 2018, 9(1): 2341.
[98] HAYASHI K and ANZAI N. L-type amino acid transporter 1 as a target forinflammatory disease and cancer immunotherapy[J]. J Pharmacol Sci, 2022, 148(1):31-40.
[99] GOLDENBERG G J, LAM H Y and BEGLEITER A. Active carrier-mediated transportof melphalan by two separate amino acid transport systems in LPC-1 plasmacytomacells in vitro[J]. J Biol Chem, 1979, 254(4): 1057-1064.

所在学位评定分委会
生物学
国内图书分类号
Q513
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765644
专题南方科技大学
南方科技大学医学院
推荐引用方式
GB/T 7714
时恬昊. LAT1-4F2hc 复合物底物识别与转运机制的研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12133148-时恬昊-南方科技大学医(4736KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[时恬昊]的文章
百度学术
百度学术中相似的文章
[时恬昊]的文章
必应学术
必应学术中相似的文章
[时恬昊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。