中文版 | English
题名

可预设负泊松比和弹性模量的超材料智能化设计和制造

其他题名
INTELLIGENT DESIGN AND FABRICATION OF METAMATERIALS WITH PREDEFINED NEGATIVE POISSON'S RATIO AND ELASTIC MODULUS
姓名
姓名拼音
CUI Jipeng
学号
12132387
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
章亮炽
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

超材料(Metamaterials)是指通过人工设计,实现超常物理性能的微结构阵列材料。作为新兴的人工微结构材料,其微观单元的几何构型设计在超材料的研究和应用中扮演了至关重要的角色,最终决定了超材料的宏观物理性能。然而,目前大部分超材料的研究遵循“设计-测试-分析”的正向研究方法。在针对具有特定性质或参数的微观结构进行逆向设计时,这种方法具有极大的局限性。鉴于此,亟需寻找一种能够实现预设性能的微结构逆向设计方法,以桥接超材料的理论设计与工业实际应用。

本文首先提出了一款新型三维拉胀与压扭耦合的超材料,以解决可重入结构在压缩过程中负泊松比不持续的问题。该结构将基础二维凸几何按照特定规则排列组装,赋予了非可重入结构负泊松比(Negative Poisson's Ratio, NPR)效应。采用实验和数值模拟相结合的分析方法,验证了所提出微结构单元的变形机理及性质预测模型。

为了使超材料的设计及性质预测一般化,本文采用移动可变形组件拓扑优化与智能优化相结合的方法,进一步提出了可预设泊松比及弹性模量的超材料智能化设计方法(Intelligent Design System, IDS)。在有限元计算和实验测试下,优化所得超材料微结构的测试性能与预设相吻合,证明了性质预测模型的准确性以及加工制造的可靠性。此外,将提出的方法整合成便携式可执行程序,方便迁移使用。最后,建立了多目标优化下的模糊数学模型,明确了IDS许可预设性能的范围边界,以供使用者提前预知收敛情况。除此之外,还利用IDS逆向设计可吸收振动能量的超材料,结合数值分析验证泊松比及体积分数对吸能效应的影响,证实了该设计方法在工业应用中的有效性。

研究结果表明,所提出的设计方法有效地沟通了力学超材料理论设计及工业应用,显著提高了超材料的设计效率,并为非专业人士应用超材料提供了便利。通过简化设计流程达到降低技术门槛的目的,不仅为超材料的设计提供了大量的数据库,还推动了超材料技术的广泛应用。

其他摘要

Metamaterials are microstructured arrays of materials that achieve extraordinary physical properties through artificial design. As emerging artificial microstructured unit materials, the design of their unit geometry configuration and ordering microscopic plays a crucial role in the research and application of metamaterials, and ultimately determines the macroscopic physical properties of metamaterials. However, most of the existing research on metamaterials follows the forward research path of design-test-analysis, which cannot realize the reverse design of microstructures for specific functions or parameters. In view of this, there is an urgent need to find a method that can predefine the properties of metamaterials and design microstructural units through reverse engineering to bridge the gap between theoretical design of metamaterials and practical industrial applications.

This thesis presents a novel approach to designing negative Poisson's ratio (NPR) metamaterials, culminating in the development of a three-dimensional tensile and compression-torsion coupled metamaterial based on this innovative design strategy. The methodology hinges on assembling two-dimensional structures that imparts an NPR effect to the non-reentrant structure. The authors validate the deformation mechanism and the Poisson's ratio prediction model of their proposed microstructural unit through a combination of experimental and numerical analyses. Advancing further, the thesis introduces an intelligent design system (IDS) for metamaterials with pre-defined properties. This system utilizes a topology optimization method for movable morphable components (MMC), integrated with an intelligent optimization algorithm, thus broadening the scope of reverse design and property prediction for metamaterials. By employing this method, metamaterials with customizable Poisson's ratios and Young's moduli are developed. The precision of the predictions and the reliability of the fabrication processes are corroborated through finite element analysis and experimental validation. Moreover, the authors have packaged the IDS into a software and established a fuzzy model under a multi-objective optimization framework. IDS provides users with boundaries on the predictable performance range of the design system, offering valuable guidance. Finally, IDS was used to carry out the reverse design of the vibration-absorbing metamaterials, which was verified using numerical analysis to confirm the effectiveness of the design method in industrial applications.

The results show that the IDS effectively links up the theoretical design and industrial application of metamaterials, greatly improves the design efficiency of metamaterials, and facilitates the application of metamaterials by non-specialists.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] ZHOU J, LI L. Metamaterial technology and its application prospects[J]. Chinese Journal of Engineering Science, 2018, 20(6): 69.
[2] WOOD J. The top ten advances in materials science[J]. Materials Today, 2008, 11(1-2): 40-45.
[3] 陆洲. 光启技术(002625):订单不断落地, 确立超材料尖端军品龙头地位[R]. 东兴证券, 2019.
[4] NORONHA J, DASH J, ROGERS J, et al. Titanium multi-topology metamaterials with exceptional strength[J]. Advanced Materials, 2024: 2308715.
[5] ZHONG H, DAS R, GU J, et al. Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model[J]. Materials Today, 2023, 68: 96-107.
[6] CHANG Y, WEI J, LEE C. Metamaterials – from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049-3070.
[7] WANG J, DAI G, HUANG J. Thermal metamaterial: fundamental, application, and outlook[J]. iScience, 2020, 23(10): 101637.
[8] KAPNISI M, MANSFIELD C, MARIJON C, et al. Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction[J]. Advanced Functional Materials, 2018, 28(21): 1800618.
[9] ALITALO P, TRETYAKOV S. Electromagnetic cloaking with metamaterials[J]. Materials Today, 2009, 12(3): 22-29.
[10] ARBABI A, FARAON A. Advances in optical metalenses[J]. Nature Photonics, 2023, 17(1): 16-25.
[11] ZHANG S, XIA C, FANG N. Broadband acoustic cloak for ultrasound waves[J]. Physical review letters, 2011, 106(2): 024301.
[12] ZHANG C, CAO W K, WU L T, et al. A reconfigurable active acoustic metalens[J]. Applied Physics Letters, 2021, 118(13): 133502.
[13] SONG C, LI S, BAO H, et al. Design of thermal diodes using asymmetric thermal deformation of a Kirigami structure[J]. Materials & Design, 2020, 193: 108734.
[14] IMRAN M, ZHANG L, GAIN A K. Advanced thermal metamaterial design for temperature control at the cloaked region[J]. Scientific Reports, 2020, 10(1): 11763.
[15] REN T, LIU C, LI F, et al. Active tuning of the vibration band gap characteristics of periodic laminated composite metamaterial beams[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(6): 843-859.
[16] MELDE K, MARK A G, QIU T, et al. Holograms for acoustics[J]. Nature, 2016, 537(7621): 518-522.
[17] PETITEAU D, GUENNEAU S, BELLIEUD M, et al. Spectral effectiveness of engineered thermal cloaks in the frequency regime[J]. Scientific Reports, 2014, 4(1): 1-9.
[18] NARAYANA S, SATO Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303.
[19] LI Y, SHEN X, WU Z, et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503.
[20] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218-e218.
[21] LIN R J, SU V C, WANG S, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231.
[22] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.
[23] HEO H, JU J, KIM D M, et al. Passive morphing airfoil with honeycombs[C]//ASME International Mechanical Engineering Congress and Exposition: Vol. 54877. 2011: 263-271.
[24] HE W, BAI J, CHEN X, et al. Reversible dougong structured receptor–ligand recognition for building dynamic extracellular matrix mimics[J]. Proceedings of the National Academy of Sciences, 2022, 119(8): e2117221119.
[25] BONFANTI S, GUERRA R, FONT-CLOS F, et al. Automatic design of mechanical metamaterial actuators[J]. Nature Communications, 2020, 11(1): 4162.
[26] TAN X, CHEN S, WANG B, et al. Real-time tunable negative stiffness mechanical metamaterial[J]. Extreme Mechanics Letters, 2020, 41: 100990.
[27] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
[28] REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: a review[J]. Smart Materials and Structures, 2018, 27(2): 023001.
[29] JI S, LI L, MOTRA H B, et al. Poisson’s ratio and auxetic properties of natural rocks[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1161-1185.
[30] MARMIER A, MILLER W, EVANS K E. Negative Poisson’s ratio: a ubiquitous feature of wood[J]. Materials Today Communications, 2023, 35.
[31] LETHBRIDGE Z A D, WALTON R I, MARMIER A S H, et al. Elastic anisotropy and extreme Poisson’s ratios in single crystals[J]. Acta Materialia, 2010, 58(19): 6444-6451.
[32] 周济, 于相龙. 力学超材料的构筑与超常性能[M]. 中国科学技术大学出版社, 2021.
[33] TIMOSHENKO S P. Theory of elasticity[M]. 3RD edition. McGraw-Hill College, 1970.
[34] LAKES R. Foam structures with a negative Poisson’s ratio[J]. Science, 1987, 235(4792): 1038-1040.
[35] EVANS K E, ALDERSON A. Auxetic materials: functional materials and structures from lateral thinking![J]. Advanced Materials, 2000, 12(9): 617-628.
[36] KOLKEN H M, ZADPOOR A A. Auxetic mechanical metamaterials[J]. RSC Advances, 2017, 7(9): 5111-5129.
[37] HO D T, NGUYEN C T, KWON S Y, et al. Auxeticity in metals and periodic metallic porous structures induced by elastic instabilities[J]. Physica Status Solidi (B), 2019, 256(1): 1800122.
[38] BERTOLDI K, REIS P M, WILLSHAW S, et al. Negative Poisson’s ratio behavior induced by an elastic instability[J]. Advanced Materials, 2010, 22(3): 361-366.
[39] LI J, SLESARENKO V, RUDYKH S. Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials[J]. Soft Matter, 2018, 14(30): 6171-6180.
[40] PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson’s ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3): 305-314.
[41] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research- materials with negative Poisson’s ratio: a review[J]. Advanced Engineering Materials, 2016, 18(11): 1847-1870.
[42] KAMRAVA S, MOUSANEZHAD D, EBRAHIMI H, et al. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties[J]. Scientific Reports, 2017, 7(1): 46046.
[43] ZHAI Z, WU L, JIANG H. Mechanical metamaterials based on origami and kirigami[J]. Applied Physics Reviews, 2021, 8(4): 041319.
[44] FERNANDES M C, MHATRE S, FORTE A E, et al. Surface texture modulation via buckling in porous inclined mechanical metamaterials[J]. Extreme Mechanics Letters, 2022, 51: 101549.
[45] Re-entrant | Encyclopedia.com[EB/OL].
[2024-03-28]. https://www. encyclopedia.com /literature-and-arts /art-and-architecture/architecture/re-entrant.
[46] YANG L, HARRYSSON O, WEST H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69-70: 475-490.
[47] GAO S, LIU W, ZHANG L, et al. A new polymer-based mechanical metamaterial with tailorable large negative Poisson’s ratios[J]. Polymers, 2020, 12(7): 1492.
[48] LOGAKANNAN K P, RAMACHANDRAN V, RENGASWAMY J, et al. Dynamic performance of a 3D re-entrant structure[J]. Mechanics of Materials, 2020, 148: 103503.
[49] ROKOŠ O, AMEEN M M, PEERLINGS R H J, et al. Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields[J]. Journal of the Mechanics and Physics of Solids, 2019, 123: 119-137.
[50] WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative poisson ratio[J]. Physics Letters A, 1989, 137(1): 60-64.
[51] WU W, HU W, QIAN G, et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review[J]. Materials & Design, 2019, 180: 107950.
[52] DUAN S, WEN W, FANG D. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior[J]. Journal of the Mechanics and Physics of Solids, 2018, 121: 23-46.
[53] OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7(1): 10929.
[54] LYU S, QIN B, DENG H, et al. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis[J]. International Journal of Mechanical Sciences, 2021, 212: 106791.
[55] TENG X C, REN X, ZHANG Y, et al. A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption[J]. International Journal of Mechanical Sciences, 2022, 229: 107524.
[56] FU M, LIU F, HU L. A novel category of 3D chiral material with negative Poisson’s ratio[J]. Composites Science and Technology, 2018, 160: 111-118.
[57] LIN Z, NOVELINO L S, WEI H, et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials[J]. Small, 2020, 16(35): 2002229.
[58] JIN S, KORKOLIS Y P, LI Y. Shear resistance of an auxetic chiral mechanical metamaterial[J]. International Journal of Solids and Structures, 2019, 174-175: 28-37.
[59] LEI M, HONG W, ZHAO Z, et al. 3D Printing of auxetic metamaterials with digitally reprogrammable shape[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22768-22776.
[60] ZHANG H, GUO X, WU J, et al. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves[J]. Science Advances, 2018, 4(6): eaar8535.
[61] MEENA K, SINGAMNENI S. An elongated S-shaped auxetic mechanical meta-material structure[J]. Materials Today: Proceedings, 2020, 33: 5725-5728.
[62] KHADEM-REZA L, ETEMADI E, ABBASLOU M, et al. Design of novel 3D auxetic structures based on S-shaped unit-cells[J]. Smart Materials and Structures, 2022, 31(7): 075024.
[63] QI C, JIANG F, REMENNIKOV A, et al. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[J]. Composites Part B: Engineering, 2020, 197: 108117.
[64] JIANG F, YANG S, ZHANG Y, et al. Fabrication and crushing response of graded re-entrant circular auxetic honeycomb[J]. International Journal of Mechanical Sciences, 2023, 242: 107999.
[65] LI A, LEI Y, BAI Y, et al. Improved lightweight corrugated network design to auxetic perforated metamaterial[J]. International Journal of Mechanical Sciences, 2023, 243: 108040.
[66] MEENA K, SINGAMNENI S. A new auxetic structure with significantly reduced stress concentration effects[J]. Materials & Design, 2019, 173: 107779.
[67] YANG H, JIANG W, LI M, et al. Multi-material 3D double-V metastructures with tailorable Poisson’s ratio and thermal expansion[J]. International Journal of Mechanical Sciences, 2021, 210: 106733.
[68] AI L, GAO X L. Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm[J]. Composite Structures, 2019, 229: 111318.
[69] RAFSANJANI A, PASINI D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[J]. Extreme Mechanics Letters, 2016, 9: 291-296.
[70] BENOUHIBA A, ROUGEOT P, ANDREFF N, et al. Origami-based auxetic tunable Helmholtz resonator for noise control[J]. Smart Materials and Structures, 2021, 30(3): 035029.
[71] THOMSON W. Theory of vibration with applications[M]. 1st edition. Crc Press, 1996.
[72] GAO Y, WU Q, WEI X, et al. Composite tree-like re-entrant structure with high stiffness and controllable elastic anisotropy[J]. International Journal of Solids and Structures, 2020, 206: 170-182.
[73] SAFIKHANI NASIM M, ETEMADI E. Three dimensional modeling of warp and woof periodic auxetic cellular structure[J]. International Journal of Mechanical Sciences, 2018, 136: 475-481.
[74] YANG H, WANG B, MA L. Mechanical properties of 3D double-U auxetic structures[J]. International Journal of Solids and Structures, 2019, 180-181: 13-29.
[75] FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072-1074.
[76] TANG Y, YIN J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility[J]. Extreme Mechanics Letters, 2017, 12: 77-85.
[77] SHEN J, LIU K, ZENG Q, et al. Design and mechanical property studies of 3D re-entrant lattice auxetic structure[J]. Aerospace Science and Technology, 2021, 118: 106998.
[78] WU W, QI D, LIAO H, et al. Deformation mechanism of innovative 3D chiral metamaterials[J]. Scientific Reports, 2018, 8(1): 12575.
[79] LE D H, XU Y, TENTZERIS M M, et al. Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response[J]. Extreme Mechanics Letters, 2020, 36: 100670.
[80] LI J, YANG Q, HUANG N, et al. A novel mechanical metamaterial with tailorable Poisson’s ratio and thermal expansion based on a chiral torsion unit[J]. Smart Materials and Structures, 2021, 30(11): 115004.
[81] LAKES R S, ELMS K. Indentability of conventional and negative Poisson’s ratio foams[J]. Journal of Composite Materials, 1993, 27(12): 1193-1202.
[82] HAID D, FOSTER L, HART J, et al. Mechanical metamaterials for sports helmets: structural mechanics, design optimisation, and performance[J]. Smart Materials and Structures, 2023, 32(11): 113001.
[83] GAO S, GAIN A K, ZHANG L. A metamaterial for wearable piezoelectric energy harvester[J]. Smart Materials and Structures, 2020, 30(1): 015026.
[84] WANG J, LIU P, MA Z, et al. Experimental and field investigations on the impact-resistance mechanical properties of negative Poisson’s ratio bolt/cable[J]. Lithosphere, 2022, 2022(Special 11): 7057344.
[85] VEERABAGU U, PALZA H, QUERO F. Review: auxetic polymer-based mechanical metamaterials for biomedical applications[J]. ACS Biomaterials Science & Engineering, 2022, 8(7): 2798-2824.
[86] KIM M S, LEE Y, AHN J, et al. Skin-like omnidirectional stretchable platform with negative Poisson’s ratio for wearable strain–pressure simultaneous sensor[J]. Advanced Functional Materials, 2023, 33(3): 2208792.
[87] BETTINI P, AIROLDI A, SALA G, et al. Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process[J]. Composites Part B: Engineering, 2010, 41(2): 133-147.
[88] LIRA C, SCARPA F, RAJASEKARAN R. A gradient cellular core for aeroengine Fan blades based on auxetic configurations[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 907-917.
[89] MEI T, MENG Z, ZHAO K, et al. A mechanical metamaterial with reprogrammable logical functions[J]. Nature Communications, 2021, 12(1): 7234.
[90] MENG Z, YAN H, LIU M, et al. Encoding and storage of information in mechanical Metamaterials[J]. Advanced Science, 2023, 10(20): 2301581.
[91] MEI T, CHEN C Q. In-memory mechanical computing[J]. Nature Communications, 2023, 14(1): 5204.
[92] TIAN J, YANG J, ZHAO Y. Metamaterial with synergistically controllable Poisson’s ratio and thermal expansion coefficient[J]. International Journal of Mechanical Sciences, 2023, 256: 108488.
[93] FENG Q, LI X, YANG J. Two-dimensional multifunctional metal–organic framework with intrinsic bipolar magnetic semiconductivity and negative Poisson’s ratio[J]. ACS Applied Electronic Materials, 2022, 4(7): 3198-3204.
[94] REFAI K, MONTEMURRO M, BRUGGER C, et al. Determination of the effective elastic properties of titanium lattice structures[J]. Mechanics of Advanced Materials and Structures, 2020, 27(23): 1966-1982.
[95] REFAI K, BRUGGER C, MONTEMURRO M, et al. An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by Selective Laser Melting (SLM)[J]. International Journal of Fatigue, 2020, 138: 105623.
[96] ZHANG L, SONG B, CHOI S K, et al. Anisotropy-inspired, simulation-guided design and 3D printing of microlattice metamaterials with tailored mechanical-transport performances[J]. Composites Part B: Engineering, 2022, 236: 109837.
[97] DONG H W, ZHAO S D, WANG Y S, et al. Robust 2D/3D multi-polar acoustic metamaterials with broadband double negativity[J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103889.
[98] ZHANG L, SONG B, ZHANG J, et al. Decoupling microlattice metamaterial properties through a structural design strategy inspired by the Hall–Petch relation[J]. Acta Materialia, 2022, 238: 118214.
[99] 陈仕魁, 顾险峰. 心脏支架、折纸艺术与超材料设计[J]. 科技导报, 2017, 35(10): 105.
[100] SILVERBERG J L, EVANS A A, MCLEOD L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197): 647-650.
[101] HU F, WANG W, CHENG J, et al. Origami spring–inspired metamaterials and robots: An attempt at fully programmable robotics[J]. Science Progress, 2020, 103(3): 0036850420946162.
[102] SUN Y, SONG K, JU J, et al. Curved-creased origami mechanical metamaterials with programmable stabilities and stiffnesses[J]. International Journal of Mechanical Sciences, 2024, 262: 108729.
[103] ZHANG Z, ZHANG L, SONG B, et al. Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials[J]. Applied Materials Today, 2022, 26: 101268.
[104] HAMZEHEI R, ZOLFAGHARIAN A, DARIUSHI S, et al. 3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance[J]. Smart Materials and Structures, 2022, 31(3): 035001.
[105] MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J]. Physical Review Applied, 2018, 10(2): 024012.
[106] MEZA L R, ZELHOFER A J, CLARKE N, et al. Resilient 3D hierarchical architected metamaterials[J]. Proceedings of the National Academy of Sciences, 2015, 112(37): 11502-11507.
[107] SIGMUND O. Materials with prescribed constitutive parameters: an inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329.
[108] SIGMUND O. Tailoring materials with prescribed elastic properties[J]. Mechanics of Materials, 1995, 20(4): 351-368.
[109] ANDREASSEN E, LAZAROV B S, SIGMUND O. Design of manufacturable 3D extremal elastic microstructure[J]. Mechanics of Materials, 2014, 69(1): 1-10.
[110] WANG F, SIGMUND O, JENSEN J S. Design of materials with prescribed nonlinear properties[J]. Journal of the Mechanics and Physics of Solids, 2014, 69: 156-174.
[111] WANG M Y, WANG X, GUO D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246.
[112] VOGIATZIS P, CHEN S, WANG X, et al. Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method[J]. Computer-Aided Design, 2017, 83: 15-32.
[113] YU C, WANG Q, XIA Z, et al. Multiscale topology optimization for graded cellular structures based on level set surface cutting[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 32.
[114] NOGUCHI Y, YAMADA T, IZUI K, et al. Optimum design of an acoustic metamaterial with negative bulk modulus in an acoustic-elastic coupled system using a level set–based topology optimization method[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1300-1339.
[115] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055.
[116] 董佳斌. 基于机器学习和剪纸技术的负泊松比石墨烯结构设计及力学性能预测[D]. 江苏大学, 2023.
[117] WANG H, XIAO S H, ZHANG C. Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions[J]. Advanced Engineering Materials, 2021, 23(7): 2100102.
[118] SUNDARARAGHAVAN V, ZABARAS N. Classification and reconstruction of three-dimensional microstructures using support vector machines[J]. Computational Materials Science, 2005, 32(2): 223-239.
[119] BESSA M A, GLOWACKI P, HOULDER M. Bayesian machine learning in metamaterial design: fragile becomes supercompressible[J]. Advanced Materials, 2019, 31(48): 1904845.
[120] WILT J K, YANG C, GU G X. Accelerating auxetic metamaterial design with deep learning[J]. Advanced Engineering Materials, 2020, 22(5): 1901266.
[121] MAO Y, HE Q, ZHAO X. Designing complex architectured materials with generative adversarial networks[J]. Science Advances, 2020, 6(17): eaaz4169.
[122] UGURAL A C, FENSTER S K. Advanced strength and applied elasticity[M]. subsequent edition. Upper Saddle River, N.J: Pearson College Div, 2003.
[123] ZHU Y, JIANG S, ZHANG Q, et al. A novel monoclinic auxetic metamaterial with tunable mechanical properties[J]. International Journal of Mechanical Sciences, 2022, 236: 107750.
[124] LEMKALLI B, KADIC M, EL BADRI Y, et al. Mapping of elastic properties of twisting metamaterials onto micropolar continuum using static calculations[J]. International Journal of Mechanical Sciences, 2023, 254: 108411.
[125] BHULLAR S K. Influence of negative Poisson′s ratio on stent applications[J]. Advances in Materials, 2013, 2(3): 42.
[126] LIM T C. A 3D auxetic material based on intersecting double arrowheads[J]. Physica Status Solidi (B), 2016, 253(7): 1252-1260.
[127] GAO Y, WEI X, HAN X, et al. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism[J]. International Journal of Solids and Structures, 2021, 233: 111232.
[128] KYTHE P K. Fundamental solutions for differential operators and applications[M]. Boston, MA: Birkhäuser, 1996.
[129] EN ISO 6892-1:2019 - Metallic materials - Tensile testing - Part 1: Method of test at room temperature (ISO 6892-1:2019)[EB/OL].
[2024-03-17]. https://standards.iteh.ai/catalog/standards/cen/57cba0cf-85c8-4789-a472-58dfd159166c/en-iso-6892-1-2019.
[130] HASSANI B, HINTON E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure[J]. Computers & Structures, 1998, 69(6): 707-717.
[131] XIA L, BREITKOPF P. Design of materials using topology optimization and energy-based homogenization approach in Matlab[J]. Structural and Multidisciplinary Optimization, 2015, 52(6): 1229-1241.
[132] ZHANG L C (Liangchi). Solid mechanics for engineers[M]. Basingstoke ; New York : Palgrave, 2001.
[133] GIBIANSKY L V, TORQUATO S. Geometrical-parameter bounds on the effective moduli of composites[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(10): 1587-1613.
[134] LU C, HSIEH M, HUANG Z, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review[J]. Engineering, 2022, 17: 44-63.
[135] LI W, ZHANG L, CHEN X, et al. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3): 853-865.
[136] LI W, ZHANG L, WU C, et al. A new lightweight deep neural network for surface scratch detection[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(5): 1999-2015.
[137] GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. Cambridge University Press, 1997.
[138] 于靖军谢岩, YU JINGJUN X Y. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.

所在学位评定分委会
力学
国内图书分类号
TB381
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765655
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
崔吉鹏. 可预设负泊松比和弹性模量的超材料智能化设计和制造[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132387-崔吉鹏-力学与航空航天(5617KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[崔吉鹏]的文章
百度学术
百度学术中相似的文章
[崔吉鹏]的文章
必应学术
必应学术中相似的文章
[崔吉鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。