中文版 | English
题名

超声激励下铝基碳化硅复合材料变形机理和力学性能研究

其他题名
STUDY ON THE DEFORMATION MECHANISM AND MECHANICAL PROPERTIES OF SICP/AL COMPOSITE MATERIALS UNDER ULTRASONIC EXCITATION
姓名
姓名拼音
YANG Zhengji
学号
12132424
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
章亮炽
导师单位
力学与航空航天工程系
论文答辩日期
2024-05-10
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

铝基碳化硅(SiCp/Al)是一种重要的金属基复合材料,被广泛应用于汽车、航空航天、精密仪器以及光学仪器等制造领域。但由于材料的硬脆性和内部结构的异质性给高效低损伤加工带来了挑战。目前,SiCp/Al使用传统加工技术时往往出现损伤增多以及表面完整性差的问题,因此开发新型SiCp/Al加工技术对于提高该材料质量和生产效率至关重要。超声振动辅助加工已被广泛应用于各种金属材料,其通过引入高频动态载荷以改变材料的力学行为并改善加工性能。然而,不同SiC含量的SiCp/Al复合材料在超声振动作用下的变形机理、微观组织演化以及力学性能变化尚不清晰,限制了超声振动辅助技术在复合材料构件高效低损伤制造中的应用。

本论文旨在研究SiCp/Al复合材料(20%~45%SiC体积含量)和6061铝合金在高频动态载荷条件下的力学响应行为和微观组织演化规律。通过设置超声加载环境进行超声压缩实验,并与常规准静态加载实验平行对照,获得了材料的宏观变形特性;进一步采用纳米压痕技术对材料不同加载模式后的力学性能变化进行表征,并采用SEMEBSDTEM等表征方法对其微观组织演化过程进行分析,揭示了不同SiC含量SiCp/Al的动态变形机制。研究结果表明:超声压缩显著提高了SiCp/Al的最大塑性应变量,同时大幅降低了变形应力。在高频动态载荷下,不同SiC含量的SiCp/Al复合材料变形应力从准静态的700 MPa左右显著降低至75 MPa92 MPa。同时,45SiC含量的SiCp/Al塑性极限在高频动态载荷下几乎提升了1倍,且无任何宏观裂纹或断裂。当SiC体积含量超过30%时,由于硬质界面对超声加载应力波的增强作用,SiCp/Al在超声加载后的纳米压痕硬度会显著超过常规加载,表现出更强的残余硬化效应。系统分析了超声加载对SiCp/Al变形区域的位错扩散、晶粒细化、再结晶等微观组织演化的促进作用,基于此揭示了高频动态载荷下SiCp/Al的低应力塑性软化变形机理。在此基础上,设计了超声辅助模压成型方案,验证了SiCp/Al室温下的微结构快速、低应力成型的可行性。本研究为颗粒增强复合材料的超声辅助高效加工和性能调控提供了理论依据,并为复合材料的微结构成型提供了新的技术途径。

其他摘要

Aluminum-based silicon carbide (SiCp/Al) is an important metal matrix composite widely utilized in manufacturing sectors such as automotive, aerospace, precision instruments, and optical devices. However, its material brittleness and internal structural heterogeneity pose challenges for efficient and low-damage processing. Currently, traditional processing techniques often lead to increased damage and poor surface integrity when applied to SiCp/Al, highlighting the critical importance of developing novel processing techniques to enhance material quality and production efficiency. Ultrasonic vibration-assisted processing has been extensively employed in various metal materials, leveraging high-frequency dynamic loads to alter material mechanical behavior and improve processing performance. However, the deformation mechanisms, microstructural evolution, and mechanical property changes of SiCp/Al composites with different SiC contents under ultrasonic vibration remain unclear, thereby limiting the application of ultrasonic vibration-assisted techniques in the efficient and low-damage manufacturing of composite components.

This thesis aims to investigate the mechanical response behavior and microstructural evolution of SiCp/Al composite materials (with SiC volume fractions ranging from 20% to 45%) and 6061 aluminum alloy under high-frequency dynamic loading conditions. A series of ultrasonic compression experiments were conducted using a designed ultrasonic loading device, and parallel conventional quasi-static loading experiments were performed to obtain the materials' macroscopic deformation characteristics. Furthermore, nanoindentation techniques were employed to characterize the mechanical property changes of the materials under different loading modes. SEM, EBSD, and TEM characterization methods were utilized to analyze the microstructural evolution process, revealing the dynamic deformation mechanisms of SiCp/Al composite materials with different SiC contents. The findings indicate that ultrasonic compression significantly increases the maximum plastic strain of SiCp/Al composite materials while greatly reducing the deformation stress. Under high-frequency dynamic loading, the deformation stress of SiCp/Al composite materials with different SiC contents decreases significantly from around 700 MPa under quasi-static loading to 75 MPa to 92 MPa, which is only about 1/10 of the deformation stress under traditional quasi-static loading. Meanwhile, the plastic limit of SiCp/Al composite with 45% SiC content almost doubles under high-frequency dynamic loading, with no macroscopic cracks or fractures observed. When the SiC volume fraction exceeds 30%, due to the enhanced effect of the hard interface on the stress wave of ultrasonic loading, the nanoindentation hardness of SiCp/Al after ultrasonic loading significantly exceeds that of traditional loading, demonstrating a stronger residual hardening effect. The thesis systematically analyzes the promotion effect of ultrasonic loading on the microstructural evolution of SiCp/Al, including dislocation diffusion, grain refinement, and recrystallization in the deformation region. Based on this, the low-stress plastic softening deformation mechanism of SiCp/Al under high-frequency dynamic loading is revealed. Based on these findings, an ultrasonic-assisted molding scheme is designed, verifying the feasibility of rapid and low-stress forming of SiCp/Al at room temperature. This study provides theoretical basis for the ultrasonic-assisted efficient processing and performance regulation of particle-reinforced composite materials and offers new technical approaches for the microstructure formation of composite materials.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] RANA R S, PUROHIT R, SONI V K, et al. Characterization of mechanical properties and microstructure of aluminium alloy-SiC composites[J]. Materials Today: Proceedings, 2015, 2(4-5): 1149-1156.
[2] 陈吉朋, 顾琳, 徐辉, 等. SiCp/Al高速电弧放电加工研究[J]. 电加工与模具, 2015(2): 17-20.
[3] 梁桂强, 周晓勤, 赵菲菲, 等. SiCp/Al超声振动辅助磨削砂轮选择方法研究[J]. 功能材料, 2016, 47(1): 1255-1258, 1262.
[4] CAO D F, LIU L S, LIU Q W, et al. Compressive properties of SiC particle-reinforced aluminum matrix composites under repeated impact loading[J]. Strength of Materials, 2015, 47(1): 61-67.
[5] SENTHIL KANNAN V, LENIN K. Effect on mechanical properties of aluminum composites by inclusion of silicon carbide[M]//HIREMATH S S, SHANMUGAM N S, BAPU B R R. Advances in Manufacturing Technology. Singapore, Singapore: Springer Singapore, 2019: 635-640.
[6] DAVIM J P. Machining of metal matrix composites[M]. London, UK: Springer London, 2012.
[7] 樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展[J]. 宇航材料工艺, 2012, 42(1): 1-7.
[8] 李捷. 浩威特科技发展有限公司发展战略研究[D]. 长沙: 湖南大学, 2013.
[9] MOURITZ A P. Introduction to aerospace materials[M]. Oxford, UK: Woodhead Publishing, 2012: 394-400.
[10] CHAWLA N, CHAWLA K K. Metal matrix composites[M]. Boston, MA, USA: Springer US, 2006: 353-355.
[11] MOURITZ A. Introduction to aerospace materials[M]. Washington, DC, USA: American Institute of Aeronautics and Astronautics, Inc., 2012: 394-400.
[12] ARPÓN R, MOLINA J M, SARAVANAN R A, et al. Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions[J]. Acta Materialia, 2003, 51(11): 3145-3156.
[13] 向华, 曲选辉, 肖平安, 等. SiCp/Al电子封装复合材料的现状和发展[J]. 材料导报, 2003(2): 54-57.
[14] CANTOR B, ASSENDER H, GRANT P. Aerospace materials[M]. Bristol, UK: IOP Publishing Ltd, 2001: 107-108.
[15] BABU J S S, NAIR K P, KANG C G. Fabrication and characterization of aluminum based nano-micro hybrid metal matrix composites[C]//16th International Conference on Composite Materials. Kyoto, Japan, 2007.
[16] ULMER L, PITARD F, PONCET D, et al. Formation of Al3Ti during physical vapour deposition of titanium on aluminium[J]. Microelectronic Engineering, 1997, 37-38: 381-387.
[17] TJONG S C, MA Z Y. High-temperature creep behaviour of powder-metallurgy aluminium composites reinforced with SiC particles of various sizes[J]. Composites Science and Technology, 1999, 59(7): 1117-1125.
[18] SARADA B N, MURTHY P L S, UGRASEN G. Hardness and wear characteristics of hybrid aluminium metal matrix composites produced by stir casting technique[J]. Materials Today: Proceedings, 2015, 2(4-5): 2878-2885.
[19] JIA L, KONDOH K, IMAI H, et al. Nano-scale AlN powders and AlN/Al composites by full and partial direct nitridation of aluminum in solid-state[J]. Journal of Alloys and Compounds, 2015, 629: 184-187.
[20] KRASNOWSKI M, GIERLOTKA S, KULIK T. TiC–Al composites with nanocrystalline matrix produced by consolidation of milled powders[J]. Advanced Powder Technology, 2015, 26(5): 1269-1272.
[21] 郝元凯, 肖加余. 高性能复合材料学[M]. 北京: 化学工业出版社, 2004: 10-15.
[22] 王宏坤. SiC颗粒增强铝基复合材料的制备和性能研究[D]. 南京: 南京理工大学, 2000.
[23] ALIZADEH A, ABDOLLAHI A, BIUKANI H. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C)[J]. Journal of Alloys and Compounds, 2015, 650: 783-793.
[24] HOUSAER F, BECLIN F, TOUZIN M, et al. Interfacial characterization in carbon nanotube reinforced aluminum matrix composites[J]. Materials Characterization, 2015, 110: 94-101.
[25] 方玲, 张小联, 王科军. 高体积分数SiCp/Al复合材料的研究现状[J]. 江西有色金属, 2007(4): 34-37.
[26] 薛锡国. SiCp/Al复合材料三维铣削仿真基础问题研究[D]. 北京: 北京理工大学, 2015.
[27] JAYAKUMAR K. Study of cutting force and surface roughness in ball nose end milling of vacuum hot pressed A356 alloy/SiCp metal matrix composite[J]. Materials Today: Proceedings, 2018, 5(2): 6526-6533.
[28] 梁洪涛, 徐亮, 方胜, 等. 激光诱导氧化辅助铣削SiCp/Al复合材料试验研究[J]. 科学技术与工程, 2020, 20(31): 12770-12775.
[29] 石淼. 碳化硅颗粒增强铝基(SiCp/Al)复合材料的电火花线切割加工工艺研究[D]. 沈阳: 沈阳理工大学, 2018.
[30] QI X L, LI G H, ZHANG Q, et al. A review on the finite element modeling of the particle reinforced metal matrix composites in cutting process[J]. Recent Patents on Engineering, 2020, 14(1): 39-55.
[31] BUNGET C, NGAILE G. Influence of ultrasonic vibration on micro-extrusion[J]. Ultrasonics, 2011, 51(5): 606-616.
[32] SIDDIQ A, EL SAYED T. Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations[J]. Ultrasonics, 2012, 52(4): 521-529.
[33] TSUJINO J, HONGOH M, TANAKA R, et al. Ultrasonic plastic welding using fundamental and higher resonance frequencies[J]. Ultrasonics, 2002, 40(1-8): 375-378.
[34] WEN W X, HUANG Z Y, LI Z, et al. Multi-scale cold embossing of CoCrFeNiMn high entropy alloy with ultra-high temperature durability[J]. Applied Materials Today, 2021, 25: 101233.
[35] LI Z, LI X, HUANG Z Y, et al. Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature[J]. Acta Materialia, 2022, 225: 117569.
[36] WEN W X, LI L Y, LI Z, et al. Ultrasonic vibration-assisted multi-scale plastic forming of high-entropy alloys in milliseconds[J]. Rare Metals, 2023, 42(4): 1146-1153.
[37] MA J, LIANG X, WU X Y, et al. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating[J]. Scientific Reports, 2015, 5(1): 17844.
[38] LUO F, SUN F, LI K S, et al. Ultrasonic assisted micro-shear punching of amorphous alloy[J]. Materials Research Letters, 2018, 6(10): 545-551.
[39] MA J, YANG C, LIU X D, et al. Fast surface dynamics enabled cold joining of metallic glasses[J]. Science Advances, 2019, 5(11): eaax7256.
[40] SUN F, WANG B, LUO F, et al. Shear punching of bulk metallic glasses under low stress[J]. Materials & Design, 2020, 190: 108595.
[41] LI X, WEI D, ZHANG J Y, et al. Ultrasonic plasticity of metallic glass near room temperature[J]. Applied Materials Today, 2020, 21: 100866.
[42] LI Z, FU J N, ZHANG L C, et al. Rapid forming of nanowire array on polyvinylidene fluoride polymer surfaces at room temperature by ultrasonic loading[J]. Advanced Engineering Materials, 2023, 25(5): 2200700.
[43] LANGENECKER B. Effects of ultrasound on deformation characteristics of metals[J]. IEEE Transactions on Sonics and Ultrasonics, 1966, 13(1): 1-8.
[44] SIDDIQ A, EL SAYED T. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM[J]. Materials Letters, 2011, 65(2): 356-359.
[45] YAO Z H, KIM G Y, FAIDLEY L, et al. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting[J]. Journal of Materials Processing Technology, 2012, 212(3): 640-646.
[46] LUM I, HUANG H, CHANG B H, et al. Effects of superimposed ultrasound on deformation of gold[J]. Journal of Applied Physics, 2009, 105(2): 024905.
[47] GINDIN I A, MALIK G N, NEKLYUDOV I M, et al. Effect of ultrasonic vibrations on the parameters of the hardening curve for copper single crystals[J]. Soviet Physics Journal, 1972, 15(2): 192-196.
[48] TYAPUNINA N A, BLAGOVESHCHENSKII V V, ZINENKOVA G M, et al. Characteristics of plastic deformation under the action of ultrasound[J]. Soviet Physics Journal, 1982, 25(6): 569-578.
[49] WESTMACOTT K H, LANGENECKER B. Dislocation structure in ultrasonically irradiated aluminum[J]. Physical Review Letters, 1965, 14(7): 221-222.
[50] WANG C J, LIU Y, GUO B, et al. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling[J]. Materials & Design, 2016, 112: 246-253.
[51] FARTASHVAND V, ABDULLAH A, SADOUGH VANINI S A. Investigation of Ti-6Al-4V alloy acoustic softening[J]. Ultrasonics Sonochemistry, 2017, 38: 744-749.
[52] LIU C S, ZHAO B, GAO G F, et al. Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 196-199.
[53] ZHAO B, LIU C S, ZHU X S, et al. Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 380-384.
[54] DONG Z G, ZHENG F F, ZHU X L, et al. Characterization of material removal in ultrasonically assisted grinding of SiCp/Al with high volume fraction[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5-8): 2827-2839.
[55] ZHENG W, WANG Y J, ZHOU M, et al. Material deformation and removal mechanism of SiCp/Al composites in ultrasonic vibration assisted scratch test[J]. Ceramics International, 2018, 44(13): 15133-15144.
[56] LI Q L, YUAN S M, GAO X X, et al. Surface and subsurface formation mechanism of SiCp/Al composites under ultrasonic scratching[J]. Ceramics International, 2023, 49(1): 817-833.
[57] VAN GEERTRUYDEN W H, BROWNE H M, MISIOLEK W Z, et al. Evolution of surface recrystallization during indirect extrusion of 6xxx aluminum alloys[J]. Metallurgical and Materials Transactions A, 2005, 36(4): 1049-1056.
[58] DANDEKAR C R, SHIN Y C. Modeling of machining of composite materials: A review[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 102-121.
[59] PRAMANIK A. Developments in the non-traditional machining of particle reinforced metal matrix composites[J]. International Journal of Machine Tools and Manufacture, 2014, 86: 44-61.
[60] LIU J, LI J, XU C Y. Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: A review[J]. CIRP Journal of Manufacturing Science and Technology, 2014, 7(2): 55-70.
[61] BAINS P S, SIDHU S S, PAYAL H S. Fabrication and machining of metal matrix composites: A review[J]. Materials and Manufacturing Processes, 2016, 31(5): 553-573.
[62] NICHOLLS C J, BOSWELL B, DAVIES I J, et al. Review of machining metal matrix composites[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12): 2429-2441.
[63] LI Y, RAMESH K T, CHIN E S C. Viscoplastic deformations and compressive damage in an A359/SiCp metal–matrix composite[J]. Acta Materialia, 2000, 48(7): 1563-1573.
[64] HUNT W H, BROCKENBROUGH J R, MAGNUSEN P E. An Al-Si-Mg composite model system: Microstructural effects on deformation and damage evolution[J]. Scripta Metallurgica et Materialia, 1991, 25(1): 15-20.
[65] YANG J, CADY C, HU M S, et al. Effects of damage on the flow strength and ductility of a ductile Al alloy reinforced with SiC particulates[J]. Acta Metallurgica et Materialia, 1990, 38(12): 2613-2619.
[66] LLORCA J, MARTIN A, RUIZ J, et al. Particulate fracture during deformation of a spray formed metal-matrix composite[J]. Metallurgical Transactions A, 1993, 24(7): 1575-1588.
[67] SINGH P M, LEWANDOWSKI J J. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy[J]. Metallurgical Transactions A, 1993, 24(11): 2531-2543.
[68] MANOHARAN M, LEWANDOWSKI J J. Effect of reinforcement size and matrix microstructure on the fracture properties of an aluminum metal matrix composite[J]. Materials Science and Engineering: A, 1992, 150(2): 179-186.
[69] KISER M T, ZOK F W, WILKINSON D S. Plastic flow and fracture of a particulate metal matrix composite[J]. Acta Materialia, 1996, 44(9): 3465-3476.
[70] JAYAKUMAR K. Study of cutting force and surface roughness in ball nose end milling of vacuum hot pressed A356 alloy/SiCp metal matrix composite[J]. Materials Today: Proceedings, 2018, 5(2): 6526-6533.
[71] ZHANG L C. Cutting composites: A discussion on mechanics modelling[J]. Journal of Materials Processing Technology, 2009, 209(9): 4548-4552.
[72] ZHOU H Y, CUI H Z, QIN Q H. Influence of ultrasonic vibration on the plasticity of metals during compression process[J]. Journal of Materials Processing Technology, 2018, 251: 146-159.
[73] GANGULY P, POOLE W J, LLOYD D J. Deformation and fracture characteristics of AA6061-Al2O3 particle reinforced metal matrix composites at elevated temperatures[J]. Scripta Materialia, 2001, 44(7): 1099-1105.
[74] LI Q L, YUAN S M, LI Z, et al. Mechanical response and microstructure evolution of SiC particle-reinforced Al-MMCs under ultrasonic loading[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107657.
[75] HESJEDAL T, BEHME G. The origin of ultrasound-induced friction reduction in microscopic mechanical contacts[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(3): 356-364.
[76] CHOWDHURY M A, HELALI M. The effect of amplitude of vibration on the coefficient of friction for different materials[J]. Tribology International, 2008, 41(4): 307-314.
[77] ZHANG L C. Solid mechanics for engineers[M]. Basingstoke, UK: Palgrave, 2001.
[78] ZHENG G M, TANG B, ZHOU Q, et al. Development of a flow localization band and texture in a forged near-α titanium alloy[J]. Metals, 2020, 10(1): 121.
[79] YAN Z F, WANG D H, HE X L, et al. Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect[J]. Materials Science and Engineering: A, 2018, 723: 212-220.
[80] ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression[J]. Journal of Engineering Materials and Technology, 2019, 141(1): 011007.
[81] Wu Q, Xu W X, Zhang L C. Machining of particulate-reinforced metal matrix composites: An investigation into the chip formation and subsurface damage[J]. Journal of Materials Processing Technology, 2019, 274: 116315.
[82] Wu Q, Zhang L C. Microstructure-based three-dimensional characterization of chip formation and surface generation in the machining of particulate-reinforced metal matrix composites[J]. International Journal of Extreme Manufacturing, 2020, 2(4): 45103.
[83] Karabulut Ş, Gökmen U, Çinici H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles[J]. Composites Part B: Engineering, 2016, 93: 43-55.
[84] Li Q L, Yuan S M, Batako A, et al. Modeling for ultrasonic vibration-assisted helical grinding of SiC particle-reinforced Al-MMCs[J]. International Journal of Advanced Manufacturing Technology, 2024, 131(9-10): 5223-5242.
[85] Ahmadi F, Farzin M, Meratian M, et al. Improvement of ECAP process by imposing ultrasonic vibrations[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1): 503-512.
[86] Bagherzadeh S, Abrinia K, Han Q Y. Ultrasonic assisted equal channel angular extrusion (UAE) as a novel hybrid method for continuous production of ultra-fine grained metals[J]. Materials Letters, 2016, 169: 90-94.
[87] Chen Z B, Yang L F, Zhang K Y, et al. Research status of ultrasonic vibration assisted plastic forming process[J]. IOP Conference Series: Materials Science and Engineering, 2020, 758(1): 12036.

所在学位评定分委会
力学
国内图书分类号
TB33
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765656
专题南方科技大学
工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
杨正基. 超声激励下铝基碳化硅复合材料变形机理和力学性能研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132424-杨正基-力学与航空航天(6887KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨正基]的文章
百度学术
百度学术中相似的文章
[杨正基]的文章
必应学术
必应学术中相似的文章
[杨正基]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。