中文版 | English
题名

碳龙配体修饰及轴手性碳龙配合物的合成

其他题名
MODIFICATION OF CARBOLONG LIGANDS AND SYNTHESIS OF AXIAL CHIRAL CARBOLONG COMPLEXES
姓名
姓名拼音
WANG Guoqing
学号
12132794
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
夏海平
导师单位
化学系
论文答辩日期
2024-05-16
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本课题组报道了一系列金属位于桥位,并且含有双五元环骨架的金属 杂芳香配合物,这一系列金属杂芳香配合物被称为“碳龙配合物”,其化学 被命名为“碳龙化学”。结构决定性能,性能决定应用,碳龙配合物独特的 结构,决定了其具有独特性能。大多数碳龙配合物具有强而宽的吸收光谱, 在吸收光后,除了常规地将其转化为光、电、热之外,有时候还会发生超 声波,甚至部分碳龙化合物具有 AIE 效应。除此之外,碳龙配合物还能应 用于均相催化。 膦配体能与金属配位形成高催化活性的配合物,所以膦配体已被广泛 应用于有机合成;同时膦配体也会影响配合物光电活性。很多碳龙配合物 的金属中心含有一个或两个膦配体,为了探究该类配体对碳龙配合物性能 的影响,我们对它们进行了修饰,并测试了产物的光学性质及不对称催化 性能:以锇杂戊搭烯并锇杂喹啉为研究对象,发现不同的膦配体对其紫外 可见吸收光谱有一定的影响;以金属中心手性锇杂环氧丙烯并锇杂戊搭烯 为研究对象,发现膦配体对其催化(E)-4-羟基-4-甲基-1-苯基戊基-1-烯-3 酮与吲哚的不对称 Michael 加成反应结果影响较大,当膦配体为 P(p OCH3-C6H4)3 时,产率可达 92%,ee 值为 75%,相较于膦配体为 PPh3时 结果有很大提升(产率85%,ee值35%)。 轴手性骨架是许多药物分子和天然产物的重要结构单元,并且被广泛 应用于不对称催化。现有的轴手性骨架基本不含过渡金属。我们通过设计 合适的多炔碳链,运用手性传递的策略,将多炔碳链的碳中心手性转移到 碳龙配合物的轴上:使用ee值大于99%的多炔碳链,最高可制备 ee值为 93%的轴手性碳龙配合物。我们不仅合成了轴手性金属锇碳龙配合物,还 合成了轴手性金属铱碳龙配合物。这类特殊轴手性碳龙配合物的性能有待 进一步探究。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] CHEN D F, HUA Y H, XIA H P. Metallaaromatic chemistry: history and development[J]. Chemical Reviews, 2020, 120(23): 12994-13086.
[2] ZEISE W C. Eine besondere platinverbindung[J]. Annalen der Physik, 1827, 9: 632.
[3] THORN D L, HOFFMANN R. Delocalization in metallocycles[J]. Nouveau Journal de Chimie, 1979, 3(1): 39-45.
[4] ELLIOTT G P, ROPER W R, WATERS J M. Metallacyclohexatrienes or ‘metallabenzenes.’ synthesis of osmabenzene derivatives and X-ray crystal structure of [Os(CSCHCHCHCH)(CO)(PPh3)2][J]. Journal of the Chemical Society, Chemical Communications, 1982: 811-813.
[5] PANEQUE M, POSADAS C M, POVEDA M L, et al. Formation of unusual iridabenzene and metallanaphthalene containing electron-withdrawing substituents[J]. Journal of the American Chemical Society, 2003, 125(33): 9898-9899.
[6] XIA H P, HE G, ZHANG H, et al. Osmabenzenes from the reactions of HC≡CCH(OH)C≡CH with OsX2(PPh3)3 (X = Cl, Br)[J]. Journal of the American Chemical Society, 2004, 126 (22): 6862-6863.
[7] ZHANG H, WU L, LIN R, et al. Synthesis, characterization and electrochemical properties of stable osmabenzenes containing PPh3 substituents[J]. Chemistry – A European Journal, 2009, 15 (14): 3546-3559.
[8] ZHANG H, XIA H P, HE G, et al. Synthesis and characterization of stable ruthenabenzenes[J]. Angewandte Chemie International Edition, 2006, 45 (18): 2920-2923.
[9] WEN T B, ZHOU Z, JIA, G C. Synthesis and characterization of a metallabenzyne[J]. Angewandte Chemie International Edition, 2001, 40 (10): 1951-1954.
[10] LIU B, XIE H, WANG H, et al. Selective synthesis of osmanaphthalene and osmanaphthalyne by intramolecular C-H activation[J]. Angewandte Chemie International Edition, 2009, 48 (30): 5461-5464.
[11] WANG H J, ZHOU X X, XIA H P. Metallaaromatics containing main-group heteroatoms[J]. Chinese Journal of Chemistry, 2018, 36: 93-105.
[12] MA W, YU C, CHEN T. Metallacyclopentadienes: synthesis, structure and reactivity[J]. Chemical Society Reviews, 2017, 46(4): 1160-1192.
[13] ZHU C Q, XIA H P. Carbolong chemistry: a story of carbon chain ligands and transition metals[J]. Accounts of Chemical Research, 2018, 51: 1691-1700.
[14] WEI J, ZHANG W X, XI Z. The aromatic dianion metalloles[J]. Chemical Science, 2018, 9: 560-568.
[15] ZHU C Q, YANG C, WANG Y, et al. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties[J]. Science Advances, 2016, 2(8): e1601031.
[16] ZHU C Q, YANG Y, LUO M, et al. Stabilizing two classical antiaromatic frameworks: demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics[J]. Angewandte Chemie International Edition, 2015, 54(21): 6181-6185.
[17] CHEN S Y, LIU L, GAO X, et al. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated system[J]. Nature Communications, 2020, 11(1): 4651.
[18] ZHOU X, PANG X, NIE L, et al. Successive modification of polydentate complexes gives access to planar carbon- and nitrogen-based ligands[J]. Nature Communications, 2019, 10(1): 1488.
[19] CUI F H, HUA Y H, LIN Y M, et al. Selective difunctionalization of unactivated aliphatic alkenes enabled by a metal–metallaaromatic catalytic system[J]. Journal of the American Chemical Society, 2022, 144(5): 2301-2310.
[20] ZHU C Q, LI S, LUO M, et al. Stabilization of anti-aromatic and strained five membered rings with a transition metal[J]. Nature Chemistry, 2013, 5(8): 698-703.
[21] ZHU C Q, LUO M, ZHU Q, et al. Planar Möbius aromatic pentalenes incorporating 16 and 18 valence electron osmiums[J]. Nature Communications, 2014, 5(1): 3265.
[22] ZHU C Q, ZHOU X, XING H, et al. σ-Aromaticity in an unsaturated ring: osmapentalene derivatives containing a metallacyclopropene unit[J]. Angewandte Chemie International Edition, 2015, 54(10): 3102-3106.
[23] LUO M, LONG L, ZHANG H, et al. Reactions of isocyanides with metal carbyne complexes: isolation and characterization of metallacyclopropenimine intermediates[J]. Journal of the American Chemical Society, 2017, 139(5): 1822-1825.
[24] CHEN L N, LIN L, NATH A R, et al. Synthesis and characterization of Craig-type antiaromatic species with
[4n+2] π electrons[J]. Proceedings of the National Academy of Sciences, 2023, 120(6): e2215900120.
[25] ZHU C Q, YANG Y, LUO M, et al. Stabilizing two classical antiaromatic frameworks: demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics[J]. Angewandte Chemie International Edition, 2015, 54(21): 6181-6185.
[26] ZHU C Q, WU J, LI S, et al. Synthesis and characterization of a metallacyclic framework with three fused five-membered rings[J]. Angewandte Chemie International Edition, 2017, 56(31): 9067-9071.
[27] ZHU C Q, ZHU J, ZHOU X, et al. Isolation of an eleven-atom polydentate carbon chain chelate obtained by cycloaddition of a cyclic osmium carbyne with an alkyne[J]. Angewandte Chemie International Edition, 2018, 57(12): 3154-3157.
[28] ZHU C Q, YANG C, WANG Y, et al. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties[J]. Science Advances, 2016, 2(8): e1601031.
[29] LIN Q, LI S, LIN J, et al. Synthesis and characterization of photothermal osmium carbolong complexes[J]. Chemistry – A European Journal, 2018, 24(33): 8375-8381.
[30] ZHU C Q, ZHU Q, FAN J, et al. A metal-bridged tricyclic aromatic system: synthesis of osmium polycyclic aromatic complexes[J]. Angewandte Chemie International Edition, 2014, 53(24): 6232-6236.
[31] LUO M, HUA Y H, ZHUO K Y, et al. Carbolong chemistry: planar CCCCX-Type (X = N, O, S) pentadentate chelates by formal
[3+1] cycloadditions of metalla azirines with terminal alkynes[J]. CCS Chemistry, 2021, 3(2): 758-763.
[32] ZHOU X, WU J, HAO Y, et al. Rational design and synthesis of unsaturated Se containing osmacycles with σ-aromaticity[J]. Chemistry – A European Journal, 2018, 24(10): 2389-2395.
[33] LUO M, CAI Y, LIN X, et al. Synthesis, characterization, and reactivity of metalla-chalcogenirenium compounds[J]. Chinese Journal of Chemistry, 2021, 39(6): 1558-1564.
[34] WANG H, LIN Y, CHEN S, et al. Metallacycle expansion and annulation: access to tetrazolo-fused osmacycles by reaction of cyclic osmium carbyne with sodium azide[J]. Chinese Journal of Chemistry, 2021, 39(12): 3435-3442.
[35] LUO M, ZHU C Q, CHEN L, et al. Halogenation of carbyne complexes: isolation of unsaturated metallaiodirenium ion and metallabromirenium ion[J]. Chemical Science, 2016, 7(3): 1815-1818.
[36] LU Z Y, ZHU C Q, CAI Y T, et al. Metallapentalenofurans and lactone-fused metallapentalynes[J]. Chemistry – A European Journal, 2017, 23(26): 6426-6431.
[37] CUI F H, LI Q, GAO L, et al. Condensed osmaquinolines with NIR-II absorption synthesized by aryl C−H annulation and aromatization[J]. Angewandte Chemie International Edition, 2022, 61(48): e202211734.
[38] ZHUO Q D, LIN J, HUA Y H, et al. Multiyne chains chelating osmium via three metal carbon σ bonds[J]. Nature Communications, 2017, 8(1): 1912.
[39] ZHUO Q D, ZHANG H, HUA Y H, et al. Constraint of a ruthenium-carbon triple bond to a five-membered ring[J]. Science Advances, 2018, 4(6): eaat0336.
[40] ZHUO Q D, ZHANG H, DING L, et al. Rhodapentalenes: pincer complexes with internal aromaticity[J]. iScience, 2019, 19: 1214-1224.
[41] 李金华,卓凯玥,陈大发,夏海平. 铱杂碳龙配合物的合成及反应性[J]. 化学学报,2021, 79(1): 71-80.
[42] WANG J, LI J H, ZHOU Y, et al. Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.
[43] LI J H, LU Z Y, HUA Y H, et al. Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene[J]. Chemical Communications, 2021, 57(68): 8464-8467.
[44] XU B B, MAO W, WU C, et al. A one-pot strategy for the synthesis of β-substituted rhoda- and irida-carbolong complexes[J]. Chinese Journal of Chemistry, 2022, 40(15): 1777-1784.
[45] LUO M, CHEN D F, LI Q, et al. Unique properties and emerging applications of carbolong metallaaromatics[J]. Accounts of Chemical Research, 2023, 56: 924-937.
[46] LI R, LU Z Y, CAI Y T, et al. Switching of charge transport pathways via delocalization changes in single-molecule metallacycles junctions[J]. Journal of the American Chemical Society, 2017, 139(41): 14344-14347.
[47] CHEN S Y, LIU L, GAO X, et al. Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated system[J]. Nature Communications, 2020, 11(1): 4651.
[48] LI J, WANG J, ZHOU Y, et al. Boosting the performance and stability of inverted perovskite solar cells by using a carbolong derivative to modulate the cathode interface[J]. Materials Chemistry Frontiers, 2022, 6(16): 2211-2218.
[49] WANG J, LI J, LIU H, et al. Interface engineering using a neutral carbolong complex for efficient and stable p–i–n perovskite solar cells[J]. Journal of Materials Chemistry C, 2023, 11(7): 2480-2483.
[50] WANG W, HAMMOND G B, XU, B. Ligand effects and ligand design in homogeneous gold(I) catalysis[J]. Journal of the American Chemical Society, 2012, 134(12): 5697-5705.
[51] KIM S, ROJAS-MARTIN J, TOSTE, F. Visible light-mediated gold-catalysed carbon(sp(2))-carbon(sp) cross-coupling[J]. Chemical Science, 2016, 7(1): 85-88.
[52] TLAHUEXT-ACA A, HOPKINSON M N, SAHOO B, et al. Dual gold/photoredox-catalyzed C(sp)-H arylation of terminal alkynes with diazonium salts[J]. Chemical Science, 2016, 7(1): 89-93.
[53] YUAN T, TANG Q, SHAN C, et al. Alkyne trifunctionalization via divergent gold catalysis: combining π-acid activation, vinyl-gold addition, and redox catalysis[J]. Journal of the American Chemical Society, 2021, 143(10), 4074-4082.
[54] WANG W, DING M, ZHAO, C, et al. Unlocking migratory insertion in gold redox catalysis[J]. Angewandte Chemie International Edition, 2023, 62(29): e202304019.
[55] MEI G, WONG J, ZHENG W, et al. Rational design and atroposelective synthesis of N–N axially chiral compounds[J]. Chem, 2021, 7(10): 2743-2757.
[56] KUMARASAMY E, RAGHUNATHAN R, SIBI M P, et al. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations[J]. Chemical Reviews, 2015, 115(20): 11239-11300.
[57] BRINGMANN G, PRICE MORTIMER A, KELLER P, et al. Atroposelective synthesis of axially chiral biaryl compounds[J]. Angewandte Chemie International Edition, 2005, 44(34): 5384-5427.
[58] GUO F, KONKOL L, THOMSON R. Enantioselective synthesis of biphenols from 1,4-diketones by traceless central-to-axial chirality exchange[J]. Journal of the American Chemical Society, 2011, 133: 18-20.
[59] CHEN Y H, CHENG D, ZHANG J, et al. Atroposelective synthesis of axially chiral biaryldiols via organocatalytic arylation of 2-naphthols[J]. Journal of the American Chemical Society, 2015, 137(48): 15062-15065.
[60] CHEN Y, QI L, FANG F, et al Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols[J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[61] FENG J, LU C, LIU R. Catalytic asymmetric synthesis of atropisomers featuring an aza axis[J]. Accounts of Chemical Research, 2023, 56 (18): 2537-2554.
[62] CHEN Y H, LIU L, CHEN C, et al. Construction of axially chiral arylpyrroles via atroposelective diyne cyclization[J]. Angewandte Chemie International Edition, 2023, 62 (23): e202303670.
[63] TALAVERA M, PENA-GALLEGO A, ALONSO-GMEZ J L, et al. Metallaaromatic biaryl atropisomers[J]. Chemical Communications, 2018, 54(78): 10974-10976.
[64] STEINLANDT P, ZHANG L, MEGGERS, E. Metal stereogenicity in asymmetric transition metal catalysis[J]. Chemical Reviews, 2023, 123 (8): 4764-4794.
[65] HUO H H, FU C, HARMS K, et al. Asymmetric catalysis with substitutionally labile yet stereochemically stable chiral-at-metal iridium(III) complex[J]. Journal of the American Chemical Society, 2014, 136: 2990-2993.

所在学位评定分委会
化学
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765665
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
王国清. 碳龙配体修饰及轴手性碳龙配合物的合成[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132794-王国清-化学系.pdf(15057KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王国清]的文章
百度学术
百度学术中相似的文章
[王国清]的文章
必应学术
必应学术中相似的文章
[王国清]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。