[1] YUK H, LU B, ZHAO X. Hydrogel Bioelectronics [J]. Chemical Society Reviews, 2019, 48(6): 1642-1667.
[2] ZHU Y, ZHANG J, SONG J, et al. A Multifunctional Pro‐Healing Zwitterionic Hydrogel for Simultaneous Optical Monitoring of pH and Glucose in Diabetic Wound Treatment [J]. Advanced Functional Materials, 2020, 30(6): 1905493.
[3] YANG J C, MUN J, KWON S Y, et al. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics [J]. Advanced Materials, 2019, 31(48): 1904765.
[4] CHEN D, PEI Q. Electronic Muscles and Skins: A Review of Soft Sensors and Actuators [J]. Chemical Reviews, 2017, 117(17): 11239-11268.
[5] PEREZ A J, ZEADALLY S. Recent Advances in Wearable Sensing Technologies [J]. Sensors:Basel, 2021, 21(20): 6828.
[6] FU H, WANG B, LI J, et al. A Self-healing, Recyclable and Conductive Gelatin/nanofibrillated Cellulose/Fe3+ Hydrogel Based on Multi-dynamic Interactions for a Multifunctional Strain Sensor [J]. Materials Horizons, 2022, 9(5): 1412-1421.
[7] LIANG X, CHEN G, LIN S, et al. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels [J]. Advanced Materials, 2022, 34(8): e2107106.
[8] ZENG S, ZHANG J, ZU G, et al. Transparent, Flexible, and Multifunctional Starch-based Double-network Hydrogels as High-performance Wearable Electronics [J]. Carbohydrate Polymers, 2021, 267: 118198.
[9] YUK H, WU J, ZHAO X. Hydrogel Interfaces for Merging Humans and Machines [J]. Nature Reviews Materials, 2022, 7(12): 935-952.
[10] GAO W, OTA H, KIRIYA D, et al. Flexible Electronics toward Wearable Sensing [J]. Accounts of Chemical Research, 2019, 52(3): 523-533.
[11] FAN H, WANG J, TAO Z, et al. Adjacent Cationic-aromatic Sequences Yield Strong Electrostatic Adhesion of Hydrogels in Seawater [J]. Nature Communications, 2019, 10(1): 5127.
[12] SU X, LUO Y, TIAN Z, et al. Ctenophore-inspired Hydrogels for Efficient and Repeatable Underwater Specific Adhesion to Biotic Surfaces [J]. Materials Horizons, 2020, 7(10): 2651-2661.
[13] ZHAO Y, WU Y, WANG L, et al. Bio-inspired Reversible Underwater Adhesive [J]. Nature Communications, 2017, 8(1): 2218.
[14] LIU X, ZHANG Q, DUAN L, et al. Tough Adhesion of Nucleobase‐Tackifed Gels in Diverse Solvents [J]. Advanced Functional Materials, 2019, 29(17): 1900450.
[15] DOMPE M, CEDANO-SERRANO F J, HECKERT O, et al. Thermoresponsive Complex Coacervate-Based Underwater Adhesive [J]. Advanced Materials, 2019, 31(21): 1808179.
[16] AHMED J, GUO H, YAMAMOTO T, et al. Sliding Friction of Zwitterionic Hydrogel and Its Electrostatic Origin [J]. Macromolecules, 2014, 47(9): 3101-3107.
[17] WANG Y, HENSEL R. Bioinspired Underwater Adhesion to Rough Substrates by Cavity Collapse of Cupped Microstructures [J]. Advanced Functional Materials, 2021, 31(31): 2101787.
[18] XU L, GAO S, GUO Q, et al. A Solvent-Exchange Strategy to Regulate Noncovalent Interactions for Strong and Antiswelling Hydrogels [J]. Advanced Materials, 2020, 32(52): 2004579.
[19] XU J, JIN R, REN X, et al. Cartilage-inspired hydrogel strain sensors with ultrahigh toughness, good self-recovery and stable anti-swelling properties [J]. Journal of Materials Chemistry A, 2019, 7(44): 25441-254418.
[20] LUM K, CHANDLER D, WEEKS J D. Hydrophobicity at Small and Large Length Scales [J]. The Journal of Physical Chemistry B, 1999, 103(22): 4570-4577.
[21] WALLQVIST A, BERNE B J. Molecular Dynamics Study of the Dependence of Water Solvation Free Energy on Solute Curvature and Surface Area [J]. The Journal of Physical Chemistry, 1995, 99(9): 2885-2892.
[22] WANG Y, YAO X, WU S, et al. Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer [J]. Advanced Materials, 2017, 29(26): 1700865.
[23] LIU X, ZHANG Q, GAO G. Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media [J]. ACS Nano, 2020, 14(10): 13709-13717.
[24] 陆晨律, 王利平, 孟航飞, 等. 过冷水-壁面接触面积对冰成核行为影响实验研究[J/OL]. 上海交通大学学报, 2024, 58(3): 285-294.
[25] DOOD M J A D, KALKMAN J, STROHHöFER C, et al. Hidden Transition in the “Unfreezable Water” Region of the PVP−Water System [J]. The Journal of Physical Chemistry, 2003, 107: 5906-5913.
[26] SMYTH G, QUINN F X, MCBRIERTY V J. Water in Hydrogels: A Study of Water in Poly(hydroxyethyl methacrylate) [J]. Macromolecules, 1988, 21(11): 3198-3204.
[27] CERVENY S, COLMENERO J, ALEGRíA A. Dielectric Investigation of the Low-Temperature Water Dynamics in the Poly(vinyl methyl ether)/H2O System [J]. Macromolecules, 2005, 38(16): 7056-7063.
[28] JIAO Q, CAO L, ZHAO Z, et al. Zwitterionic Hydrogel with High Transparency, Ultrastretchability, and Remarkable Freezing Resistance for Wearable Strain Sensors [J]. Biomacromolecules, 2021, 22(3): 1220-1230.
[29] REN Y, GUO J, LIU Z, et al. Ionic Liquid–based Click-ionogels [J]. Science Advances, 2019, 5(8): eaax0648.
[30] GUO M, YAN J, YANG X, et al. A Transparent Glycerol-hydrogel with Stimuli-responsive Actuation Induced Unexpectedly at Subzero Temperatures [J]. Journal of Materials Chemistry A, 2021, 9(12): 7935-7945.
[31] HAN S, LIU C, LIN X, et al. Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor [J]. ACS Applied Polymer Materials, 2020, 2(2): 996-1005.
[32] GUN'KO V M, SAVINA I N, MIKHALOVSKY S A-O. Properties of Water Bound in Hydrogels. [J]. Gels, 2017, 3(4): 37.
[33] MO F, LIANG G, MENG Q, et al. A Flexible Rechargeable Aqueous Zinc Manganese-dioxide Battery Working at −20°C [J]. Energy & Environmental Science, 2019, 12(2): 706-715.
[34] LI G, HUANG K, DENG J, et al. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics [J]. Advanced Materials, 2022, 34(15): 2200261.
[35] CHEN C, WANG Y, MENG T, et al. Electrically Conductive Polyacrylamide/carbon Nanotube Hydrogel: Reinforcing Effect From Cellulose Nanofibers [J]. Cellulose, 2019, 26(16): 8843-8851.
[36] ZHOU Y, FEI X, TIAN J, et al. A Ionic Liquid Enhanced Conductive Hydrogel for Strain Sensing Applications [J]. Journal of Colloid and Interface Science, 2022, 606: 192-203.
[37] TONDERA C, AKBAR T F, THOMAS A K, et al. Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping [J]. Small, 2019, 15(27): 1901406.
[38] 向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电子科技大学学报. 2016, 45(04): 634-649.
[39] 王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报. 2015, 33(10): 31-49.
[40] YOO Y-K, XUE Q, CHU Y S, et al. Identification of Amorphous Phases in The Fe–Ni–Co Ternary Alloy System Using Continuous Phase Diagram Material Chips [J]. Intermetallics, 2006, 14: 241-247.
[41] XIANG X-D. High Throughput Synthesis and Screening for Functional Materials [J]. Applied Surface Science, 2004, 223(1): 54-61.
[42] CHANG K-S, GREEN M L, SUEHLE J, et al. Combinatorial Study of Ni–Ti–Pt Ternary Metal Gate Electrodes on Hf O2 for The Advanced Gate Stack [J]. Applied Physics Letters, 2006, 89(14): 142108.
[43] CHRISTEN H M, SILLIMAN S D, HARSHAVARDHAN K S. Continuous Compositional-spread Technique Based on Pulsed-laser Deposition and Applied to The Growth of Epitaxial Films [J]. Review of Scientific Instruments, 2001, 72(6): 2673-8.
[44] POTYRAILO R A, MORRIS W G, WROCZYNSKI R J. Multifunctional Sensor System for High-throughput Primary, Secondary, and Tertiary Screening of Combinatorial Materials [J]. Review of Scientific Instruments, 2004, 75(6): 2177-2186.
[45] TSUI F, HE L. Techniques for Combinatorial Molecular Beam Epitaxy [J]. Review of Scientific Instruments, 2005, 76(6): 062206.
[46] MCDOWELL M G, HILL I G. Rapid Thermal Conductivity Measurements for Combinatorial Thin Films [J]. Review of Scientific Instruments, 2013, 84(5): 053906.
[47] SURAM S K, ZHOU L, BECERRA-STASIEWICZ N, et al. Combinatorial Thin Film Composition Mapping Using Three Dimensional Deposition Profiles [J]. Review of Scientific Instruments, 2015, 86(3): 033904.
[48] LIN Z, TU S, XU J, et al. Phase Diagrams on Composition-spread FeyTe1−xSex films [J]. Science Bulletin, 2022, 67(14): 1443-1449.
[49] ZHAO J-C, ZHENG X, CAHILL D G. High-throughput Measurements of Materials Properties [J]. Journal of Management, 2011, 63(3): 40-44.
[50] LIU X-N, SHEN Y, YANG R, et al. Inkjet Printing Assisted Synthesis of Multicomponent Mesoporous Metal Oxides for Ultrafast Catalyst Exploration [J]. Nano Letters. 2012, 12 11: 5733-5739.
[51] GREGOIRE J M, MCCLUSKEY P J, DALE D, et al. Combining Combinatorial Nanocalorimetry and X-ray Diffraction Techniques to Study The Effects of Composition and Quench Rate on Au–Cu–Si Metallic Glasses [J]. Scripta Materialia, 2012, 66(3-4): 178-181.
[52] LEE D, SIM G-D, XIAO K, et al. Scanning AC nanocalorimetry Study of Zr/B Reactive Multilayers [J]. Journal of Applied Physics, 2013, 114(21): 214902.
[53] FLEISCHAUER M D, TOPPLE J M, DAHN J R. Combinatorial Investigations of Si-M ( M = Cr + Ni , Fe , Mn ) Thin Film Negative Electrode Materials [J]. Electrochemical and Solid-State Letters, 2005, 8(2): 137.
[54] REEVES W H, SKRYABIN D V, BIANCALANA F, et al. Transformation and Control of Ultra-short Pulses in Dispersion-Engineered Photonic Crystal Fibres [J]. Nature, 2003, 424(6948): 511-515.
[55] FUJIMOTO K, KATO T, ITO S, et al. Development and Application of Combinatorial Electrostatic Atomization System “M-ist Combi”: High-throughput Preparation of Electrode Materials [J]. Solid State Ionics, 2006, 177(26): 2639-2642.
[56] MCCLUSKEY P J, VLASSAK J J. Glass Transition and Crystallization of Amorphous Ni–Ti–Zr Thin Films by Combinatorial Nano-calorimetry [J]. Scripta Materialia, 2011, 64(3): 264-267.
[57] MCCLUSKEY P J, VLASSAK J J. Combinatorial Nanocalorimetry [J]. Journal of Materials Research, 2010, 25(11): 2086-2100.
[58] XIANG X D, SUN X, BRICEñO G, et al. A Combinatorial Approach to Materials Discovery [J]. Science, 1995, 268(5218): 1738-1740.
[59] CHANG H, GAO C, TAKEUCHI I, et al. Combinatorial Synthesis and High Throughput Evaluation of Ferroelectric/Dielectric Thin-film Libraries for Microwave Applications [J]. Applied Physics Letters, 1998, 72(17): 2185-2187.
[60] COOPER J S, ZHANG G, MCGINN P J. Plasma Sputtering System for Deposition of Thin Film Combinatorial Libraries [J]. Review of Scientific Instruments, 2005, 76(6): 062221.
[61] ZHAO J-C, XU Y, HARTMANN U. Measurement of an Iso-Curie Temperature Line of a Co, Cr, Mo Solid Solution by Magnetic Force Microscopy Imaging on a Diffusion Multiple [J]. Advanced Engineering Materials, 2013, 15(5): 321-324.
[62] GOLL D, LOEFFLER R, HERBST J, et al. Novel Permanent Magnets by High-Throughput Experiments [J]. The Journal of Operations Management, 2015, 67(6): 1336-1343.
[63] SPRINGER H, RAABE D. Rapid Alloy Prototyping: Compositional and Thermo-mechanical High Throughput Bulk Combinatorial Design of Structural Materials Based on The Example of 30Mn–1.2C–xAl Triplex Steels, Acta Materialia [J]. Science, 2012, 60(12): 4950-4959.
[64] CHEN L, BAO J, GAO C, et al. Combinatorial Synthesis of Insoluble Oxide Library from Ultrafine/nano Particle Suspension Using a Drop-on-demand Inkjet Delivery System [J]. Journal of Combinatorial Chemistry, 2004, 6(5): 699-702.
[65] DING Y, TANG H, ZHANG C, et al. High‐Throughput Screening of Self‐Healable Polysulfobetaine Hydrogels and their Applications in Flexible Electronics [J]. Advanced Functional Materials, 2021, 31(18): 2100489.
[66] CHEN Z, LU D, CAO J, et al. Development of High-throughput Wet-Chemical Synthesis Techniques for Material Research [J]. Materials Genome Engineering Advances, 2023, 1(1): e5.
[67] 高光辉, 姜海成, 高阳, 等. 高强度疏水缔合水凝胶的研究进展[J]. 长春工业大学学报. 2019, 40(01): 8-13+105.
[68] HAN L, LIU K, WANG M, et al. Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance [J]. Advanced Functional Materials, 2018, 28(3): 1704195.
[69] YU Y, YUK H, PARADA G A, et al. Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes [J]. Advanced Materials. 2019, 31(7): 1807101.
[70] YANG G, ZHU K, GUO W, et al. Adhesive and Hydrophobic Bilayer Hydrogel Enabled On-Skin Biosensors for High-Fidelity Classification of Human Emotion [J]. Advanced Functional Materials, 2022, 32(29): 2200457.
[71] PEI X, ZHANG H, ZHOU Y, et al. Stretchable, Self-healing and Tissue-adhesive Zwitterionic Hydrogels as Strain Sensors for Wireless Monitoring of Organ Motions [J]. Materials Horizons, 2020, 7(7): 1872-1882.
[72] HE S, SUN X, QIN Z, et al. Non-Swelling and Anti-Fouling MXene Nanocomposite Hydrogels for Underwater Strain Sensing [J]. Advanced Materials Technologies, 2022, 7(7): 2101343.
[73] GUO H, NAKAJIMA T, HOURDET D, et al. Hydrophobic Hydrogels with Fruit-Like Structure and Functions [J]. Advanced Materials, 2019, 31(25): 1900702.
[74] WEI Y, XIANG L, OU H, et al. MXene-Based Conductive Organohydrogels with Long-Term Environmental Stability and Multifunctionality [J]. Advanced Functional Materials, 2020, 30(48): 2005135.
[75] LIU X, ZHANG Q, GAO G. DNA-inspired Anti-freezing Wet-adhesion and Tough Hydrogel for Sweaty Skin Sensor [J]. Chemical Engineering Journal, 2020, 394: 124898.
[76] BALAVIGNESWARAN C K, JAISWAL V, VENKATESAN R, et al. Mussel-Inspired Adhesive Hydrogels Based on Laponite-Confined Dopamine Polymerization as a Transdermal Patch [J]. Biomacromolecules, 2023, 24(2): 724-38.
[77] LIAO M, WAN P, WEN J, et al. Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework [J]. Advanced Functional Materials, 2017, 27(48): 1703852.
[78] PENG Q, CHEN J, WANG T, et al. Recent Advances in Designing Conductive Hydrogels for Flexible Electronics [J]. InfoMat, 2020, 2(5): 843-865.
[79] ZHENG S Y, MAO S, YUAN J, et al. Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications [J]. Chemistry of Materials, 2021, 33(21): 8418-8429.
[80] ZHENG G, GAO W, LI X, et al. A κ-Carrageenan-Containing Organohydrogel with Adjustable Transmittance for an Antifreezing, Nondrying, and Solvent-Resistant Strain Sensor [J]. Biomacromolecules, 2022, 23(11): 4872-4882.
[81] ZHANG Y, XU Z, YUAN Y, et al. Flexible Antiswelling Photothermal-Therapy MXene Hydrogel-Based Epidermal Sensor for Intelligent Human–Machine Interfacing [J]. Advanced Functional Materials, 2023, 33(21): 2300299.
[82] NIE Y, YUE D, XIAO W, et al. Anti-freezing and Self-healing Nanocomposite Hydrogels Based on Poly(vinyl alcohol) for Highly Sensitive and Durable Flexible Sensors [J]. Chemical Engineering Journal, 2022, 436.
[83] WEN J, TANG J, NING H, et al. Multifunctional Ionic Skin with Sensing, UV-Filtering, Water-Retaining, and Anti-Freezing Capabilities [J]. Advanced Functional Materials, 2021, 31(21): 2011176.
[84] ZHANG X-F, MA X, HOU T, et al. Inorganic Salts Induce Thermally Reversible and Anti-Freezing Cellulose Hydrogels [J]. Angewandte Chemie International Edition, 2019, 58(22): 7366-7370.
[85] QUAN Q, FAN C, PAN N, et al. Tough and Stretchable Phenolic-Reinforced Double Network Deep Eutectic Solvent gels for Multifunctional Sensors with Environmental Adaptability [J]. Advanced Functional Materials, 2023, 33(36): 2303381.
[86] HUANG H, SHEN J, WAN S, et al. Wet-Adhesive Multifunctional Hydrogel with Anti-swelling and a Skin-Seamless Interface for Underwater Electrophysiological Monitoring and Communication [J]. ACS Applied Materials & Interfaces, 2023, 15(9): 11549-11562.
[87] WANG S, LIU J, WANG L, et al. Underwater Adhesion and Anti-Swelling Hydrogels [J]. Advanced Materials Technologies, 2023, 8(6): 2201477.
[88] ZHAO Y, GAN D, WANG L, et al. Ultra-Stretchable, Adhesive, and Anti-Swelling Ionogel Based on Fluorine-Rich Ionic Liquid for Underwater Reliable Sensor [J]. Advanced Materials Technologies, 2023, 8(7): 2201566.
[89] YANG Y, YANG Y, CAO Y, et al. Anti-freezing, Resilient and Tough Hydrogels for Sensitive and Large-range Strain and Pressure Sensors [J]. Chemical Engineering Journal, 2021, 403: 126431.
[90] LIU J, CHEN Z, CHEN Y, et al. Ionic Conductive Organohydrogels with Dynamic Pattern Behavior and Multi-Environmental Stability [J]. Advanced Functional Materials, 2021, 31(24): 2101464.
[91] CASADESúS J M, AGUIRRE F, CARRERA A, et al. Diving-related Fatalities: Multidisciplinary, Experience-based Investigation [J]. Forensic Science, Medicine and Pathology, 2019, 15(2): 224-232.
修改评论