中文版 | English
题名

基于光纤传感技术的校园安全防控工程

其他题名
CAMPUS SECURITY PREVENTION AND CONTROL PROJECT BASED ON OPTIC FIBER SENSING TECHNOLOGY
姓名
姓名拼音
SUN Siming
学号
12132015
学位类型
硕士
学位专业
0854 电子信息
学科门类/专业学位类别
08 工学
导师
陈金娜
导师单位
电子与电气工程系
论文答辩日期
2024-04-26
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

校园是人口密度较高的公众场所,是国家人才培养的重要场所,其安全关系 重大。目前,校园安全防控主要依赖于安保人员定期巡逻和抽检。其中周界安防、 校园交通、火警预警和漏电积水预警等重要场景,目前缺少长时间智能实时监控 手段。 光纤传感技术以其灵敏度高、耐腐蚀、耐高温、传输距离远等优势可在校园 实时安全检测中发挥重要作用。面向交通监测与周界安防问题,本研究创新性采 用相敏光时域反射(Φ-OTDR)技术,结合基于空间移项(SPS)的相位解调算法, 实现了以 10 m 空间分辨率在 4 km 范围内对频率大于 0.1 Hz 的振动信号进行实时 测量监控,同时解决了分布式光纤传感系统数据量过大的问题;面向火警、漏电、 积水等问题,本研究创新性采用点式光纤传感技术,实现了三种不同结构的新型 传感器,分别实现了灵敏度为 223 pm/℃、0.604 nm/V 和-1.348 nm/cm 的低成本精 确测量。 本研究验证了光纤传感技术在校园安全防控工程上的可行性,与传统人工巡 逻相比,该方案可以节省大量人力物力,做到全天候校园安全持续监测预警,具有 产业化潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] SALMAZ U, ISLAM T, SOHAIL S. A Novel Linear Capacitive Temperature Sensor UsingPolydimethylsiloxane[J]. Ieee Transactions on Instrumentation and Measurement, 2020, 69(10): 7887-7894.
[2] YU Y Y, PENG S H, ISLAM M, et al. Wearable Supercapacitive Temperature Sensors withHigh Accuracy Based on Ionically Conductive Organogel and Macro-Kirigami Electrode[J].Advanced Materials Technologies, 2023, 8(4).
[3] ATTIA A, LAWRENCE M. Evaluating Infill Well Performance and Fracture Driven Interactions Using Intervention Based Distributed Fiber Optics[C/OL]//SPE Hydraulic FracturingTechnology Conference and Exhibition: Day 2 Wed, May 05, 2021. DOI: 10.2118/204184-MS.
[4] LAWRENCE M, ATTIA A. Comparing and Combining Camera, Tracer and Distributed Temperatureand Acoustic Sensing DAS+DTS for a Holistic Understanding of Stimulation and Production Performance[C/OL]//SPE Hydraulic Fracturing Technology Conference and Exhibition:Day 1 Tue, May 04, 2021. DOI: 10.2118/204188-MS.
[5] KHACEF Y, VAN DEN ENDE M, FERRARI A, et al. Self-Supervised Velocity Field Learningfor High-Resolution Traffic Monitoring with Distributed Acoustic Sensing[C/OL]//ConferenceRecord of the Asilomar Conference on Signals Systems and Computers: 56th Asilomar Conferenceon Signals, Systems, and Computers. 2022: 790-794. DOI: 10.1109/ieeeconf56349.2022.10051959.
[6] BANKS E W, MORGAN L K, LOUIE A J S, et al. Active distributed temperature sensing toassess surface water-groundwater interaction and river loss in braided river systems[J]. Journalof Hydrology, 2022, 615.
[7] BUISMAN M, MARTUGANOVA E, KIERS T, et al. Continuous monitoring of the depth ofthe water-mud interface using distributed acoustic sensing[J]. Journal of Soils and Sediments,2022, 22(11): 2893-2899.
[8] POSEY R, JOHNSON G A, VOHRA S T. Strain sensing based on coherent Rayleigh scatteringin an optical fibre[J]. Electronics Letters, 2000, 36(20): 1688-1689.
[9] MASOUDI A, NEWSON T P. High spatial resolution distributed optical fiber dynamic strainsensor with enhanced frequency and strain resolution[J]. Optics Letters, 2017, 42(2): 290-293.
[10] HE X G, XIE S R, LIU F, et al. Multi-event waveform-retrieved distributed optical fiber acousticsensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics Letters, 2017, 42(3): 442-445.
[11] ZHOU S, HAO F, ZENG Z M. Phase demodulation method in phase-sensitive OTDR withoutcoherent detection[J]. Optics Express, 2017, 25(5): 4831-4844.
[12] PAN Z Q, LIANG K Z, YE Q, et al. Phase-sensitive OTDR system based on digital coherentdetection[C/OL]//Proceedings of SPIE: volume 8311 Conference on Optical Sensors andBiophotonics III. 2011. DOI: 10.1117/12.905657.
[13] FAN X Y, YANG G Y, WANG S, et al. Distributed Fiber-Optic Vibration Sensing Based onPhase Extraction From Optical Reflectometry[J]. Journal of Lightwave Technology, 2017, 35(16): 3281-3288.
[14] YANG G Y, FAN X Y, WANG S, et al. Long-Range Distributed Vibration Sensing Based onPhase Extraction From Phase-Sensitive OTDR[J]. Ieee Photonics Journal, 2016, 8(3).
[15] WU Y Q, GAN J L, LI Q Y, et al. Distributed Fiber Voice Sensor Based on Phase-SensitiveOptical Time-Domain Reflectometry[J]. Ieee Photonics Journal, 2015, 7(6).
[16] DONG Y K, CHEN X, LIU E H, et al. Quantitative measurement of dynamic nanostrain basedon a phase-sensitive optical time domain reflectometer[J]. Applied Optics, 2016, 55(28): 7810-7815.
[17] WANG Z N, ZHANG L, WANG S, et al. Coherent Φ-OTDR based on I/Q demodulation andhomodyne detection[J]. Optics Express, 2016, 24(2): 853-858.
[18] FU Y, XUE N T, WANG Z N, et al. Impact of I/Q Amplitude Imbalance on Coherent Φ-OTDR[J]. Journal of Lightwave Technology, 2018, 36(4): 1069-1075.
[19] XUE N T, FU Y, LU C Y, et al. Characterization and Compensation of Phase Offset in Φ-OTDRWith Heterodyne Detection[J]. Journal of Lightwave Technology, 2018, 36(23): 5481-5487.
[20] JUAREZ J C, MAIER E W, CHOI K N, et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 2005, 23(6): 2081-2087.
[21] MAHMOUD S S, KATSIFOLIS J. Elimination of Rain-Induced Nuisance Alarms in Distributed Fiber Optic Perimeter Intrusion Detection Systems[C]//Proceedings of SPIE: volume7316 Conference on Fiber Optic Sensors and Applications VI. 2009.
[22] TAN D J, TIAN X Z, SUN W, et al. An oil and gas pipeline pre-warning system based onΦ-OTDR[C]//Proceedings of SPIE: volume 9157 23rd International Conference on OpticalFibre Sensors. 2014.
[23] XU W J, YU F H, LIU S Q, et al. Real-Time Multi-Class Disturbance Detection for Φ-OTDRBased on YOLO Algorithm[J]. Sensors, 2022, 22(5).
[24] LYU Z L, ZHU C Y, PU Y Y, et al. Two-Stage Intrusion Events Recognition for VibrationSignals From Distributed Optical Fiber Sensors[J]. Ieee Transactions on Instrumentation andMeasurement, 2024, 73.
[25] WANG Z, LU B, ZHENG H, et al. Novel Railway-Subgrade Vibration Monitoring Technology Using Phase-Sensitive OTDR[C]//Proceedings of SPIE: volume 10323 25th InternationalConference on Optical Fibre Sensors (OFS). 2017.
[26] LIU H, MA J, XU T, et al. Vehicle Detection and Classification Using Distributed Fiber OpticAcoustic Sensing[J]. Ieee Transactions on Vehicular Technology, 2020, 69(2): 1363-1374.
[27] WANG M, LI Z, ZHANG J, et al. Vehicle Trajectory Extraction Method Using DistributedOptical Acoustic Sensing[J]. Advanced Engineering Sciences, 2021, 53(2): 141-150.
[28] SONG Z, ZENG X, XIE J, et al. Sensing Shallow Structure and Traffic Noise with Fiber-opticInternet Cables in an Urban Area[J]. Surveys in Geophysics, 2021, 42(6): 1401-1423.
[29] KOWARIK S, HUSSELS M T, CHRUSCICKI S, et al. Fiber Optic Train Monitoring withDistributed Acoustic Sensing: Conventional and Neural Network Data Analysis[J]. Sensors,2020, 20(2).
[30] CAI X, LUO J, FU H Y, et al. Temperature measurement using a multi-wavelength fiber ringlaser based on a hybrid gain medium and Sagnac interferometer[J]. Optics Express, 2020, 28(26): 39933-39943.
[31] LIN W H, SHAO L Y, LIU Y B, et al. Temperature Sensor Based on Fiber Ring Laser WithCascaded Fiber Optic Sagnac Interferometers[J]. Ieee Photonics Journal, 2021, 13(2).
[32] LIU Y X, ZHANG W H, TONG Z R, et al. Research on MZI sensor for refractive index andtemperature based on D-shaped no core fiber[J]. Optical Materials, 2024, 148.
[33] LIU Y H, LIN W H, HU J, et al. Integrated Fiber Ring Laser Temperature Sensor Based onVernier Effect with Lyot-Sagnac Interferometer[J]. Sensors, 2023, 23(14).
[34] SHI R Y, CHEN H L, LI H W, et al. Paralleled Sagnac interferometer and Mach-Zehnderinterferometer for enhanced measurements sensitivity based on Vernier effect[J]. Journal ofPhysics D-Applied Physics, 2024, 57(16).
[35] DE OLIVEIRA L A, DE SOUSA F B, DE SOUSA F M, et al. Prototype of a sensor forsimultaneous monitoring of water level and temperature of rivers in the Amazon using FBG[J].Optical and Quantum Electronics, 2022, 54(11).
[36] YAO Y C, YUAN J Q, ZHAO Z Y, et al. High-resolution liquid level sensor utilizing a microwavephotonics interrogated multicore fiber interferometer[J]. Optics Letters, 2023, 48(23):6128-6131.
[37] MAO B B, WU Y F, CHENG W H, et al. Liquid-level sensor based on Michelson interferometerwith double hook structure[J]. Microwave and Optical Technology Letters, 2024, 66(3).
[38] GAYLES J N, LOHMANN A W, PETICOLAS W L. Rayleigh scattering in an opticallyanisotropic medium[J]. Applied Physics Letters, 1967, 11(10): 310-+.
[39] BARNOSKI M K, JENSEN S M. Fiber waveguides - novel technique for investigating attenuation characteristics[J]. Applied Optics, 1976, 15(9): 2112-2115.
[40] DAKIN J P, PRATT D J, BIBBY G W, et al. Distributed optical fiber raman temperature sensorusing a semiconductor light-source and detector[J]. Electronics Letters, 1985, 21(13): 569-570.
[41] TKACH R W, CHRAPLYVY A R, DEROSIER R M. Spontaneous brillouin-scattering forsingle-mode optical-fiber characterization[J]. Electronics Letters, 1986, 22(19): 1011-1013.
[42] 钱恒. 基于 Φ-OTDR 的分布式光纤传感动态应变解调技术研究[D]. 西南交通大学, 2024.
[43] LIU S, SHAO L, YU F H, et al. Accelerating the phase demodulation process for heterodyneΦ-OTDR using spatial phase shifting[J]. Optics Letters, 2023, 48(4): 1048-1051.
[44] LIU Y X, ZHAO C Y, ZHANG Y N, et al. Electrically tunable optical fiber device based onhollow-core fiber infiltrated with liquid crystal[J]. Sensors and Actuators a-Physical, 2021, 318.
[45] YANG X C, LU Y, LIU B L, et al. Fiber Ring Laser Temperature Sensor Based on Liquid-FilledPhotonic Crystal Fiber[J]. Ieee Sensors Journal, 2017, 17(21): 6948-6952.
[46] WEI L, ESKILDSEN L, WEIRICH J, et al. Continuously tunable all-in-fiber devices based onthermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgapfibers[J]. Applied Optics, 2009, 48(3): 497-503.
[47] LIU Y X, ZHAO C Y, ZHANG Y N, et al. Electrically tunable optical fiber device based onhollow-core fiber infiltrated with liquid crystal[J]. Sensors and Actuators a-Physical, 2021, 318.
[48] TIAN S, YANG T Y, ZHANG J X, et al. Multi-Band Thermal Optical Switch Based on NematicLiquid Crystal Filled Photonic Crystal Fiber[J]. Journal of Lightwave Technology, 2021, 39(10): 3297-3302.
[49] KIM B H, LEE S H, SON D H, et al. Optical properties of the fiber-optic temperature sensorbased on the side-hole fiber filled with indium[J]. Applied Optics, 2013, 52(4): 666-673.
[50] HU D J J, LIM J L, CUI Y, et al. Fabrication and Characterization of a Highly Temperature SensitiveDevice Based on Nematic Liquid Crystal-Filled Photonic Crystal Fiber[J]. Ieee PhotonicsJournal, 2012, 4(5): 1248-1255.

所在学位评定分委会
电子信息
国内图书分类号
TP212.9
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765661
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
孙思明. 基于光纤传感技术的校园安全防控工程[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132015-孙思明-电子与电气工程(12027KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙思明]的文章
百度学术
百度学术中相似的文章
[孙思明]的文章
必应学术
必应学术中相似的文章
[孙思明]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。