[1] 崔忠超. 城市水污染的现状及治理措施分析[J]. 资源节约与环保, 2022(11): 74-77.
[2] 陈林. 区域水环境污染现状分析与生态化治理技术研究[J]. 环境科学与管理, 2023, 48(10): 101-105.
[3] NAVARRO-ORTEGA A, ACUñA V, BELLIN A, et al. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project[J]. Science of The Total Environment, 2015, 503-504: 3-9.
[4] KEKES T, TZIA C, KOLLIOPOULOS G. Drinking and natural mineral water: Treatment and quality-safety assurance[J]. Water, 2023, 15(13) : 2325.
[5] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Treatment trends and combined methods in removing pharmaceuticals and personal care products from wastewater—A Review[J]. Membranes, 2023, 13(2): 158.
[6] PENG Y, YANG W. 2D Metal‐Organic framework materials for membrane‐based separation[J]. Advanced Materials Interfaces, 2019, 7(1): 1901514.
[7] 林茜茜. 膜分离技术在城镇污水处理中的应用[J]. 广东化工, 2023, 50(23): 92-94.
[8] NG L Y, MOHAMMAD A W, LEO C P, et al. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review[J]. Desalination, 2013, 308: 15-33.
[9] LABBEZ C, FIEVET P, SZYMCZYK A, et al. Analysis of the salt retention of a titania membrane using the "DSPM" model: effect of pH, salt concentration and nature[J]. Journal of Membrane Science, 2002, 208(1-2): 315-329.
[10] SELATILE M K, RAY S S, OJIJO V, et al. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination[J]. RSC Advances, 2018, 8(66): 37915-37938.
[11] LI X, LIU Y, WANG J, et al. Metal-Organic frameworks based membranes for liquid separation[J]. Chemical Society Reviews, 2017, 46(23): 7124-7144.
[12] 孙成珍, 罗东, 白博峰. 二维材料气体分离膜及其应用研究进展[J]. 科学通报, 2023, 68(01): 53-71.
[13] SOVIZI S, ANGIZI S, AHMAD ALEM S A, et al. Plasma processing and treatment of 2D transition metal dichalcogenides: Tuning properties and defect engineering[J]. Chemical Reviews, 2023, 123(24): 13869-13951.
[14] TSAPATSIS M. 2-dimensional zeolites[J]. AIChE Journal, 2014, 60(7): 2374-2381.
[15] LIU G, JIN W, XU N. Two‐Dimensional‐Material membranes: A new family of high‐performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55(43): 13384-13397.
[16] CHENG Y, PU Y, ZHAO D. Two‐Dimensional membranes: New paradigms for high‐performance separation membranes[J]. Chemistry An Asian Journal, 2020, 15(15): 2241-2270.
[17] LU Z, WEI Y, DENG J, et al. Self-Crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 2019, 13(9): 10535-10544.
[18] CAO S, DESHMUKH A, WANG L, et al. Enhancing the permselectivity of thin-film composite membranes interlayered with MoS2 nanosheets via precise thickness control[J]. Environmental Science & Technology, 2022, 56(12): 8807-8818.
[19] WANG Y, LI L, WEI Y, et al. Water transport with ultralow friction through partially exfoliated g‐C3N4 nanosheet membranes with self‐supporting spacers[J]. Angewandte Chemie International Edition, 2017, 56(31): 8974-8980.
[20] SONG S, WANG W, ZHAO Y, et al. Tuning the stacking modes of ultrathin two‐dimensional metal-organic framework nanosheet membranes for highly efficient hydrogen separation[J]. Angewandte Chemie International Edition, 2023, 62(45): e202312995.
[21] KIM S, CHOI H C. Recent advances in covalent organic frameworks for molecule-based two-dimensional materials[J]. ACS Omega, 2019, 5(2): 948-958.
[22] WANG S, YANG L, HE G, et al. Two-Dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089.
[23] KANG Y, XIA Y, WANG H, et al. 2D laminar membranes for selective water and ion transport[J]. Advanced Functional Materials, 2019, 29(29): 1902014.
[24] ABA N F D, CHONG J Y, WANG B, et al. Graphene oxide membranes on ceramic hollow fibers - Microstructural stability and nanofiltration performance[J]. Journal of Membrane Science, 2015, 484: 87-94.
[25] CHU K H, FATHIZADEH M, YU M, et al. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40369-40377.
[26] ZHANG M, GUAN K, SHEN J, et al. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity[J]. AIChE Journal, 2017, 63(11): 5054-5063.
[27] PAN F, LI Y, SONG Y, et al. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations[J]. Journal of Membrane Science, 2020, 595: 117486.
[28] CHEN X, MOHAMMED S, YANG G, et al. Selective permeation of water through angstrom‐channel graphene membranes for bioethanol concentration[J]. Advanced Materials, 2020, 32(33): 2002320.
[29] DAI L, HUANG K, XIA Y, et al. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion[J]. Green Energy & Environment, 2021, 6(2): 193-211.
[30] REN C E, HATZELL K B, ALHABEB M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. The Journal of Physical Chemistry Letters, 2015, 6(20): 4026-4031.
[31] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
[32] SUN L, HUANG H, PENG X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720.
[33] WANG Z, TU Q, SIM A, et al. Superselective removal of lead from water by two-dimensional MoS2 nanosheets and layer-stacked membranes[J]. Environmental Science & Technology, 2020, 54(19): 12602-12611.
[34] WANG F, ZHANG Z, SHAKIR I, et al. 2D polymer nanosheets for membrane separation[J]. Advanced Science, 2022, 9(8): 2103814.
[35] FISCHBEIN M D, DRNDIC M. Electron beam nanosculpting of suspended graphene sheets[J]. Applied Physics Letters, 2008, 93(11): 113107.
[36] CELEBI K, BUCHHEIM J, WYSS R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science, 2014, 344(6181): 289-292.
[37] KOENIG S P, WANG L, PELLEGRINO J, et al. Selective molecular sieving through porous graphene[J]. Nature Nanotechnology, 2012, 7(11): 728-732.
[38] O’HERN S C, BOUTILIER M S H, IDROBO J-C, et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes[J]. Nano Letters, 2014, 14(3): 1234-1241.
[39] SURWADE S P, SMIRNOV S N, VLASSIOUK I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464.
[40] CôTé A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
[41] ZHOU W, WEI M, ZHANG X, et al. Fast desalination by multilayered covalent organic framework (COF) nanosheets[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16847-16854.
[42] TONG M, YANG Q, XIAO Y, et al. Revealing the structure-property relationship of covalent organic frameworks for CO2 capture from postcombustion gas: a multi-scale computational study[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15189-15198.
[43] KUEHL V A, YIN J, DUONG P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[J]. Journal of the American Chemical Society, 2018, 140(51): 18200-18207.
[44] LIU J, LI Q, MAO F, et al. 2D MOFs-based materials for the application of water pollutants removing: Fundamentals and prospects[J]. Chemistry-An Asian Journal, 2021, 16(22): 3585-3598.
[45] XIE Y, WU X, SHI Y, et al. Recent progress in 2D metal‐organic framework‐related materials[J]. Small, 2023, 20(1): 2305548.
[46] YANG Y, YANG X, LIANG L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science, 2019, 364(6445): 1057-1062.
[47] CHAKRABORTY G, PARK I-H, MEDISHETTY R, et al. Two-Dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chemical Reviews, 2021, 121(7): 3751-3891.
[48] LóPEZ-CABRELLES J, MAñAS-VALERO S, VITóRICA-YREZáBAL I J, et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization[J]. Nature Chemistry, 2018, 10(10): 1001-1007.
[49] NIELSEN R B, KONGSHAUG K O, FJELLVåG H. Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4)[J]. Journal of Materials Chemistry, 2008, 18(9): 1002-1007.
[50] DING Y, CHEN Y-P, ZHANG X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent[J]. Journal of the American Chemical Society, 2017, 139(27): 9136-9139.
[51] AMO-OCHOA P, WELTE L, GONZáLEZ-PRIETO R, et al. Single layers of a multifunctional laminar Cu(Ⅰ,Ⅱ) coordination polymer[J]. Chemical Communications, 2010, 46(19): 3262-3264.
[52] DMITRIEV A, SPILLMANN H, LIN N, et al. Modular assembly of two‐dimensional metal-organic coordination networks at a metal surface[J]. Angewandte Chemie International Edition, 2003, 42(23): 2670-2673.
[53] HUANG L, ZHANG X, HAN Y, et al. In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts[J]. Journal of Materials Chemistry A, 2017, 5(35): 18610-18617.
[54] CLOUGH A J, YOO J W, MECKLENBURG M H, et al. Two-Dimensional metal-organic surfaces for efficient hydrogen evolution from water[J]. Journal of the American Chemical Society, 2014, 137(1): 118-121.
[55] RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2014, 14(1): 48-55.
[56] ZHAO M, WANG Y, MA Q, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Advanced Materials, 2015, 27(45): 7372-7378.
[57] PUSTOVARENKO A, GOESTEN M G, SACHDEVA S, et al. Nanosheets of nonlayered aluminum metal-organic frameworks through a surfactant‐assisted method[J]. Advanced Materials, 2018, 30(26): 1707234.
[58] JIANG L, ZHOU H, YANG H, et al. Applications of hierarchical metal-organic frameworks and their derivatives in electrochemical energy storage and conversion[J]. Journal of Energy Storage, 2022, 55: 105354.
[59] CHEN W, HAN B, TIAN C, et al. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 244: 996-1003.
[60] ZHANG Y, ZHANG H-B, WU X, et al. Nanolayered cobalt@carbon hybrids derived from metal–organic frameworks for microwave absorption[J]. ACS Applied Nano Materials, 2019, 2(4): 2325-2335.
[61] XIAO L, XU R, YUAN Q, et al. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon[J]. Talanta, 2017, 167: 39-43.
[62] XIAO L, WANG Z, GUAN J. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges[J]. Coordination Chemistry Reviews, 2022, 472: 214777.
[63] ANG H, HONG L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28079-28088.
[64] PENG Y, LI Y, BAN Y, et al. Metal-Organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
[65] WANG Y, ZHAO M, PING J, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic‐framework nanosheets used as biomimetic enzymes[J]. Advanced Materials, 2016, 28(21): 4149-4155.
[66] WANG Q, SUN J, WEI D. Two‐Dimensional metal‐organic frameworks and covalent organic frameworks[J]. Chinese Journal of Chemistry, 2022, 40(11): 1359-1385.
[67] FANG X, ZHU Y, DONG H, et al. Ability evaluation of thiophenic sulfurs capture with a novel (MOF-818)-on-(Cu-BTC) composite in the presence of moisture[J]. Microporous and Mesoporous Materials, 2022, 333: 111756.
[68] JIAN M, QIU R, XIA Y, et al. Ultrathin water-stable metal-organic framework membranes for ion separation[J]. Science Advances, 2020, 6(23): eaay3998.
[69] BETHI B, SONAWANE S H, BHANVASE B A, et al. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review[J]. Chemical Engineering and Processing - Process Intensification, 2016, 109: 178-189.
[70] 孙宁宁, 林英姿, 刘成宇, et al. 高级氧化技术去除水中药物和个人护理品的研究进展[J]. 辽宁化工, 2024, 53(03): 434-438.
[71] 郭东丽, 赵志远, 尤世界, 刘艳彪. 纳米限域催化剂在高级氧化水处理中的应用研究进展[J]. 材料导报, 2022, 36(20): 17-23.
[72] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705.
[73] LI N, LU X, HE M, et al. Catalytic membrane-based oxidation-filtration systems for organic wastewater purification: A review[J]. Journal of Hazardous Materials, 2021, 414: 125478.
[74] LI X, LI X, WANG B. H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: Metal dependence of boosting reactive oxygen species generation[J]. Journal of Hazardous Materials, 2022, 440: 129757.
[75] ZHAO S, WANG Y, DONG J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 16184.
[76] WANG Y, LIU Y, WANG H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019, 2(3): 2063-2071.
[77] JIANG G, LIU Y, WU Y, et al. Transmission and radiation of acoustic oblique incident through tube arrays based on phononic crystals theory[J]. Applied Acoustics, 2017, 116: 117-126.
[78] SONG X, WANG L, TANG C Y, et al. Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process[J]. Desalination, 2015, 369: 1-9.
[79] XING C, HAN J, PEI X, et al. Tunable graphene oxide nanofiltration membrane for effective dye/salt separation and desalination[J]. ACS Appl Mater Interfaces, 2021, 13(46): 55339-55348.
[80] WEI Y, YANG Z, WANG L, et al. Facile ZIF-8 nanocrystals interlayered solvent-resistant thin-film nanocomposite membranes for enhanced solvent permeance and rejection[J]. Journal of Membrane Science, 2021, 636: 119586.
[81] ZHOU X F, LIANG J P, ZHAO Z L, et al. Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon[J]. Journal of Hazardous Materials, 2021, 403: 123626.
[82] ZHANG S, SUN M, HEDTKE T, et al. Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement[J]. Environmental Science & Technology, 2020, 54(17): 10868-10875.
[83] ZHANG S, HEDTKE T, ZHU Q, et al. Membrane-Confined iron oxychloride nanocatalysts for highly efficient heterogeneous fenton water treatment[J]. Environmental Science & Technology, 2021, 55(13): 9266-9275.
[84] ZHANG S, HEDTKE T, WANG L, et al. Engineered nanoconfinement accelerating spontaneous manganese-catalyzed degradation of organic contaminants[J]. Environmental Science & Technology, 2021, 55(24): 16708-16715.
[85] MI Y F, WANG N, QI Q, et al. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination[J]. Separation and Purification Technology, 2020, 248: 117079.
[86] LIU S, WANG Z, BAN M, et al. Chelation–assisted in situ self-assembly route to prepare the loose PAN-based nanocomposite membrane for dye desalination[J]. Journal of Membrane Science, 2018, 566: 168-180.
[87] LAU W-J, ISMAIL A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control — a review[J]. Desalination, 2009, 245(1): 321-348.
[88] LI Y, DAI R, ZHOU H, et al. Aramid nanofiber membranes reinforced by Mxene nanosheets for recovery of dyes from textile wastewater[J]. ACS Appl Nano Mater, 2021, 4(6): 6328-6336.
[89] ZHANG H, BIN L, PAN J, et al. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt[J]. Journal of Membrane Science, 2017, 539: 128-137.
[90] RITT C L, STASSIN T, DAVENPORT D M, et al. The open membrane database: Synthesis-structure-performance relationships of reverse osmosis membranes[J]. Journal of Membrane Science, 2022, 641: 119927.
[91] YANG Z, GUO H, TANG C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination[J]. Journal of Membrane Science, 2019, 590: 117297.
[92] DENG H, DOONAN C J, FURUKAWA H, et al. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010, 327(5967): 846-850.
[93] ZHOU H C, JEDDREY R L, OMAR M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674.
[94] SHINDE D B, SHENG G, LI X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2018, 140(43): 14342-14349.
[95] LI W, SU P, LI Z, et al. Ultrathin metal-organic framework membrane production by gel-vapour deposition[J]. Nature Communications, 2017, 8(1): 406.
[96] WANG Z, WANG D, ZHANG S, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials, 2016, 28(17): 3399-3405.
[97] LI R, WANG Z, YUAN Z, et al. A comprehensive review on water stable metal-organic frameworks for large-scale preparation and applications in water quality management based on surveys made since 2015[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(22): 4038-4071.
[98] DAGLAR H, ERUCAR I, KESKIN S. Recent advances in simulating gas permeation through MOF membranes[J]. Materials Advances, 2021, 2(16): 5300-5317.
[99] ZHAO D L, FENG F, SHEN L, et al. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation[J]. Chemical Engineering Journal, 2023, 454: 140447.
[100]ZHANG X, LI H, WANG J, et al. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation[J]. Journal of Membrane Science, 2019, 581: 321-330.
[101]WEN Y, ZHANG X, LI X, et al. Metal-Organic framework nanosheets for thin-film composite membranes with enhanced permeability and selectivity[J]. ACS Applied Nano Materials, 2020, 3(9): 9238-9248.
[102]PENG Y, YANG W. 2D metal-organic framework materials for membrane-based separation[J]. Advanced Materials Interfaces, 2020, 7(1): 1901514.
[103]FENG Y, WANG Z, FAN W, et al. Engineering the pore environment of metal-organic framework membranes via modification of the secondary building unit for improved gas separation[J]. Journal of Materials Chemistry A, 2020, 8(26): 13132-13141.
[104]LI S, GU W, SUN Y, et al. Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching[J]. Ceramics International, 2021, 29930-29940.
[105]YU C, ZHANG B, YAN F, et al. Engineering nano-porous graphene oxide by hydroxyl radicals[J]. Carbon, 2016, 105: 291-296.
[106]HU M, MI B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723.
[107]ZOU G, HOU H, ZHAO G, et al. N-rich carbon coated CoSnO3 derived fromin situconstruction of a Co-MOF with enhanced sodium storage performance[J]. Journal of Materials Chemistry A, 2018, 6(11): 4839-4847.
[108]HANG X, XUE Y, CHENG Y, et al. From Co-MOF to CoNi-MOF to Ni-MOF: A facile synthesis of 1D micro-nanomaterials[J]. Inorganic Chemistry, 2021, 60(17): 13168-13176.
[109]ZHANG H, WANG T, SUMBOJA A, et al. Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn-Air batteries[J]. Advanced Functional Materials, 2018, 28(40): 1804846.
[110]HAN J-J, ZHANG Q-Y, HUANG M-Y, et al. Two-Dimensional WS2 membranes constructed on different substrates for efficient dye desalination[J]. Desalination, 2020, 480: 114380.
[111]SCHNEEMANN A, BON V, SCHWEDLER I, et al. Flexible metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 6062-6096.
[112]YUAN S, PENG J, CAI B, et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution[J]. Nature Materials, 2022, 21(6): 673-680.
[113]WANG H, CHEN X, QI Y, et al. Aggregation-induced emission (AIE)-guided dynamic assembly for disease imaging and therapy[J]. Advanced Drug Delivery Reviews, 2021, 179: 114028.
[114]HOENIG E, STRONG S E, WANG M, et al. Controlling the structure of MoS2 membranes via covalent functionalization with molecular spacers[J]. Nano Letters, 2020, 20(11): 7844-7851.
[115]XIE X, CHEN C, ZHANG N, et al. Microstructure and surface control of MXene films for water purification[J]. Nature Sustainability, 2019, 2(9): 856-862.
[116]DING J, ZHAO H, XU B, et al. Biomimetic sustainable graphene ultrafast-selective nanofiltration membranes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8986-8993.
[117]DING L, XIAO D, LU Z, et al. Oppositely charged Ti3C2Tx Mxene membranes with 2D nanofluidic channels for osmotic energy harvesting[J]. Angewandte Chemie International Edition, 2020, 59(22): 8720-8726.
[118]RITT C L, WERBER J R, DESHMUKH A, et al. Monte carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: Implications for permeability and selectivity[J]. Environmental Science & Technology, 2019, 53(11): 6214-6224.
[119]WANG Z, TU Q, ZHENG S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298.
[120]YANG G, LIU D, CHEN C, et al. Stable Ti3C2Tx MXene-boron nitride membranes with low internal resistance for enhanced salinity gradient energy harvesting[J]. ACS Nano, 2021, 15(4): 6594-6603.
[121]LIU Y, WANG X-P, ZONG Z-A, et al. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination[J]. Journal of Membrane Science, 2022, 653: 120520.
[122]WANG L, SONG X, WANG T, et al. Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application[J]. Applied Surface Science, 2015, 330: 118-125.
[123]MAJEED S, FIERRO D, BUHR K, et al. Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes[J]. Journal of Membrane Science, 2012, 403-404: 101-109.
[124]SEE TOH Y H, LOH X X, LI K, et al. In search of a standard method for the characterisation of organic solvent nanofiltration membranes[J]. Journal of Membrane Science, 2007, 291(1-2): 120-125.
[125]SAPKOTA B, LIANG W, VAHIDMOHAMMADI A, et al. High permeability sub-nanometre sieve composite MoS2 membranes[J]. Nature Communications, 2020, 11(1): 2747.
[126]CHEN L, SHI G, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383.
[127]WANG L, REHMAN D, SUN P-F, et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16906-16915.
[128]MA J, TANG X, HE Y, et al. Robust stable MoS2/GO filtration membrane for effective removal of dyes and salts from water with enhanced permeability[J]. Desalination, 2020, 480: 114328.
[129]HUANG L, HUANG S, VENNA S R, LIN H. Rightsizing nanochannels in reduced graphene oxide membranes by solvating for dye desalination[J]. Environmental Science & Technology, 2018, 52(21): 12649-12655.
[130]ZHU L, WANG H, BAI J, et al. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination[J]. Desalination, 2017, 420: 145-157.
[131]RASOOL K, PANDEY R P, RASHEED P A, et al. Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)[J]. Materials Today, 2019, 30: 80-102.
[132]FATHIZADEH M, XU W L, ZHOU F, et al. Graphene oxide: a novel 2‐dimensional material in membrane separation for water purification[J]. Advanced Materials Interfaces, 2017, 4(5): 1600918.
[133]LONG L, WU C, YANG Z, et al. Carbon nanotube interlayer enhances water permeance and antifouling performance of nanofiltration membranes: Mechanisms and experimental evidence[J]. Environmental Science & Technology, 2022, 56(4): 2656-2664.
[134]LIU Y, CHEN X, YANG Y, et al. Activation of persulfate with metal-organic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-Chloroaniline removal[J]. Chemical Engineering Journal, 2019, 358: 408-418.
[135]WU X, RIGBY K, HUANG D, et al. Single-Atom cobalt incorporated in a 2D graphene oxide membrane for catalytic pollutant degradation[J]. Environmental Science & Technology, 2022, 56(2): 1341-1351.
[136]CHEN W, FAN Z, PAN X, et al. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419.
[137]ZHONG D, WU Y, LV L, et al. Magnetic confinement-enabled membrane reactor for enhanced removal of wide-spectrum contaminants in water: Proof of concept, synergistic decontamination mechanisms, and sustained treatment performance[J]. Water Research, 2023, 231: 119603.
[138]ŚCIEŻYŃSKA D, BURY D, MARCINOWSKI P, et al. Two-Dimensional nanostructures in the world of advanced oxidation processes[J]. Catalysts, 2022, 12(4): 358.
[139]ZHANG M, XIAO C, ZHANG C, et al. Large-Scale synthesis of biomass@MOF-derived porous carbon/cobalt nanofiber for environmental remediation by advanced oxidation processes[J]. ACS ES&T Engineering, 2020, 1(2): 249-260.
[140]DUAN J, LI Y, PAN Y, et al. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials[J]. Coordination Chemistry Reviews, 2019, 395, 25-45.
[141]NGUYEN H L. Metal-Organic frameworks can photocatalytically split water-why not?[J]. Advanced Materials, 2022, 34(20): e2200465.
[142]XIAO L, XIA Y, YU Y, et al. Usability of unstable metal organic framework enabled by carbonization within flow battery membrane under harsh environment[J]. Journal of Membrane Science, 2023, 671: 121349.
[143]LI H, WU P, XIAO Y, et al. Metal-Organic frameworks as metal ion precursors for the synthesis of nanocomposites for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(12): 4763-4769.
[144]HU X, WANG H, QI S, et al. Co/C nanomaterial derived from Co metal-organic framework for oxygen evolution reaction[J]. Ionics, 2021, 28(2): 813-821.
[145]TAO J, JIAO Z, XU L, et al. Construction of MOF-Derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption[J]. Carbon, 2021, 184: 571-582.
[146]ZHOU L, CHEN F F, CHEN J, et al. Highly dispersive Ni@C and Co@C nanoparticles derived from metal-organic monolayers for enhanced photocatalytic CO2 reduction[J]. Inorganic Chemistry, 2021, 60(14): 10738-10748.
[147]WANG Z, MENG C, ZHANG W, et al. Honeycomb-Like holey Co3O4 membrane triggered peroxymonosulfate activation for rapid degradation of organic contaminants[J]. Science of the Total Environment, 2022, 814: 152698.
[148]ZHANG W, ZHANG S, MENG C, et al. Nanoconfined catalytic membranes assembled by cobalt-functionalized graphitic carbon nitride nanosheets for rapid degradation of pollutants[J]. Applied Catalysis B: Environmental, 2023, 322: 122098.
[149]ZHANG M, XIAO C, YAN X, et al. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: Size-Exclusion and confinement effect[J]. Environmental Science & Technology, 2020, 54(16): 10289-10300.
[150]ZHANG X, LIU J, ZHANG H, et al. Uncovering the pathway of peroxymonosulfate activation over Co0.5Zn0.5O nanosheets for singlet oxygen generation: Performance and membrane application[J]. Applied Catalysis B: Environmental, 2023, 327: 122429.
[151]ZHONG Q, LIU J, WANG J, et al. Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO2@C decorated Mg-Fe layered double oxides: Degradation pathways and mechanism[J]. Chemosphere, 2022, 300: 134564.
[152]JIA J, SUN W, ZHANG Q, et al. Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2020, 261: 118249.
[153]SUN M, ZUCKER I, DAVENPORT D M, et al. Reactive, self-cleaning ultrafiltration membrane functionalized with iron oxychloride nanocatalysts[J]. Environmental Science & Technology, 2018, 52(15): 8674-8683.
[154]MENG C, DING B, ZHANG S, et al. Angstrom-confined catalytic water purification within Co-TiOX laminar membrane nanochannels[J]. Nature Communications, 2022, 13(1): 4010.
[155]LI X, WANG Z, ZHANG B, et al. FexCo3-xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2016, 181: 788-799.
[156]HU L, ZHANG G, WANG Q, et al. Facile synthesis of novel Co3O4-Bi2O3 catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2017, 326: 1095-1104.
[157]HUANG G X, WANG C Y, YANG C W, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
[158]LIU Y, LUO R, LI Y, et al. Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for bisphenol A degradation[J]. Chemical Engineering Journal, 2018, 347: 731-740.
[159]LI X, AO Z, LIU J, et al. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts[J]. ACS Nano, 2016, 10(12): 11532-11540.
[160]DU J, BAO J, LIU Y, et al. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J]. Journal of Hazardous Materials, 2016, 320: 150-159.
[161]MA W, WANG N, FAN Y, et al. Non-radical-dominated catalytic degradation of bisphenol A by ZIF-67 derived nitrogen-doped carbon nanotubes frameworks in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 336: 721-731.
[162]GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation[J]. Applied Catalysis B: Environmental, 2018, 233: 35-45.
[163]WANG Y, ZHAO X, CAO D, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88.
[164]LIN K-Y A, ZHANG Z-Y. Degradation of bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327.
[165]CHEN M, ZHU L, LIU S, et al. Efficient degradation of organic pollutants by low-level Co2+ catalyzed homogeneous activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 2019, 371: 456-462.
[166]YANG Y, XIE J, YAO Y, et al. MOF derived carbon nanofibers substrate supported polymeric ultrafiltration membrane for efficient removal of trace organic contaminants[J]. ACS ES&T Water, 2022, 3, 7: 1884-1892.
[167]XIE J, LIAO Z, ZHANG M, et al. Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water[J]. Environmental Science & Technology, 2021, 55(4): 2652-2661.
[168]ZHEN Y, SUN Z, QIE H, et al. Selectively efficient removal of micropollutants by N-doped carbon modified catalytic ceramic membrane: Synergy of membrane confinement and surface reaction[J]. Applied Catalysis B: Environmental, 2023, 324: 122188.
[169]TAN J, XU C, ZHANG X, et al. MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes[J]. Separation and Purification Technology, 2022, 289: 120812.
[170]CHEN H, LIU W, QIN Z. ZnO/ZnFe2O4 nanocomposite as a broad-spectrum photo-Fenton-like photocatalyst with near-infrared activity[J]. Catalysis Science & Technology, 2017, 7(11): 2236-2244.
[171]CHEN X, DAI J, SHI G, et al. Visible light photocatalytic degradation of dyes by β-Bi2O3/graphene nanocomposites[J]. Journal of Alloys and Compounds, 2015, 649: 872-877.
[172]ZHANG Y, ZHANG N, WANG T, et al. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3[J]. Applied Catalysis B: Environmental, 2019, 245: 410-419.
[173]GONG C, CHEN F, YANG Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B[J]. Chemical Engineering Journal, 2017, 321: 222-232.
[174]PANG Y, KONG L, CHEN D, et al. Facilely synthesized cobalt doped hydroxyapatite as hydroxyl promoted peroxymonosulfate activator for degradation of Rhodamine B[J]. Journal of Hazardous Materials, 2020, 384: 121447.
[175]LIN K A, CHEN B J. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate[J]. Chemosphere, 2017, 166: 146-156.
修改评论