[1] ZHOU J, LI L. Metamaterial technology and its application prospects[J]. Chinese Journal of Engineering Science, 2018, 20(6): 69.
[2] WOOD J. The top ten advances in materials science[J]. Materials Today, 2008, 11(1-2): 40-45.
[3] 陆洲. 光启技术(002625):订单不断落地, 确立超材料尖端军品龙头地位[R]. 东兴证券, 2019.
[4] NORONHA J, DASH J, ROGERS J, et al. Titanium multi-topology metamaterials with exceptional strength[J]. Advanced Materials, 2024: 2308715.
[5] ZHONG H, DAS R, GU J, et al. Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model[J]. Materials Today, 2023, 68: 96-107.
[6] CHANG Y, WEI J, LEE C. Metamaterials – from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049-3070.
[7] WANG J, DAI G, HUANG J. Thermal metamaterial: fundamental, application, and outlook[J]. iScience, 2020, 23(10): 101637.
[8] KAPNISI M, MANSFIELD C, MARIJON C, et al. Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction[J]. Advanced Functional Materials, 2018, 28(21): 1800618.
[9] ALITALO P, TRETYAKOV S. Electromagnetic cloaking with metamaterials[J]. Materials Today, 2009, 12(3): 22-29.
[10] ARBABI A, FARAON A. Advances in optical metalenses[J]. Nature Photonics, 2023, 17(1): 16-25.
[11] ZHANG S, XIA C, FANG N. Broadband acoustic cloak for ultrasound waves[J]. Physical review letters, 2011, 106(2): 024301.
[12] ZHANG C, CAO W K, WU L T, et al. A reconfigurable active acoustic metalens[J]. Applied Physics Letters, 2021, 118(13): 133502.
[13] SONG C, LI S, BAO H, et al. Design of thermal diodes using asymmetric thermal deformation of a Kirigami structure[J]. Materials & Design, 2020, 193: 108734.
[14] IMRAN M, ZHANG L, GAIN A K. Advanced thermal metamaterial design for temperature control at the cloaked region[J]. Scientific Reports, 2020, 10(1): 11763.
[15] REN T, LIU C, LI F, et al. Active tuning of the vibration band gap characteristics of periodic laminated composite metamaterial beams[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(6): 843-859.
[16] MELDE K, MARK A G, QIU T, et al. Holograms for acoustics[J]. Nature, 2016, 537(7621): 518-522.
[17] PETITEAU D, GUENNEAU S, BELLIEUD M, et al. Spectral effectiveness of engineered thermal cloaks in the frequency regime[J]. Scientific Reports, 2014, 4(1): 1-9.
[18] NARAYANA S, SATO Y. Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303.
[19] LI Y, SHEN X, WU Z, et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503.
[20] CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218-e218.
[21] LIN R J, SU V C, WANG S, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231.
[22] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.
[23] HEO H, JU J, KIM D M, et al. Passive morphing airfoil with honeycombs[C]//ASME International Mechanical Engineering Congress and Exposition: Vol. 54877. 2011: 263-271.
[24] HE W, BAI J, CHEN X, et al. Reversible dougong structured receptor–ligand recognition for building dynamic extracellular matrix mimics[J]. Proceedings of the National Academy of Sciences, 2022, 119(8): e2117221119.
[25] BONFANTI S, GUERRA R, FONT-CLOS F, et al. Automatic design of mechanical metamaterial actuators[J]. Nature Communications, 2020, 11(1): 4162.
[26] TAN X, CHEN S, WANG B, et al. Real-time tunable negative stiffness mechanical metamaterial[J]. Extreme Mechanics Letters, 2020, 41: 100990.
[27] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
[28] REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: a review[J]. Smart Materials and Structures, 2018, 27(2): 023001.
[29] JI S, LI L, MOTRA H B, et al. Poisson’s ratio and auxetic properties of natural rocks[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1161-1185.
[30] MARMIER A, MILLER W, EVANS K E. Negative Poisson’s ratio: a ubiquitous feature of wood[J]. Materials Today Communications, 2023, 35.
[31] LETHBRIDGE Z A D, WALTON R I, MARMIER A S H, et al. Elastic anisotropy and extreme Poisson’s ratios in single crystals[J]. Acta Materialia, 2010, 58(19): 6444-6451.
[32] 周济, 于相龙. 力学超材料的构筑与超常性能[M]. 中国科学技术大学出版社, 2021.
[33] TIMOSHENKO S P. Theory of elasticity[M]. 3RD edition. McGraw-Hill College, 1970.
[34] LAKES R. Foam structures with a negative Poisson’s ratio[J]. Science, 1987, 235(4792): 1038-1040.
[35] EVANS K E, ALDERSON A. Auxetic materials: functional materials and structures from lateral thinking![J]. Advanced Materials, 2000, 12(9): 617-628.
[36] KOLKEN H M, ZADPOOR A A. Auxetic mechanical metamaterials[J]. RSC Advances, 2017, 7(9): 5111-5129.
[37] HO D T, NGUYEN C T, KWON S Y, et al. Auxeticity in metals and periodic metallic porous structures induced by elastic instabilities[J]. Physica Status Solidi (B), 2019, 256(1): 1800122.
[38] BERTOLDI K, REIS P M, WILLSHAW S, et al. Negative Poisson’s ratio behavior induced by an elastic instability[J]. Advanced Materials, 2010, 22(3): 361-366.
[39] LI J, SLESARENKO V, RUDYKH S. Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials[J]. Soft Matter, 2018, 14(30): 6171-6180.
[40] PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson’s ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3): 305-314.
[41] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research- materials with negative Poisson’s ratio: a review[J]. Advanced Engineering Materials, 2016, 18(11): 1847-1870.
[42] KAMRAVA S, MOUSANEZHAD D, EBRAHIMI H, et al. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties[J]. Scientific Reports, 2017, 7(1): 46046.
[43] ZHAI Z, WU L, JIANG H. Mechanical metamaterials based on origami and kirigami[J]. Applied Physics Reviews, 2021, 8(4): 041319.
[44] FERNANDES M C, MHATRE S, FORTE A E, et al. Surface texture modulation via buckling in porous inclined mechanical metamaterials[J]. Extreme Mechanics Letters, 2022, 51: 101549.
[45] Re-entrant | Encyclopedia.com[EB/OL].
[2024-03-28]. https://www. encyclopedia.com /literature-and-arts /art-and-architecture/architecture/re-entrant.
[46] YANG L, HARRYSSON O, WEST H, et al. Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing[J]. International Journal of Solids and Structures, 2015, 69-70: 475-490.
[47] GAO S, LIU W, ZHANG L, et al. A new polymer-based mechanical metamaterial with tailorable large negative Poisson’s ratios[J]. Polymers, 2020, 12(7): 1492.
[48] LOGAKANNAN K P, RAMACHANDRAN V, RENGASWAMY J, et al. Dynamic performance of a 3D re-entrant structure[J]. Mechanics of Materials, 2020, 148: 103503.
[49] ROKOŠ O, AMEEN M M, PEERLINGS R H J, et al. Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields[J]. Journal of the Mechanics and Physics of Solids, 2019, 123: 119-137.
[50] WOJCIECHOWSKI K W. Two-dimensional isotropic system with a negative poisson ratio[J]. Physics Letters A, 1989, 137(1): 60-64.
[51] WU W, HU W, QIAN G, et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review[J]. Materials & Design, 2019, 180: 107950.
[52] DUAN S, WEN W, FANG D. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior[J]. Journal of the Mechanics and Physics of Solids, 2018, 121: 23-46.
[53] OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7(1): 10929.
[54] LYU S, QIN B, DENG H, et al. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis[J]. International Journal of Mechanical Sciences, 2021, 212: 106791.
[55] TENG X C, REN X, ZHANG Y, et al. A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption[J]. International Journal of Mechanical Sciences, 2022, 229: 107524.
[56] FU M, LIU F, HU L. A novel category of 3D chiral material with negative Poisson’s ratio[J]. Composites Science and Technology, 2018, 160: 111-118.
[57] LIN Z, NOVELINO L S, WEI H, et al. Folding at the microscale: enabling multifunctional 3D origami-architected metamaterials[J]. Small, 2020, 16(35): 2002229.
[58] JIN S, KORKOLIS Y P, LI Y. Shear resistance of an auxetic chiral mechanical metamaterial[J]. International Journal of Solids and Structures, 2019, 174-175: 28-37.
[59] LEI M, HONG W, ZHAO Z, et al. 3D Printing of auxetic metamaterials with digitally reprogrammable shape[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22768-22776.
[60] ZHANG H, GUO X, WU J, et al. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves[J]. Science Advances, 2018, 4(6): eaar8535.
[61] MEENA K, SINGAMNENI S. An elongated S-shaped auxetic mechanical meta-material structure[J]. Materials Today: Proceedings, 2020, 33: 5725-5728.
[62] KHADEM-REZA L, ETEMADI E, ABBASLOU M, et al. Design of novel 3D auxetic structures based on S-shaped unit-cells[J]. Smart Materials and Structures, 2022, 31(7): 075024.
[63] QI C, JIANG F, REMENNIKOV A, et al. Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[J]. Composites Part B: Engineering, 2020, 197: 108117.
[64] JIANG F, YANG S, ZHANG Y, et al. Fabrication and crushing response of graded re-entrant circular auxetic honeycomb[J]. International Journal of Mechanical Sciences, 2023, 242: 107999.
[65] LI A, LEI Y, BAI Y, et al. Improved lightweight corrugated network design to auxetic perforated metamaterial[J]. International Journal of Mechanical Sciences, 2023, 243: 108040.
[66] MEENA K, SINGAMNENI S. A new auxetic structure with significantly reduced stress concentration effects[J]. Materials & Design, 2019, 173: 107779.
[67] YANG H, JIANG W, LI M, et al. Multi-material 3D double-V metastructures with tailorable Poisson’s ratio and thermal expansion[J]. International Journal of Mechanical Sciences, 2021, 210: 106733.
[68] AI L, GAO X L. Topology optimization of 2-D mechanical metamaterials using a parametric level set method combined with a meshfree algorithm[J]. Composite Structures, 2019, 229: 111318.
[69] RAFSANJANI A, PASINI D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[J]. Extreme Mechanics Letters, 2016, 9: 291-296.
[70] BENOUHIBA A, ROUGEOT P, ANDREFF N, et al. Origami-based auxetic tunable Helmholtz resonator for noise control[J]. Smart Materials and Structures, 2021, 30(3): 035029.
[71] THOMSON W. Theory of vibration with applications[M]. 1st edition. Crc Press, 1996.
[72] GAO Y, WU Q, WEI X, et al. Composite tree-like re-entrant structure with high stiffness and controllable elastic anisotropy[J]. International Journal of Solids and Structures, 2020, 206: 170-182.
[73] SAFIKHANI NASIM M, ETEMADI E. Three dimensional modeling of warp and woof periodic auxetic cellular structure[J]. International Journal of Mechanical Sciences, 2018, 136: 475-481.
[74] YANG H, WANG B, MA L. Mechanical properties of 3D double-U auxetic structures[J]. International Journal of Solids and Structures, 2019, 180-181: 13-29.
[75] FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072-1074.
[76] TANG Y, YIN J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility[J]. Extreme Mechanics Letters, 2017, 12: 77-85.
[77] SHEN J, LIU K, ZENG Q, et al. Design and mechanical property studies of 3D re-entrant lattice auxetic structure[J]. Aerospace Science and Technology, 2021, 118: 106998.
[78] WU W, QI D, LIAO H, et al. Deformation mechanism of innovative 3D chiral metamaterials[J]. Scientific Reports, 2018, 8(1): 12575.
[79] LE D H, XU Y, TENTZERIS M M, et al. Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response[J]. Extreme Mechanics Letters, 2020, 36: 100670.
[80] LI J, YANG Q, HUANG N, et al. A novel mechanical metamaterial with tailorable Poisson’s ratio and thermal expansion based on a chiral torsion unit[J]. Smart Materials and Structures, 2021, 30(11): 115004.
[81] LAKES R S, ELMS K. Indentability of conventional and negative Poisson’s ratio foams[J]. Journal of Composite Materials, 1993, 27(12): 1193-1202.
[82] HAID D, FOSTER L, HART J, et al. Mechanical metamaterials for sports helmets: structural mechanics, design optimisation, and performance[J]. Smart Materials and Structures, 2023, 32(11): 113001.
[83] GAO S, GAIN A K, ZHANG L. A metamaterial for wearable piezoelectric energy harvester[J]. Smart Materials and Structures, 2020, 30(1): 015026.
[84] WANG J, LIU P, MA Z, et al. Experimental and field investigations on the impact-resistance mechanical properties of negative Poisson’s ratio bolt/cable[J]. Lithosphere, 2022, 2022(Special 11): 7057344.
[85] VEERABAGU U, PALZA H, QUERO F. Review: auxetic polymer-based mechanical metamaterials for biomedical applications[J]. ACS Biomaterials Science & Engineering, 2022, 8(7): 2798-2824.
[86] KIM M S, LEE Y, AHN J, et al. Skin-like omnidirectional stretchable platform with negative Poisson’s ratio for wearable strain–pressure simultaneous sensor[J]. Advanced Functional Materials, 2023, 33(3): 2208792.
[87] BETTINI P, AIROLDI A, SALA G, et al. Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process[J]. Composites Part B: Engineering, 2010, 41(2): 133-147.
[88] LIRA C, SCARPA F, RAJASEKARAN R. A gradient cellular core for aeroengine Fan blades based on auxetic configurations[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 907-917.
[89] MEI T, MENG Z, ZHAO K, et al. A mechanical metamaterial with reprogrammable logical functions[J]. Nature Communications, 2021, 12(1): 7234.
[90] MENG Z, YAN H, LIU M, et al. Encoding and storage of information in mechanical Metamaterials[J]. Advanced Science, 2023, 10(20): 2301581.
[91] MEI T, CHEN C Q. In-memory mechanical computing[J]. Nature Communications, 2023, 14(1): 5204.
[92] TIAN J, YANG J, ZHAO Y. Metamaterial with synergistically controllable Poisson’s ratio and thermal expansion coefficient[J]. International Journal of Mechanical Sciences, 2023, 256: 108488.
[93] FENG Q, LI X, YANG J. Two-dimensional multifunctional metal–organic framework with intrinsic bipolar magnetic semiconductivity and negative Poisson’s ratio[J]. ACS Applied Electronic Materials, 2022, 4(7): 3198-3204.
[94] REFAI K, MONTEMURRO M, BRUGGER C, et al. Determination of the effective elastic properties of titanium lattice structures[J]. Mechanics of Advanced Materials and Structures, 2020, 27(23): 1966-1982.
[95] REFAI K, BRUGGER C, MONTEMURRO M, et al. An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by Selective Laser Melting (SLM)[J]. International Journal of Fatigue, 2020, 138: 105623.
[96] ZHANG L, SONG B, CHOI S K, et al. Anisotropy-inspired, simulation-guided design and 3D printing of microlattice metamaterials with tailored mechanical-transport performances[J]. Composites Part B: Engineering, 2022, 236: 109837.
[97] DONG H W, ZHAO S D, WANG Y S, et al. Robust 2D/3D multi-polar acoustic metamaterials with broadband double negativity[J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 103889.
[98] ZHANG L, SONG B, ZHANG J, et al. Decoupling microlattice metamaterial properties through a structural design strategy inspired by the Hall–Petch relation[J]. Acta Materialia, 2022, 238: 118214.
[99] 陈仕魁, 顾险峰. 心脏支架、折纸艺术与超材料设计[J]. 科技导报, 2017, 35(10): 105.
[100] SILVERBERG J L, EVANS A A, MCLEOD L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197): 647-650.
[101] HU F, WANG W, CHENG J, et al. Origami spring–inspired metamaterials and robots: An attempt at fully programmable robotics[J]. Science Progress, 2020, 103(3): 0036850420946162.
[102] SUN Y, SONG K, JU J, et al. Curved-creased origami mechanical metamaterials with programmable stabilities and stiffnesses[J]. International Journal of Mechanical Sciences, 2024, 262: 108729.
[103] ZHANG Z, ZHANG L, SONG B, et al. Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials[J]. Applied Materials Today, 2022, 26: 101268.
[104] HAMZEHEI R, ZOLFAGHARIAN A, DARIUSHI S, et al. 3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance[J]. Smart Materials and Structures, 2022, 31(3): 035001.
[105] MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J]. Physical Review Applied, 2018, 10(2): 024012.
[106] MEZA L R, ZELHOFER A J, CLARKE N, et al. Resilient 3D hierarchical architected metamaterials[J]. Proceedings of the National Academy of Sciences, 2015, 112(37): 11502-11507.
[107] SIGMUND O. Materials with prescribed constitutive parameters: an inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329.
[108] SIGMUND O. Tailoring materials with prescribed elastic properties[J]. Mechanics of Materials, 1995, 20(4): 351-368.
[109] ANDREASSEN E, LAZAROV B S, SIGMUND O. Design of manufacturable 3D extremal elastic microstructure[J]. Mechanics of Materials, 2014, 69(1): 1-10.
[110] WANG F, SIGMUND O, JENSEN J S. Design of materials with prescribed nonlinear properties[J]. Journal of the Mechanics and Physics of Solids, 2014, 69: 156-174.
[111] WANG M Y, WANG X, GUO D. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246.
[112] VOGIATZIS P, CHEN S, WANG X, et al. Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method[J]. Computer-Aided Design, 2017, 83: 15-32.
[113] YU C, WANG Q, XIA Z, et al. Multiscale topology optimization for graded cellular structures based on level set surface cutting[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 32.
[114] NOGUCHI Y, YAMADA T, IZUI K, et al. Optimum design of an acoustic metamaterial with negative bulk modulus in an acoustic-elastic coupled system using a level set–based topology optimization method[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1300-1339.
[115] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055.
[116] 董佳斌. 基于机器学习和剪纸技术的负泊松比石墨烯结构设计及力学性能预测[D]. 江苏大学, 2023.
[117] WANG H, XIAO S H, ZHANG C. Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions[J]. Advanced Engineering Materials, 2021, 23(7): 2100102.
[118] SUNDARARAGHAVAN V, ZABARAS N. Classification and reconstruction of three-dimensional microstructures using support vector machines[J]. Computational Materials Science, 2005, 32(2): 223-239.
[119] BESSA M A, GLOWACKI P, HOULDER M. Bayesian machine learning in metamaterial design: fragile becomes supercompressible[J]. Advanced Materials, 2019, 31(48): 1904845.
[120] WILT J K, YANG C, GU G X. Accelerating auxetic metamaterial design with deep learning[J]. Advanced Engineering Materials, 2020, 22(5): 1901266.
[121] MAO Y, HE Q, ZHAO X. Designing complex architectured materials with generative adversarial networks[J]. Science Advances, 2020, 6(17): eaaz4169.
[122] UGURAL A C, FENSTER S K. Advanced strength and applied elasticity[M]. subsequent edition. Upper Saddle River, N.J: Pearson College Div, 2003.
[123] ZHU Y, JIANG S, ZHANG Q, et al. A novel monoclinic auxetic metamaterial with tunable mechanical properties[J]. International Journal of Mechanical Sciences, 2022, 236: 107750.
[124] LEMKALLI B, KADIC M, EL BADRI Y, et al. Mapping of elastic properties of twisting metamaterials onto micropolar continuum using static calculations[J]. International Journal of Mechanical Sciences, 2023, 254: 108411.
[125] BHULLAR S K. Influence of negative Poisson′s ratio on stent applications[J]. Advances in Materials, 2013, 2(3): 42.
[126] LIM T C. A 3D auxetic material based on intersecting double arrowheads[J]. Physica Status Solidi (B), 2016, 253(7): 1252-1260.
[127] GAO Y, WEI X, HAN X, et al. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism[J]. International Journal of Solids and Structures, 2021, 233: 111232.
[128] KYTHE P K. Fundamental solutions for differential operators and applications[M]. Boston, MA: Birkhäuser, 1996.
[129] EN ISO 6892-1:2019 - Metallic materials - Tensile testing - Part 1: Method of test at room temperature (ISO 6892-1:2019)[EB/OL].
[2024-03-17]. https://standards.iteh.ai/catalog/standards/cen/57cba0cf-85c8-4789-a472-58dfd159166c/en-iso-6892-1-2019.
[130] HASSANI B, HINTON E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure[J]. Computers & Structures, 1998, 69(6): 707-717.
[131] XIA L, BREITKOPF P. Design of materials using topology optimization and energy-based homogenization approach in Matlab[J]. Structural and Multidisciplinary Optimization, 2015, 52(6): 1229-1241.
[132] ZHANG L C (Liangchi). Solid mechanics for engineers[M]. Basingstoke ; New York : Palgrave, 2001.
[133] GIBIANSKY L V, TORQUATO S. Geometrical-parameter bounds on the effective moduli of composites[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(10): 1587-1613.
[134] LU C, HSIEH M, HUANG Z, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review[J]. Engineering, 2022, 17: 44-63.
[135] LI W, ZHANG L, CHEN X, et al. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3): 853-865.
[136] LI W, ZHANG L, WU C, et al. A new lightweight deep neural network for surface scratch detection[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(5): 1999-2015.
[137] GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. Cambridge University Press, 1997.
[138] 于靖军谢岩, YU JINGJUN X Y. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.
修改评论