[1] RANA R S, PUROHIT R, SONI V K, et al. Characterization of mechanical properties and microstructure of aluminium alloy-SiC composites[J]. Materials Today: Proceedings, 2015, 2(4-5): 1149-1156.
[2] 陈吉朋, 顾琳, 徐辉, 等. SiCp/Al高速电弧放电加工研究[J]. 电加工与模具, 2015(2): 17-20.
[3] 梁桂强, 周晓勤, 赵菲菲, 等. SiCp/Al超声振动辅助磨削砂轮选择方法研究[J]. 功能材料, 2016, 47(1): 1255-1258, 1262.
[4] CAO D F, LIU L S, LIU Q W, et al. Compressive properties of SiC particle-reinforced aluminum matrix composites under repeated impact loading[J]. Strength of Materials, 2015, 47(1): 61-67.
[5] SENTHIL KANNAN V, LENIN K. Effect on mechanical properties of aluminum composites by inclusion of silicon carbide[M]//HIREMATH S S, SHANMUGAM N S, BAPU B R R. Advances in Manufacturing Technology. Singapore, Singapore: Springer Singapore, 2019: 635-640.
[6] DAVIM J P. Machining of metal matrix composites[M]. London, UK: Springer London, 2012.
[7] 樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展[J]. 宇航材料工艺, 2012, 42(1): 1-7.
[8] 李捷. 浩威特科技发展有限公司发展战略研究[D]. 长沙: 湖南大学, 2013.
[9] MOURITZ A P. Introduction to aerospace materials[M]. Oxford, UK: Woodhead Publishing, 2012: 394-400.
[10] CHAWLA N, CHAWLA K K. Metal matrix composites[M]. Boston, MA, USA: Springer US, 2006: 353-355.
[11] MOURITZ A. Introduction to aerospace materials[M]. Washington, DC, USA: American Institute of Aeronautics and Astronautics, Inc., 2012: 394-400.
[12] ARPÓN R, MOLINA J M, SARAVANAN R A, et al. Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions[J]. Acta Materialia, 2003, 51(11): 3145-3156.
[13] 向华, 曲选辉, 肖平安, 等. SiCp/Al电子封装复合材料的现状和发展[J]. 材料导报, 2003(2): 54-57.
[14] CANTOR B, ASSENDER H, GRANT P. Aerospace materials[M]. Bristol, UK: IOP Publishing Ltd, 2001: 107-108.
[15] BABU J S S, NAIR K P, KANG C G. Fabrication and characterization of aluminum based nano-micro hybrid metal matrix composites[C]//16th International Conference on Composite Materials. Kyoto, Japan, 2007.
[16] ULMER L, PITARD F, PONCET D, et al. Formation of Al3Ti during physical vapour deposition of titanium on aluminium[J]. Microelectronic Engineering, 1997, 37-38: 381-387.
[17] TJONG S C, MA Z Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes[J]. Composites Science and Technology, 1999, 59(7): 1117-1125.
[18] SARADA B N, MURTHY P L S, UGRASEN G. Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique[J]. Materials Today: Proceedings, 2015, 2(4-5): 2878-2885.
[19] JIA L, KONDOH K, IMAI H, et al. Nano-scale AlN powders and AlN/Al composites by full and partial direct nitridation of aluminum in solid-state[J]. Journal of Alloys and Compounds, 2015, 629: 184-187.
[20] KRASNOWSKI M, GIERLOTKA S, KULIK T. TiC–Al composites with nanocrystalline matrix produced by consolidation of milled powders[J]. Advanced Powder Technology, 2015, 26(5): 1269-1272.
[21] 郝元凯, 肖加余. 高性能复合材料学[M]. 北京: 化学工业出版社, 2004: 10-15.
[22] 王宏坤. SiC颗粒增强铝基复合材料的制备和性能研究[D]. 南京: 南京理工大学, 2000.
[23] ALIZADEH A, ABDOLLAHI A, BIUKANI H. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C)[J]. Journal of Alloys and Compounds, 2015, 650: 783-793.
[24] HOUSAER F, BECLIN F, TOUZIN M, et al. Interfacial characterization in carbon nanotube reinforced aluminum matrix composites[J]. Materials Characterization, 2015, 110: 94-101.
[25] 方玲, 张小联, 王科军. 高体积分数SiCp/Al复合材料的研究现状[J]. 江西有色金属, 2007(4): 34-37.
[26] 薛锡国. SiCp/Al复合材料三维铣削仿真基础问题研究[D]. 北京: 北京理工大学, 2015.
[27] JAYAKUMAR K. Study of cutting force and surface roughness in ball nose end milling of vacuum hot pressed A356 alloy/SiCp metal matrix composite[J]. Materials Today: Proceedings, 2018, 5(2): 6526-6533.
[28] 梁洪涛, 徐亮, 方胜, 等. 激光诱导氧化辅助铣削SiCp/Al复合材料试验研究[J]. 科学技术与工程, 2020, 20(31): 12770-12775.
[29] 石淼. 碳化硅颗粒增强铝基(SiCp/Al)复合材料的电火花线切割加工工艺研究[D]. 沈阳: 沈阳理工大学, 2018.
[30] QI X L, LI G H, ZHANG Q, et al. A review on the finite element modeling of the particle reinforced metal matrix composites in cutting process[J]. Recent Patents on Engineering, 2020, 14(1): 39-55.
[31] BUNGET C, NGAILE G. Influence of ultrasonic vibration on micro-extrusion[J]. Ultrasonics, 2011, 51(5): 606-616.
[32] SIDDIQ A, EL SAYED T. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations[J]. Ultrasonics, 2012, 52(4): 521-529.
[33] TSUJINO J, HONGOH M, TANAKA R, et al. Ultrasonic plastic welding using fundamental and higher resonance frequencies[J]. Ultrasonics, 2002, 40(1-8): 375-378.
[34] WEN W X, HUANG Z Y, LI Z, et al. Multi-scale cold embossing of CoCrFeNiMn high entropy alloy with ultra-high temperature durability[J]. Applied Materials Today, 2021, 25: 101233.
[35] LI Z, LI X, HUANG Z Y, et al. Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature[J]. Acta Materialia, 2022, 225: 117569.
[36] WEN W X, LI L Y, LI Z, et al. Ultrasonic vibration-assisted multi-scale plastic forming of high-entropy alloys in milliseconds[J]. Rare Metals, 2023, 42(4): 1146-1153.
[37] MA J, LIANG X, WU X Y, et al. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating[J]. Scientific Reports, 2015, 5(1): 17844.
[38] LUO F, SUN F, LI K S, et al. Ultrasonic assisted micro-shear punching of amorphous alloy[J]. Materials Research Letters, 2018, 6(10): 545-551.
[39] MA J, YANG C, LIU X D, et al. Fast surface dynamics enabled cold joining of metallic glasses[J]. Science Advances, 2019, 5(11): eaax7256.
[40] SUN F, WANG B, LUO F, et al. Shear punching of bulk metallic glasses under low stress[J]. Materials & Design, 2020, 190: 108595.
[41] LI X, WEI D, ZHANG J Y, et al. Ultrasonic plasticity of metallic glass near room temperature[J]. Applied Materials Today, 2020, 21: 100866.
[42] LI Z, FU J N, ZHANG L C, et al. Rapid forming of nanowire array on polyvinylidene fluoride polymer surfaces at room temperature by ultrasonic loading[J]. Advanced Engineering Materials, 2023, 25(5): 2200700.
[43] LANGENECKER B. Effects of ultrasound on deformation characteristics of metals[J]. IEEE Transactions on Sonics and Ultrasonics, 1966, 13(1): 1-8.
[44] SIDDIQ A, EL SAYED T. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM[J]. Materials Letters, 2011, 65(2): 356-359.
[45] YAO Z H, KIM G Y, FAIDLEY L, et al. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting[J]. Journal of Materials Processing Technology, 2012, 212(3): 640-646.
[46] LUM I, HUANG H, CHANG B H, et al. Effects of superimposed ultrasound on deformation of gold[J]. Journal of Applied Physics, 2009, 105(2): 024905.
[47] GINDIN I A, MALIK G N, NEKLYUDOV I M, et al. Effect of ultrasonic vibrations on the parameters of the hardening curve for copper single crystals[J]. Soviet Physics Journal, 1972, 15(2): 192-196.
[48] TYAPUNINA N A, BLAGOVESHCHENSKII V V, ZINENKOVA G M, et al. Characteristics of plastic deformation under the action of ultrasound[J]. Soviet Physics Journal, 1982, 25(6): 569-578.
[49] WESTMACOTT K H, LANGENECKER B. Dislocation structure in ultrasonically irradiated aluminum[J]. Physical Review Letters, 1965, 14(7): 221-222.
[50] WANG C J, LIU Y, GUO B, et al. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling[J]. Materials & Design, 2016, 112: 246-253.
[51] FARTASHVAND V, ABDULLAH A, SADOUGH VANINI S A. Investigation of Ti-6Al-4V alloy acoustic softening[J]. Ultrasonics Sonochemistry, 2017, 38: 744-749.
[52] LIU C S, ZHAO B, GAO G F, et al. Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 196-199.
[53] ZHAO B, LIU C S, ZHU X S, et al. Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 380-384.
[54] DONG Z G, ZHENG F F, ZHU X L, et al. Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5-8): 2827-2839.
[55] ZHENG W, WANG Y J, ZHOU M, et al. Material deformation and removal mechanism of SiCp/Al composites in ultrasonic vibration assisted scratch test[J]. Ceramics International, 2018, 44(13): 15133-15144.
[56] LI Q L, YUAN S M, GAO X X, et al. Surface and subsurface formation mechanism of SiCp/Al composites under ultrasonic scratching[J]. Ceramics International, 2023, 49(1): 817-833.
[57] VAN GEERTRUYDEN W H, BROWNE H M, MISIOLEK W Z, et al. Evolution of surface recrystallization during indirect extrusion of 6xxx aluminum alloys[J]. Metallurgical and Materials Transactions A, 2005, 36(4): 1049-1056.
[58] DANDEKAR C R, SHIN Y C. Modeling of machining of composite materials: A review[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 102-121.
[59] PRAMANIK A. Developments in the non-traditional machining of particle reinforced metal matrix composites[J]. International Journal of Machine Tools and Manufacture, 2014, 86: 44-61.
[60] LIU J, LI J, XU C Y. Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: A review[J]. CIRP Journal of Manufacturing Science and Technology, 2014, 7(2): 55-70.
[61] BAINS P S, SIDHU S S, PAYAL H S. Fabrication and machining of metal matrix composites: A review[J]. Materials and Manufacturing Processes, 2016, 31(5): 553-573.
[62] NICHOLLS C J, BOSWELL B, DAVIES I J, et al. Review of machining metal matrix composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 2429-2441.
[63] LI Y, RAMESH K T, CHIN E S C. Viscoplastic deformations and compressive damage in an A359/SiCp metal–matrix composite[J]. Acta Materialia, 2000, 48(7): 1563-1573.
[64] HUNT W H, BROCKENBROUGH J R, MAGNUSEN P E. An Al-Si-Mg composite model system: Microstructural effects on deformation and damage evolution[J]. Scripta Metallurgica et Materialia, 1991, 25(1): 15-20.
[65] YANG J, CADY C, HU M S, et al. Effects of damage on the flow strength and ductility of a ductile Al alloy reinforced with SiC particulates[J]. Acta Metallurgica et Materialia, 1990, 38(12): 2613-2619.
[66] LLORCA J, MARTIN A, RUIZ J, et al. Particulate fracture during deformation of a spray formed metal-matrix composite[J]. Metallurgical Transactions A, 1993, 24(7): 1575-1588.
[67] SINGH P M, LEWANDOWSKI J J. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy[J]. Metallurgical Transactions A, 1993, 24(11): 2531-2543.
[68] MANOHARAN M, LEWANDOWSKI J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Materials Science and Engineering: A, 1992, 150(2): 179-186.
[69] KISER M T, ZOK F W, WILKINSON D S. Plastic flow and fracture of a particulate metal matrix composite[J]. Acta Materialia, 1996, 44(9): 3465-3476.
[70] JAYAKUMAR K. Study of cutting force and surface roughness in ball nose end milling of vacuum hot pressed A356 alloy/SiCp metal matrix composite[J]. Materials Today: Proceedings, 2018, 5(2): 6526-6533.
[71] ZHANG L C. Cutting composites: A discussion on mechanics modelling[J]. Journal of Materials Processing Technology, 2009, 209(9): 4548-4552.
[72] ZHOU H Y, CUI H Z, QIN Q H. Influence of ultrasonic vibration on the plasticity of metals during compression process[J]. Journal of Materials Processing Technology, 2018, 251: 146-159.
[73] GANGULY P, POOLE W J, LLOYD D J. Deformation and fracture characteristics of AA6061-Al2O3 particle reinforced metal matrix composites at elevated temperatures[J]. Scripta Materialia, 2001, 44(7): 1099-1105.
[74] LI Q L, YUAN S M, LI Z, et al. Mechanical response and microstructure evolution of SiC particle-reinforced Al-MMCs under ultrasonic loading[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107657.
[75] HESJEDAL T, BEHME G. The origin of ultrasound-induced friction reduction in microscopic mechanical contacts[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(3): 356-364.
[76] CHOWDHURY M A, HELALI M. The effect of amplitude of vibration on the coefficient of friction for different materials[J]. Tribology International, 2008, 41(4): 307-314.
[77] ZHANG L C. Solid mechanics for engineers[M]. Basingstoke, UK: Palgrave, 2001.
[78] ZHENG G M, TANG B, ZHOU Q, et al. Development of a flow localization band and texture in a forged near-α titanium alloy[J]. Metals, 2020, 10(1): 121.
[79] YAN Z F, WANG D H, HE X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect[J]. Materials Science and Engineering: A, 2018, 723: 212-220.
[80] ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression[J]. Journal of Engineering Materials and Technology, 2019, 141(1): 011007.
[81] Wu Q, Xu W X, Zhang L C. Machining of particulate-reinforced metal matrix composites: An investigation into the chip formation and subsurface damage[J]. Journal of Materials Processing Technology, 2019, 274: 116315.
[82] Wu Q, Zhang L C. Microstructure-based three-dimensional characterization of chip formation and surface generation in the machining of particulate-reinforced metal matrix composites[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 45103.
[83] Karabulut Ş, Gökmen U, Çinici H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles[J]. Composites Part B: Engineering, 2016, 93: 43-55.
[84] Li Q L, Yuan S M, Batako A, et al. Modeling for ultrasonic vibration-assisted helical grinding of SiC particle-reinforced Al-MMCs[J]. International Journal of Advanced Manufacturing Technology, 2024, 131(9-10): 5223-5242.
[85] Ahmadi F, Farzin M, Meratian M, et al. Improvement of ECAP process by imposing ultrasonic vibrations[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1): 503-512.
[86] Bagherzadeh S, Abrinia K, Han Q Y. Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultra-fine grained metals[J]. Materials Letters, 2016, 169: 90-94.
[87] Chen Z B, Yang L F, Zhang K Y, et al. Research status of ultrasonic vibration assisted plastic forming process[J]. IOP Conference Series: Materials Science and Engineering, 2020, 758(1): 12036.
修改评论