[1] KUROSAKI T, SHINOHARA H, BABA Y. B cell signaling and fate decision[J]. Annu Rev Immunol, 2010, 28: 21-55.
[2] MATERA A G, WANG Z. A day in the life of the spliceosome[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 108-121.
[3] KOZYREV S V, ABELSON A K, WOJCIK J, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus[J]. Nat Genet, 2008, 40(2): 211-216.
[4] XU Y, ZHOU H, POST G, et al. Rad52 mediates class-switch DNA recombination to IgD[J]. Nat Commun, 2022, 13(1): 980.
[5] PESTAL K, FUNK C C, SNYDER J M, et al. Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development[J]. Immunity, 2015, 43(5): 933-944.
[6] TRAPPE R, AHMED M, GLASER B, et al. Identification and characterization of a novel murine multigene family containing a PHD-finger-like motif[J]. Biochem Biophys Res Commun, 2002, 293(2): 816-826.
[7] SCHELLENBERG M J, DUL E L, MACMILLAN A M. Structural model of the p14/SF3b155 . branch duplex complex[J]. RNA, 2011, 17(1): 155-165.
[8] WANG Z, YANG X, LIU C, et al. Acetylation of PHF5A Modulates Stress Responses and Colorectal Carcinogenesis through Alternative Splicing-Mediated Upregulation of KDM3A[J]. Mol Cell, 2019, 74(6): 1250-1263.
[9] WILL C L, LUHRMANN R. Spliceosome structure and function[J]. Cold Spring Harb Perspect Biol, 2011, 3(7): a003707.
[10] ZHENG Y Z, XUE M Z, SHEN H J, et al. PHF5A Epigenetically Inhibits Apoptosis to Promote Breast Cancer Progression[J]. Cancer Res, 2018, 78(12): 3190-3206.
[11] RZYMSKI T, GRZMIL P, MEINHARDT A, et al. PHF5A represents a bridge protein between splicing proteins and ATP-dependent helicases and is differentially expressed during mouse spermatogenesis[J]. Cytogenet Genome Res, 2008, 121(3-4): 232-244.
[12] YANG Q, ZHANG J, XU S, et al. Knockdown of PHF5A Inhibits Migration and Invasion of HCC Cells via Downregulating NF-kappaB Signaling[J]. Biomed Res Int, 2019, 2019: 1621854.
[13] YANG Y, ZHU J, ZHANG T, et al. PHD-finger domain protein 5A functions as a novel oncoprotein in lung adenocarcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 65.
[14] MONZON-CASANOVA E, MATHESON L S, TABBADA K, et al. Polypyrimidine tract-binding proteins are essential for B cell development[J]. Elife, 2020, 9: e53557.
[15] MONZON-CASANOVA E, BATES K J, SMITH C W J, et al. Essential requirement for polypyrimidine tract binding proteins 1 and 3 in the maturation and maintenance of mature B cells in mice[J]. Eur J Immunol, 2021, 51(9): 2266-2273.
[16] MONZON-CASANOVA E, SCREEN M, DIAZ-MUNOZ M D, et al. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers[J]. Nat Immunol, 2018, 19(3): 267-278.
[17] CHANG X, LI B, RAO A. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation[J]. Proc Natl Acad Sci U S A, 2015, 112(15): E1888-1897.
[18] ROY R, HUANG Y, SECKL M J, et al. Emerging roles of hnRNPA1 in modulating malignant transformation[J]. Wiley Interdiscip Rev RNA, 2017, 8(6): e1431.
[19] BARADARAN-HERAVI Y, VAN BROECKHOVEN C, VAN DER ZEE J. Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum[J]. Neurobiol Dis, 2020, 134: 104639.
[20] CHIOU N T, SHANKARLING G, LYNCH K W. hnRNP L and hnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly[J]. Mol Cell, 2013, 49(5): 972-982.
[21] RICOTTI. G C A, BESTAGNO. M, CERINO. A, et al. Antibodies to hnRNP Core Protein A1 in Connective Tissue Diseases[J]. J Cell Biochem, 1989(40): 43-47
[22] HARDY R R, HAYAKAWA K. B cell development pathways[J]. Annu Rev Immunol, 2001, 19: 595-621.
[23] NAGASAWA T. Microenvironmental niches in the bone marrow required for B-cell development[J]. Nat Rev Immunol, 2006, 6(2): 107-116.
[24] HARDY R R, KINCADE P W, DORSHKIND K. The protean nature of cells in the B lymphocyte lineage[J]. Immunity, 2007, 26(6): 703-714.
[25] ROLINK A, MELCHERS F. B-cell development in the mouse[J]. Immunol Lett, 1996, 54(2-3): 157-161.
[26] LEWIS S M, WILLIAMS A, EISENBARTH S C. Structure and function of the immune system in the spleen[J]. Sci Immunol, 2019, 4(33)
[27] MESIN L, ERSCHING J, VICTORA G D. Germinal Center B Cell Dynamics[J]. Immunity, 2016, 45(3): 471-482.
[28] ANDERSON K L, NELSON S L, PERKIN H B, et al. PU.1 is a lineage-specific regulator of tyrosine phosphatase CD45[J]. J Biol Chem, 2001, 276(10): 7637-7642.
[29] RUAN G X, LI Y, CHEN W, et al. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement[J]. Cell Rep, 2022, 38(6): 110338.
[30] CHEN W, LI Y, RUAN G X, et al. Adenosine deaminase acting on RNA-1 is essential for early B lymphopoiesis[J]. Cell Rep, 2022, 41(8): 111687.
[31] ALT F W, YANCOPOULOS G D, BLACKWELL T K, et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments[J]. EMBO J, 1984, 3(6): 1209-1219.
[32] JUNG D, GIALLOURAKIS C, MOSTOSLAVSKY R, et al. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus[J]. Annu Rev Immunol, 2006, 24: 541-570.
[33] PROUDHON C, HAO B, RAVIRAM R, et al. Long-Range Regulation of V(D)J Recombination[J]. Adv Immunol, 2015, 128: 123-182.
[34] CEDAR H, BERGMAN Y. Choreography of Ig allelic exclusion[J]. Curr Opin Immunol, 2008, 20(3): 308-317.
[35] LUNING PRAK E T, MONESTIER M, EISENBERG R A. B cell receptor editing in tolerance and autoimmunity[J]. Ann N Y Acad Sci, 2011, 1217: 96-121.
[36] TENG G, SCHATZ D G. Regulation and Evolution of the RAG Recombinase[J]. Adv Immunol, 2015, 128: 1-39.
[37] SPICUGLIA S, FRANCHINI D M, FERRIER P. Regulation of V(D)J recombination[J]. Curr Opin Immunol, 2006, 18(2): 158-163.
[38] LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu Rev Biochem, 2010, 79: 181-211.
[39] ASHLEY J, SCHAAP-JOHANSEN A-L, MOHAMMADNIAEI M, et al. Terminal deoxynucleotidyl transferase-mediated formation of protein binding polynucleotides[J]. Nucleic Acids Res, 2021, 49(2): 1065-1074.
[40] MIQUEU P, GUILLET M, DEGAUQUE N, et al. Statistical analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases[J]. Molecular Immunology, 2007, 44(6): 1057-1064.
[41] ALT F W, ZHANG Y, MENG F-L, et al. Mechanisms of programmed DNA lesions and genomic instability in the immune system[J]. Cell, 2013, 152(3): 417-429.
[42] KUMARI G, SEN R. Chromatin Interactions in the Control of Immunoglobulin Heavy Chain Gene Assembly[J]. Adv Immunol, 2015, 128: 41-92.
[43] LUCAS J S, ZHANG Y, DUDKO O K, et al. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions[J]. Cell, 2014, 158(2): 339-352.
[44] JAIN S, BA Z, ZHANG Y, et al. CTCF-Binding Elements Mediate Accessibility of RAG Substrates During Chromatin Scanning[J]. Cell, 2018, 174(1): 102-116 e114.
[45] HU J, TEPSUPORN S, MEYERS R M, et al. Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes[J]. Proc Natl Acad Sci U S A, 2014, 111(28): 10269-10274.
[46] JI Y, RESCH W, CORBETT E, et al. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci[J]. Cell, 2010, 141(3): 419-431.
[47] HU J, ZHANG Y, ZHAO L, et al. Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes[J]. Cell, 2015, 163(4): 947-959.
[48] STADHOUDERS R, DE BRUIJN M J, ROTHER M B, et al. Pre-B cell receptor signaling induces immunoglobulin kappa locus accessibility by functional redistribution of enhancer-mediated chromatin interactions[J]. PLoS Biol, 2014, 12(2): e1001791.
[49] STENGEL K R, BARNETT K R, WANG J, et al. Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development[J]. Proc Natl Acad Sci U S A, 2017, 114(32): 8608-8613.
[50] MANDAL M, HAMEL K M, MAIENSCHEIN-CLINE M, et al. Histone reader BRWD1 targets and restricts recombination to the Igk locus[J]. Nat Immunol, 2015, 16(10): 1094-1103.
[51] LIN Y C, JHUNJHUNWALA S, BENNER C, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate[J]. Nat Immunol, 2010, 11(7): 635-643.
[52] CAROTTA S, DAKIC A, D'AMICO A, et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner[J]. Immunity, 2010, 32(5): 628-641.
[53] MANDEL E M, GROSSCHEDL R. Transcription control of early B cell differentiation[J]. Curr Opin Immunol, 2010, 22(2): 161-167.
[54] TREIBER T, MANDEL E M, POTT S, et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin[J]. Immunity, 2010, 32(5): 714-725.
[55] HOLMES M L, PRIDANS C, NUTT S L. The regulation of the B-cell gene expression programme by Pax5[J]. Immunol Cell Biol, 2008, 86(1): 47-53.
[56] MCMANUS S, EBERT A, SALVAGIOTTO G, et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells[J]. EMBO J, 2011, 30(12): 2388-2404.
[57] SCHEBESTA A, MCMANUS S, SALVAGIOTTO G, et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function[J]. Immunity, 2007, 27(1): 49-63.
[58] PRIDANS C, HOLMES M L, POLLI M, et al. Identification of Pax5 target genes in early B cell differentiation[J]. J Immunol, 2008, 180(3): 1719-1728.
[59] SUNDARARAJ S, CASAROTTO M G. Molecular interactions of IRF4 in B cell development and malignancies[J]. Biophys Rev, 2021, 13(6): 1219-1227.
[60] WANG H, LEE C H, QI C, et al. IRF8 regulates B-cell lineage specification, commitment, and differentiation[J]. Blood, 2008, 112(10): 4028-4038.
[61] GARRETT-SINHA L A, SU G H, RAO S, et al. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction[J]. Immunity, 1999, 10(4): 399-408.
[62] LIU J, YUE Y, HAN D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95.
[63] ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
[64] WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120.
[65] LIU N, DAI Q, ZHENG G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540): 560-564.
[66] ZHOU K I, SHI H, LYU R, et al. Regulation of Co-transcriptional Pre-mRNA Splicing by m(6)A through the Low-Complexity Protein hnRNPG[J]. Mol Cell, 2019, 76(1): 70-81 e79.
[67] ALARCON C R, GOODARZI H, LEE H, et al. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events[J]. Cell, 2015, 162(6): 1299-1308.
[68] ZHENG Z, ZHANG L, CUI X L, et al. Control of Early B Cell Development by the RNA N(6)-Methyladenosine Methylation[J]. Cell Rep, 2020, 31(13): 107819.
[69] HUANG H, ZHANG G, RUAN G X, et al. Mettl14-Mediated m6A Modification Is Essential for Germinal Center B Cell Response[J]. J Immunol, 2022, 208(8): 1924-1936.
[70] MARCU-MALINA V, GOLDBERG S, VAX E, et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow[J]. Oncotarget, 2016, 7(34): 54370-54379.
[71] BLACK D L. Mechanisms of alternative pre-messenger RNA splicing[J]. Annu Rev Biochem, 2003, 72: 291-336.
[72] GOMEZ ACUNA L I, FISZBEIN A, ALLO M, et al. Connections between chromatin signatures and splicing[J]. Wiley Interdiscip Rev RNA, 2013, 4(1): 77-91.
[73] LAMOND A I. The spliceosome[J]. BioEssays, 1993, 15(9): 595-603.
[74] YAN C, WAN R, SHI Y. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome[J]. Cold Spring Harb Perspect Biol, 2019, 11(1)
[75] SHI Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome[J]. Nat Rev Mol Cell Biol, 2017, 18(11): 655-670.
[76] YANG H, BEUTLER B, ZHANG D. Emerging roles of spliceosome in cancer and immunity[J]. Protein Cell, 2021, 13(8): 559-579.
[77] BONNAL S, VIGEVANI L, VALCARCEL J. The spliceosome as a target of novel antitumour drugs[J]. Nat Rev Drug Discov, 2012, 11(11): 847-859.
[78] TENG T, TSAI J H, PUYANG X, et al. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex[J]. Nat Commun, 2017, 25(8): 15522.
[79] KATSUYAMA T, LI H, COMTE D, et al. Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity[J]. J Clin Invest, 2019, 129(12): 5411-5423.
[80] PIOLI P D, DEBNATH I, WEIS J J, et al. Zfp318 regulates IgD expression by abrogating transcription termination within the Ighm/Ighd locus[J]. J Immunol, 2014, 193(5): 2546-2553.
[81] PREUSSNER M, SCHREINER S, HUNG L H, et al. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing[J]. Nucleic Acids Res, 2012, 40(12): 5666-5678.
[82] ERGUN A, DORAN G, COSTELLO J C, et al. Differential splicing across immune system lineages[J]. Proc Natl Acad Sci U S A, 2013, 110(35): 14324-14329.
[83] DOAMEKPOR S K, SHARMA S, KILEDJIAN M, et al. Recent insights into noncanonical 5' capping and decapping of RNA[J]. J Biol Chem, 2022, 298(8): 102171.
[84] AKIYAMA T, YAMAMOTO T. Regulation of Early Lymphocyte Development via mRNA Decay Catalyzed by the CCR4-NOT Complex[J]. Front Immunol, 2021, 12: 715675.
[85] TAN K, STUPACK D G, WILKINSON M F. Nonsense-mediated RNA decay: an emerging modulator of malignancy[J]. Nat Rev Cancer, 2022, 22(8): 437-451.
[86] GRUBER A R, FALLMANN J, KRATOCHVILL F, et al. AREsite: a database for the comprehensive investigation of AU-rich elements[J]. Nucleic Acids Res, 2011, 39(Database issue): D66-69.
[87] GEUENS T, BOUHY D, TIMMERMAN V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016, 135(8): 851-867.
[88] AKIYAMA T, SUZUKI T, YAMAMOTO T. RNA decay machinery safeguards immune cell development and immunological responses[J]. Trends Immunol, 2021, 42(5): 447-460.
[89] YANG C Y, RAMAMOORTHY S, BOLLER S, et al. Interaction of CCR4-NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis[J]. Genes Dev, 2016, 30(20): 2310-2324.
[90] INOUE T, MORITA M, HIJIKATA A, et al. CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability[J]. J Exp Med, 2015, 212(9): 1465-1479.
[91] NEWMAN R, AHLFORS H, SAVELIEV A, et al. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1[J]. Nat Immunol, 2017, 18(6): 683-693.
[92] GEISSLER R, SIMKIN A, FLOSS D, et al. A widespread sequence-specific mRNAdecay pathway mediated by hnRNPs A1 and A2/B1[J]. Genes Dev, 2016, 30(9): 1070-1085.
[93] FAHLING M, MROWKA R, STEEGE A, et al. Heterogeneous nuclear ribonucleoprotein-A2/B1 modulate collagen prolyl 4-hydroxylase, alpha (I) mRNA stability[J]. J Biol Chem, 2006, 281(14): 9279-9286.
[94] KASIM M, BENKO E, WINKELMANN A, et al. Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia[J]. J Biol Chem, 2014, 289(39): 26973-26988.
[95] DU H, ZHAO Y, HE J, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex[J]. Nat Commun, 2016, 7: 12626.
[96] SAIJO K, SCHMEDT C, SU I H, et al. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development[J]. Nat Immunol, 2003, 4(3): 274-279.
[97] HASHIMOTO S, IWAMATSU A, ISHIAI M, et al. Identification of the SH2 Domain Binding Protein of Bruton’s Tyrosine Kinase as BLNK—Functional Significance of Btk-SH2 Domain in B-Cell Antigen Receptor-Coupled Calcium Signaling[J]. Blood, 1999, 94(7): 2357-2364.
[98] DRIESSEN G J, H I J, WENTINK M, et al. Increased PI3K/Akt activity and deregulated humoral immune response in human PTEN deficiency[J]. J Allergy Clin Immunol, 2016, 138(6): 1744-1747 e1745.
[99] HARWOOD N E, BATISTA F D. Early events in B cell activation[J]. Annu Rev Immunol, 2010, 28: 185-210.
[100] HIKIDA M, KUROSAKI T. Regulation of phospholipase C-gamma2 networks in B lymphocytes[J]. Adv Immunol, 2005, 88: 73-96.
[101] KITAMURA D, RAJEWSKY K. Targeted disruption of μ chain membrane exon causes loss of heavy-chain allelic exclusion[J]. Nature, 1992, 356(6365): 154-156.
[102] MåRTENSSON A, ARGON Y, MELCHERS F, et al. Partial block in B lymphocyte development at the transition into the pre-B cell receptor stage in Vpre-B1-deficient mice[J]. Int Immunol, 1999, 11(3): 453-460.
[103] OKKENHAUG K, BILANCIO A, FARJOT G, et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice[J]. Science, 2002, 297(5583): 1031-1034.
[104] SONDERGAARD E, RAUCH A, MICHAUT M, et al. ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination[J]. Cell Rep, 2019, 29(9): 2756-2769 e2756.
[105] CHEN A, YANG D, XUAN X, et al. Dock5 controls the peripheral B cell differentiation via regulating BCR signaling and actin reorganization[J]. Cell Immunol, 2019, 337: 15-21.
[106] YAM-PUC J C, ZHANG L, ZHANG Y, et al. Role of B-cell receptors for B-cell development and antigen-induced differentiation[J]. F1000Res, 2018, 7: 429.
[107] TANAKA S, BABA Y. B Cell Receptor Signaling[J]. Adv Exp Med Biol, 2020, 1254: 23-36.
[108] MINGUET S, KLASENER K, SCHAFFER A M, et al. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance[J]. Nat Immunol, 2017, 18(10): 1150-1159.
[109] BINDER M, MULLER F, FRICK M, et al. CLL B-cell receptors can recognize themselves: alternative epitopes and structural clues for autostimulatory mechanisms in CLL[J]. Blood, 2013, 121(1): 239-241.
[110] DUHREN-VON MINDEN M, UBELHART R, SCHNEIDER D, et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling[J]. Nature, 2012, 489(7415): 309-312.
[111] THOMAS K R, ALLENSPACH E J, CAMP N D, et al. Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice[J]. Leukemia, 2022, 36(1): 42-57.
[112] NIEMANN C U, WIESTNER A. B-cell receptor signaling as a driver of lymphoma development and evolution[J]. Semin Cancer Biol, 2013, 23(6): 410-421.
[113] KRAMER M H H, HERMANS J, WIJBURG E, et al. Clinical Relevance of BCL2, BCL6, and MYC Rearrangements in Diffuse Large B-Cell Lymphoma[J]. Blood, 1998, 92(9): 3152-3162.
[114] BARRANS S, CROUCH S, SMITH A, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab[J]. J Clin Oncol, 2010, 28(20): 3360-3365.
[115] VAANDRAGER J-W, SCHUURING E, KLUIN-NELEMANS H C, et al. DNA Fiber Fluorescence In Situ Hybridization Analysis of Immunoglobulin Class Switching in B-Cell Neoplasia: Aberrant CH Gene Rearrangements in Follicle Center-Cell Lymphoma[J]. Blood, 1998, 92(8): 2871-2878.
[116] WILKINSON M E, CHARENTON C, NAGAI K. RNA Splicing by the Spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-388.
[117] SHEN H, ZHENG X, SHEN J, et al. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome[J]. Genes Dev, 2008, 22(13): 1796-1803.
[118] XU Y Z, NEWNHAM C M, KAMEOKA S, et al. Prp5 bridges U1 and U2 snRNPs and enables stable U2 snRNP association with intron RNA[J]. EMBO J, 2004, 23(2): 376-385.
[119] BOESLER C, RIGO N, ANOKHINA M M, et al. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity[J]. Nat Commun, 2016, 7: 11997.
[120] RAGHUNATHAN P L, GUTHRIE C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2[J]. Curr Biol, 1998, 8(15): 847-855.
[121] HARBOUR J W, ROBERSON E D, ANBUNATHAN H, et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma[J]. Nat Genet, 2013, 45(2): 133-135.
[122] WANG L, LAWRENCE M S, WAN Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia[J]. N Engl J Med, 2011, 365(26): 2497-2506.
[123] BHADRA M, HOWELL P, DUTTA S, et al. Alternative splicing in aging and longevity[J]. Hum Genet, 2020, 139(3): 357-369.
[124] ULE J, STEFANI G, MELE A, et al. An RNA map predicting Nova-dependent splicing regulation[J]. Nature, 2006, 444(7119): 580-586.
[125] SCIARRILLO R, WOJTUSZKIEWICZ A, ASSARAF Y G, et al. The role of alternative splicing in cancer: From oncogenesis to drug resistance[J]. Drug Resist Updat, 2020, 53: 100728.
[126] LEE Y, RIO D C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing[J]. Annu Rev Biochem, 2015, 84: 291-323.
[127] EXPERT-BEZANCON A, SUREAU A, DUROSAY P, et al. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B[J]. J Biol Chem, 2004, 279(37): 38249-38259.
[128] ZHOU Z, FU X D. Regulation of splicing by SR proteins and SR protein-specific kinases[J]. Chromosoma, 2013, 122(3): 191-207.
[129] HERZEL L, OTTOZ D S M, ALPERT T, et al. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function[J]. Nature Reviews Molecular Cell Biology, 2017, 18(10): 637-650.
[130] WARNS J A, DAVIE J R, DHASARATHY A. Connecting the dots: chromatin and alternative splicing in EMT[J]. Biochem Cell Biol, 2016, 94(1): 12-25.
[131] EGLOFF S, MURPHY S. Cracking the RNA polymerase II CTD code[J]. Trends in Genetics, 2008, 24(6): 280-288.
[132] BECKMANN J S, TRIFONOV E N. Splice junctions follow a 205-base ladder[J]. Proc Natl Acad Sci U S A, 1991, 88(6): 2380-2383.
[133] KFIR N, LEV-MAOR G, GLAICH O, et al. SF3B1 association with chromatin determines splicing outcomes[J]. Cell Rep, 2015, 11(4): 618-629.
[134] CAVELLAN E, ASP P, PERCIPALLE P, et al. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription[J]. J Biol Chem, 2006, 281(24): 16264-16271.
[135] UNDERHILL C, QUTOB M S, YEE S P, et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1[J]. J Biol Chem, 2000, 275(51): 40463-40470.
[136] BATSCHE E, YANIV M, MUCHARDT C. The human SWI/SNF subunit Brm is a regulator of alternative splicing[J]. Nat Struct Mol Biol, 2006, 13(1): 22-29.
[137] KHAN D H, GONZALEZ C, COOPER C, et al. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing[J]. Nucleic Acids Res, 2014, 42(3): 1656-1670.
[138] LOOMIS R J, NAOE Y, PARKER J B, et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation[J]. Mol Cell, 2009, 33(4): 450-461.
[139] XU S J, LOMBROSO S I, FISCHER D K, et al. Chromatin-mediated alternative splicing regulates cocaine-reward behavior[J]. Neuron, 2021, 109(18): 2943-2966 e2948.
[140] BEGUM N A, HAQUE F, STANLIE A, et al. Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition[J]. EMBO J, 2021, 40(12): e106393.
[141] WANG Q, RYMOND B C. Rds3p is required for stable U2 snRNP recruitment to the splicing apparatus[J]. Mol Cell Biol, 2003, 23(20): 7339-7349.
[142] MAO S, LI Y, LU Z, et al. PHD finger protein 5A promoted lung adenocarcinoma progression via alternative splicing[J]. Cancer Med, 2019, 8(5): 2429-2441.
[143] CHANG Y, ZHAO Y, WANG L, et al. PHF5A promotes colorectal cancerprogression by alternative splicing of TEAD2[J]. Mol Ther Nucleic Acids, 2021, 26: 1215-1227.
[144] YU A Q, WANG J, JIANG S T, et al. SIRT7-Induced PHF5A Decrotonylation Regulates Aging Progress Through Alternative Splicing-Mediated Downregulation of CDK2[J]. Front Cell Dev Biol, 2021, 9: 710479.
[145] TRAPPE. R, AHMED. M, GLäSER. B, et al. Phf5a-chromatin-Identification and characterization of a novel murine multigene__family containing a PHD-finger-like motif[J]. Biochem Biophys Res Commun, 2002(293): 816–826.
[146] TRAPPE R, SCHULZE E, RZYMSKI T, et al. The Caenorhabditis elegans ortholog of human PHF5a shows a muscle-specific expression domain and is essential for C. elegans morphogenetic development[J]. Biochem Biophys Res Commun, 2002, 297(4): 1049-1057.
[147] OLTRA E, PFEIFER I, WERNER R. Ini, a small nuclear protein that enhances the response of the connexin43 gene to estrogen[J]. Endocrinology, 2003, 144(7): 3148-3158.
[148] STRIKOUDIS A, LAZARIS C, TRIMARCHI T, et al. Regulation of transcriptional elongation in pluripotency and cell differentiation by the PHD-finger protein Phf5a[J]. Nat Cell Biol, 2016, 18(11): 1127-1138.
[149] MAYEDA A, MUNROE S H, CACERES J F, et al. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins[J]. EMBO J, 1994, 13(22): 5483-5495.
[150] LIU Y, SHI S L. The roles of hnRNP A2/B1 in RNA biology and disease[J]. WileyInterdiscip Rev RNA, 2021, 12(2): e1612.
[151] HUELGA S C, VU A Q, ARNOLD J D, et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins[J]. Cell Rep, 2012, 1(2): 167-178.
[152] HUA Y, VICKERS T A, OKUNOLA H L, et al. Antisense Masking of an hnRNP A1/A2 Intronic Splicing Silencer Corrects SMN2 Splicing in Transgenic Mice[J]. Am J Hum Genet, 2008, 82(4): 834-848.
[153] CLOWER C V, CHATTERJEE D, WANG Z, et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism[J]. Proc Natl Acad Sci U S A, 2010, 107(5): 1894-1899.
[154] GOLAN-GERSTL R, COHEN M, SHILO A, et al. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma[J]. Cancer Res, 2011, 71(13): 4464-4472.
[155] MCGLINCY N J, TAN L Y, PAUL N, et al. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay[J]. BMC Genomics, 2010, 11: 565.
[156] HOWARD J M, LIN H, WALLACE A J, et al. HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo[J]. Genome Res, 2018, 28(5): 689-698.
[157] HUANG H, LI Y, ZHANG G, et al. The RNA-binding protein hnRNP F is required for the germinal center B cell response[J]. Nat Commun, 2023, 14(1): 1731.
[158] NISHIKAWA T, KUWANO Y, TAKAHARA Y, et al. HnRNPA1 interacts with G-quadruplex in the TRA2B promoter and stimulates its transcription in human colon cancer cells[J]. Sci Rep, 2019, 9(1): 10276.
[159] SCALABRIN M, FRASSON I, RUGGIERO E, et al. The cellular protein hnRNP A2/B1 enhances HIV-1 transcription by unfolding LTR promoter G-quadruplexes[J]. Sci Rep, 2017, 7: 45244.
[160] ROY R, DURIE D, LI H, et al. hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling[J]. Nucleic Acids Res, 2014, 42(20): 12483-12497.
[161] GAO Y, TATAVARTY V, KORZA G, et al. Multiplexed dendritic targeting of alpha calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway[J]. Mol Biol Cell, 2008, 19(5): 2311-2327.
[162] MUNRO T P, MAGEE R J, KIDD G J, et al. Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking[J]. J Biol Chem, 1999, 274(48): 34389-34395.
[163] GEISSLER R, GRIMSON A. A position-specific 3'UTR sequence that accelerates mRNA decay[J]. RNA Biol, 2016, 13(11): 1075-1077.
[164] MARTINEZ F J, PRATT G A, VAN NOSTRAND E L, et al. Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System[J]. Neuron, 2016, 92(4): 780-795.
[165] HAO A, WANG Y, ZHANG X, et al. Long non-coding antisense RNA HYOU1-AS is essential to human breast cancer development through competitive binding hnRNPA1 to promote HYOU1 expression[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(4): 118951.
[166] ZUBOVIC L, BARALLE M, BARALLE F E. Mutually exclusive splicing regulates the Nav 1.6 sodium channel function through a combinatorial mechanism that involves three distinct splicing regulatory elements and their ligands[J]. Nucleic Acids Res, 2012, 40(13): 6255-6269.
[167] CAMMAS A, PILEUR F, BONNAL S, et al. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs[J]. Mol Biol Cell, 2007, 18(12): 5048-5059.
[168] HUNG C Y, WANG Y C, CHUANG J Y, et al. Nm23-H1-stabilized hnRNPA2/B1 promotes internal ribosomal entry site (IRES)-mediated translation of Sp1 in the lung cancer progression[J]. Sci Rep, 2017, 7(1): 9166.
[169] IWANAGA K, SUEOKA N, SATO A, et al. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity[J]. Biochem Biophys Res Commun, 2005, 333(3): 888-895.
[170] KAMMA H, FUJIMOTO M, FUJIWARA M, et al. Interaction of hnRNP A2/B1 Isoforms with Telomeric ssDNA and the in Vitro Function[J]. Biochem Biophys Res Commun, 2001, 280(3): 625-630.
[171] MORAN-JONES K, WAYMAN L, KENNEDY D D, et al. hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere[J]. Nucleic Acids Res, 2005, 33(2): 486-496.
[172] BLACK K L, NAQVI A S, ASNANI M, et al. Aberrant splicing in B-cell acute lymphoblastic leukemia[J]. Nucleic Acids Res, 2018, 46(21): 11357-11369.
[173] NELL V P, MACHOLD K P, STAMM T A, et al. Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis[J]. Ann Rheum Dis, 2005, 64(12): 1731-1736.
[174] HERMAN S, FISCHER A, PRESUMEY J, et al. Inhibition of Inflammation and Bone Erosion by RNA Interference-Mediated Silencing of Heterogeneous Nuclear RNP A2/B1 in Two Experimental Models of Rheumatoid Arthritis[J]. Arthritis Rheumatol, 2015, 67(9): 2536-2546.
[175] MI H, MURUGANUJAN A, HUANG X, et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0)[J]. Nat Protoc, 2019, 14(3): 703-721.
[176] BOLOTIN D A, POSLAVSKY S, MITROPHANOV I, et al. MiXCR: software for comprehensive adaptive immunity profiling[J]. Nat Methods, 2015, 12(5): 380-381.
[177] SHUGAY M, BAGAEV D V, TURCHANINOVA M A, et al. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires[J]. PLoS Comput Biol, 2015, 11(11): e1004503.
[178] SONG L, COHEN D, OUYANG Z, et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data[J]. Nat Methods, 2021, 18(6): 627-630.
[179] GUO C, YOON H S, FRANKLIN A, et al. CTCF-binding elements mediate control of V(D)J recombination[J]. Nature, 2011, 477(7365): 424-430.
[180] SUBRAHMANYAM R, DU H, IVANOVA I, et al. Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions[J]. Nat Immunol, 2012, 13(12): 1205-1212.
[181] SHEN S, PARK J W, LU Z X, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proc Natl Acad Sci U S A, 2014, 111(51): E5593-5601.
[182] BOLLAND D J, WOOD A L, JOHNSTON C M, et al. Antisense intergenic transcription in V(D)J recombination[J]. Nat Immunol, 2004, 5(6): 630-637.
[183] TRANCOSO I, BONNET M, GARDNER R, et al. A Novel Quantitative Fluorescent Reporter Assay for RAG Targets and RAG Activity[J]. Front Immunol, 2013, 4: 110.
[184] RAO S S, HUNTLEY M H, DURAND N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 2014, 159(7): 1665-1680.
[185] DIXON J R, SELVARAJ S, YUE F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions[J]. Nature, 2012, 485(7398): 376-380.
[186] HUBERT C G, BRADLEY R K, DING Y, et al. Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A[J]. Genes Dev, 2013, 27(9): 1032-1045.
[187] CHANG Y, LU X, QIU J. Compensatory expression regulation of highly homologous proteins HNRNPA1 and HNRNPA2[J]. Turk J Biol, 2021, 45(2): 187-195.
[188] LIU X, ZHOU Y, LOU Y, et al. Knockdown of HNRNPA1 inhibits lung adenocarcinoma cell proliferation through cell cycle arrest at G0/G1 phase[J]. Gene, 2016, 576(2 Pt 2): 791-797.
[189] GAO L B, ZHU X L, SHI J X, et al. HnRNPA2B1 promotes the proliferation of breast cancer MCF-7 cells via the STAT3 pathway[J]. J Cell Biochem, 2021, 122(3-4): 472-484.
[190] SHERMAN B T, HAO M, QIU J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.
[191] GOODARZI H, NAJAFABADI H S, OIKONOMOU P, et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs[J]. Nature, 2012, 485(7397): 264-268.
修改评论