[1] LEHN J-M. Supramolecular Chemistry: Receptors, Catalysts, and Carriers[J]. Science, 1985, 227(4689): 849-856.
[2] 罗勤慧. 大环化学—主-客体化合物和超分子[M]. 北京: 科学出版社, 2009.
[3] LEHN J-M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)[J]. Angewandte Chemie International Edition in English, 1988, 27(1): 89-112.
[4] 莱恩, J-M, 沈兴海. 超分子化学:概念和展望[M]. 北京: 北京大学出版社, 2002.
[5] PEDERSEN C J. Cyclic Polyethers and Their Complexes with Metal Salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036.
[6] CRAM D J, CRAM J M. Host-Guest Chemistry[J]. Science, 1974, 183(4127): 803-809.
[7] LEHN J M. Cryptates: Inclusion Complexes of Macropolycyclic Receptor Molecules[J]. 1978, 50(9-10): 871-892.
[8] ANELLI P L, SPENCER N, STODDART J F. A Molecular Shuttle[J]. Journal of the American Chemical Society, 1991, 113(13): 5131-5133.
[9] 刘育. 超分子化学:合成受体的分子识别与组装[M]. 天津: 南开大学出版社, 2001.
[10] BIEDERMANN F, SCHNEIDER H-J. Experimental Binding Energies in Supramolecular Complexes[J]. Chemical Reviews, 2016, 116(9): 5216-5300.
[11] MURRAY J, KIM K, OGOSHI T, et al. The Aqueous Supramolecular Chemistry of Cucurbit[n]urils, Pillar[n]arenes and Deep-cavity Cavitands[J]. Chemical Society Reviews, 2017, 46(9): 2479-2496.
[12] GOKEL G W, LEEVY W M, WEBER M E. Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models[J]. Chemical Reviews, 2004, 104(5): 2723-2750.
[13] SHINKAI S, NAKAJI T, OGAWA T, et al. Photoresponsive Crown Ethers. 2. Photocontrol of Ion Extraction and Ion Transport by a Bis(crown ether) with a Butterfly-like Motion[J]. Journal of the American Chemical Society, 1981, 103(1): 111-115.
[14] D. BEER P, K. HOPKINS P, D. MCKINNEY J. Cooperative Halide, Perrhenate Anion-Sodium Cation Binding and Pertechnetate Extraction and Transport by a Novel Tripodal Tris(amido benzo-15-crown-5) Ligand[J]. Chemical Communications, 1999(13): 1253-1254.
[15] LIU Z, NALLURI S K M, STODDART J F. Surveying Macrocyclic Chemistry: from Flexible Crown Ethers to Rigid Cyclophanes[J]. Chemical Society Reviews, 2017, 46(9): 2459-2478.
[16] VILLIERS A. Sur la Fermentation de la Fécule Par L’action du Ferment Butyrique[J]. Compt Rend Acad Sci, 1891, 112: 536-538.
[17] REKHARSKY M V, INOUE Y. Complexation Thermodynamics of Cyclodextrins[J]. Chemical Reviews, 1998, 98(5): 1875-1918.
[18] CRINI G. Review: A History of Cyclodextrins[J]. Chemical Reviews, 2014, 114(21): 10940-10975.
[19] BAEYER A. Ueber die Verbindungen der Aldehyde mit den Phenolen und Aromatischen Kohlenwasserstoffen[J]. Berichte der deutschen chemischen Gesellschaft, 1872, 5(2): 1094-1100.
[20] GUTSCHE C D, DHAWAN B, LEVINE J A, et al. Calixarenes 9: Conformational Isomers of the Ethers and Esters of Calix
[4]arenes[J]. Tetrahedron, 1983, 39(3): 409-426.
[21] ESCOBAR L, BALLESTER P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors[J]. Chemical Reviews, 2021, 121(4): 2445-2514.
[22] SHINKAI S, ARAKI K, KUBOTA M, et al. Ion Template Effects on the Conformation of Water-Soluble Calixarenes[J]. The Journal of Organic Chemistry, 1991, 56(1): 295-300.
[23] GUO D-S, ZHANG H-Q, DING F, et al. Thermodynamic Origins of Selective Binding Affinity Between p-Sulfonatocalix
[4,5]arenes with Biguanidiniums[J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1527-1536.
[24] NIMSE S B, KIM T. Biological Applications of Functionalized Calixarenes[J]. Chemical Society Reviews, 2013, 42(1): 366-386.
[25] FREEMAN W A, MOCK W L, SHIH N Y. Cucurbituril[J]. Journal of the American Chemical Society, 1981, 103(24): 7367-7368.
[26] MOCK W L, SHIH N Y. Dynamics of Molecular Recognition Involving Cucurbituril[J]. Journal of the American Chemical Society, 1989, 111(7): 2697-2699.
[27] JEON W S, MOON K, PARK S H, et al. Complexation of Ferrocene Derivatives by the Cucurbit
[7]uril Host: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families[J]. Journal of the American Chemical Society, 2005, 127(37): 12984-12989.
[28] LIU S, RUSPIC C, MUKHOPADHYAY P, et al. The Cucurbit[n]uril Family: Prime Components for Self-Sorting Systems[J]. Journal of the American Chemical Society, 2005, 127(45): 15959-15967.
[29] JEON W S, KIM H-J, LEE C, et al. Control of the Stoichiometry in Host-Guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit
[8]uril[J]. Chemical Communications, 2002, 17: 1828-1829.
[30] OGOSHI T, KANAI S, FUJINAMI S, et al. para-Bridged Symmetrical Pillar
[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host–Guest Property[J]. Journal of the American Chemical Society, 2008, 130(15): 5022-5023.
[31] SHU X, XU K, HOU D, et al. Molecular Recognition of Water-soluble Pillar[n]arenes Towards Biomolecules and Drugs[J]. Israel Journal of Chemistry, 2018, 58(11): 1230-1240.
[32] OGOSHI T, HASHIZUME M, YAMAGISHI T-A, et al. Synthesis, Conformational and Host-Guest Properties of Water-Soluble Pillar
[5]arene[J]. Chemical Communications, 2010, 46(21): 3708-3710.
[33] LI C, MA J, ZHAO L, et al. Molecular Selective Binding of Basic Amino Acids by a Water-Soluble Pillar
[5]arene[J]. Chemical Communications, 2013, 49(19): 1924-1926.
[34] WU X, LI Y, LIN C, et al. GSH- and pH-Responsive Drug Delivery System Constructed by Water-Soluble Pillar
[5]arene and Lysine Derivative for Controllable Drug Release[J]. Chemical Communications, 2015, 51(31): 6832-6835.
[35] MA Y, JI X, XIANG F, et al. A Cationic Water-Soluble Pillar
[5]arene: Synthesis and Host-Guest Complexation with Sodium 1-Octanesulfonate[J]. Chemical Communications, 2011, 47(45): 12340-12342.
[36] OGOSHI T, SHIGA R, YAMAGISHI T-A. Reversibly Tunable Lower Critical Solution Temperature Utilizing Host-Guest Complexation of Pillar
[5]arene with Triethylene Oxide Substituents[J]. Journal of the American Chemical Society, 2012, 134(10): 4577-4580.
[37] OGOSHI T, KIDA K, YAMAGISHI T-A. Photoreversible Switching of the Lower Critical Solution Temperature in a Photoresponsive Host-Guest System of Pillar
[6]arene with Triethylene Oxide Substituents and an Azobenzene Derivative[J]. Journal of the American Chemical Society, 2012, 134(49): 20146-20150.
[38] YANG K, PEI Y, WEN J, et al. Recent Advances in Pillar[n]arenes: Synthesis and Applications Based on Host-Guest Interactions[J]. Chemical Communications, 2016, 52(60): 9316-9326.
[39] KOBAYASHI K, ASAKAWA Y, KATO Y, et al. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest-Host CH-.pi. Interaction[J]. Journal of the American Chemical Society, 1992, 114(26): 10307-10313.
[40] SEBO L, DIEDERICH F, GRAMLICH V. Tetrakis(phenylamidinium)-Substituted Resorcin
[4]arene Receptors for the Complexation of Dicarboxylates and Phosphates in Protic Solvents[J]. Helvetica Chimica Acta, 2000, 83(1): 93-113.
[41] BIROS S M, REBEK J J. Structure and Binding Properties of Water-Soluble Cavitands and Capsules[J]. Chemical Society Reviews, 2007, 36(1): 93-104.
[42] CHEN H, FAN J, HU X, et al. Biphen[n]arenes[J]. Chemical Science, 2015, 6(1): 197-202.
[43] ZHOU J, YU G, SHAO L, et al. A Water-Soluble Biphen
[3]arene: Synthesis, Host-Guest Complexation, and Application in Controllable Self-Assembly and Controlled Release[J]. Chemical Communications, 2015, 51(20): 4188-4191.
[44] MA J, DENG H, MA S, et al. Molecular Binding Behavior of Bipyridium Derivatives by Water-Soluble Carboxylato-Biphen
[3]arene[J]. Chemical Communications, 2015, 51(30): 6621-6624.
[45] DAI L, DING Z-J, CUI L, et al. 2,2'-Biphen[n]arenes (n = 4-8): One-Step, High-Yield Synthesis, and Host-Guest Properties[J]. Chemical Communications, 2017, 53(89): 12096-12099.
[46] HAN X-N, LI P-F, HAN Y, et al. Enantiomeric Water-Soluble Octopus
[3]arenes for Highly Enantioselective Recognition of Chiral Ammonium Salts in Water[J]. Angewandte Chemie International Edition, 2022, 61(21): e202202527.
[47] WANG R, LI W-B, DENG J-Y, et al. Adaptive and Ultrahigh-Affinity Recognition in Water by Sulfated Conjugated Corral
[5]arene[J]. Angewandte Chemie International Edition, 2024, 63(5): e202317402.
[48] ADRIAENSSENS L, BALLESTER P. Hydrogen Bonded Supramolecular Capsules with Functionalized Interiors: the Controlled Orientation of Included Guests[J]. Chemical Society Reviews, 2013, 42(8): 3261-3277.
[49] KE C, DESTECROIX H, CRUMP M P, et al. A Simple and Accessible Synthetic Lectin for Glucose Recognition and Sensing[J]. Nature Chemistry, 2012, 4(9): 718-723.
[50] ZHANG H, WANG L-L, PANG X-Y, et al. Molecular Recognition and Photoprotection of Riboflavin in Water by a Biomimetic Host[J]. Chemical Communications, 2021, 57(100): 13724-13727.
[51] KIM D S, SESSLER J L. Calix
[4]pyrroles: Versatile Molecular Containers with Ion Transport, Recognition, and Molecular Switching Functions[J]. Chemical Society Reviews, 2015, 44(2): 532-546.
[52] VERDEJO B, GIL-RAMíREZ G, BALLESTER P. Molecular Recognition of Pyridine N-Oxides in Water Using Calix
[4]pyrrole Receptors[J]. Journal of the American Chemical Society, 2009, 131(9): 3178-3179.
[53] CHUN Y, JITEN SINGH N, HWANG I-C, et al. Calix[n]imidazolium as a New Class of Positively Charged Homo-Calix Compounds[J]. Nature Communications, 2013, 4(1): 1797.
[54] LI G, ZHAO L, YANG P, et al. Engineering 1,3-Alternate Calixcarbazole for Recognition and Sensing of Bisphenol F in Water[J]. Analytical Chemistry, 2016, 88(21): 10751-10756.
[55] SHORTHILL B J, AVETTA C T, GLASS T E. Shape-Selective Sensing of Lipids in Aqueous Solution by a Designed Fluorescent Molecular Tube[J]. Journal of the American Chemical Society, 2004, 126(40): 12732-12733.
[56] AVETTA C T, SHORTHILL B J, REN C, et al. Molecular Tubes for Lipid Sensing: Tube Conformations Control Analyte Selectivity and Fluorescent Response[J]. The Journal of Organic Chemistry, 2012, 77(2): 851-857.
[57] YANG L-P, WANG X, YAO H, et al. Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature[J]. Accounts of Chemical Research, 2020, 53(1): 198-208.
[58] HE Z, YE G, JIANG W. Imine Macrocycle with a Deep Cavity: Guest-Selected Formation of syn/anti Configuration and Guest-Controlled Reconfiguration[J]. Chemistry - A European Journal, 2015, 21(7): 3005-3012.
[59] HUANG G, HE Z, CAI C-X, et al. Bis-urea macrocycles with a deep cavity[J]. Chemical Communications, 2015, 51(85): 15490-15493.
[60] HUANG G, VALKONEN A, RISSANEN K, et al. Endo-Functionalized Molecular Tubes: Selective Encapsulation of Neutral Molecules in Non-polar Media[J]. Chemical Communications, 2016, 52(58): 9078-9081.
[61] MA Y-L, KE H, VALKONEN A, et al. Achieving Strong Positive Cooperativity through Activating Weak Non-Covalent Interactions[J]. Angewandte Chemie International Edition, 2018, 57(3): 709-713.
[62] CUI J-S, BA Q-K, KE H, et al. Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle[J]. Angewandte Chemie International Edition, 2018, 57(26): 7809-7814.
[63] CHAI H, YANG L-P, KE H, et al. Allosteric Cooperativity in Ternary Complexes with Low Symmetry[J]. Chemical Communications, 2018, 54(55): 7677-7680.
[64] WANG X, QUAN M, YAO H, et al. Switchable Bifunctional Molecular Recognition in Water Using a pH-Responsive Endo-Functionalized Cavity[J]. Nature Communications, 2022, 13(1): 2291.
[65] HUANG G-B, WANG S-H, KE H, et al. Selective Recognition of Highly Hydrophilic Molecules in Water by Endo-Functionalized Molecular Tubes[J]. Journal of the American Chemical Society, 2016, 138(44): 14550-14553.
[66] YAO H, KE H, ZHANG X, et al. Molecular Recognition of Hydrophilic Molecules in Water by Combining the Hydrophobic Effect with Hydrogen Bonding[J]. Journal of the American Chemical Society, 2018, 140(41): 13466-13477.
[67] KE H, YANG L-P, XIE M, et al. Shear-Induced Assembly of a Transient yet Highly Stretchable Hydrogel Based on Pseudopolyrotaxanes[J]. Nature Chemistry, 2019, 11(5): 470-477.
[68] JIN J-N, YANG X-R, WANG Y-F, et al. Mechanical Training Enabled Reinforcement of Polyrotaxane-Containing Hydrogel[J]. Angewandte Chemie International Edition, 2023, 62(8): e202218313.
[69] MA Y-L, SUN C, LI Z, et al. Biomimetic Recognition-Based Bioorthogonal Host–Guest Pairs for Cell Targeting and Tissue Imaging in Living Animals[J]. CCS Chemistry, 2021, 4(6): 1977-1989.
[70] CAO W, WANG H, QUAN M, et al. Reversible Control of Tetrazine Bioorthogonal Reactivity by Naphthotube-Mediated Host-Guest Recognition[J]. Chem, 2023, 9(10): 2881-2901.
[71] YANG X, JIANG W. Enantioselective Recognition of Functional Organic Molecules in Water by Biomimetic Macrocyclic Hosts[J]. Journal of the American Chemical Society, 2024, 146(6): 3900-3909.
[72] ZHOU H, PANG X-Y, WANG X, et al. Biomimetic Recognition of Quinones in Water by an Endo-Functionalized Cavity with Anthracene Sidewalls[J]. Angewandte Chemie International Edition, 2021, 60(49): 25981-25987.
[73] DIETRICH B, LEHN J M, SAUVAGE J P. Les Cryptates[J]. Tetrahedron Letters, 1969, 10(34): 2889-2892.
[74] SESSLER J L, BRUCKER E A. The First “Crowned” Expanded Porphyrin[J]. Tetrahedron Letters, 1995, 36(8): 1175-1176.
[75] DEETZ M J, SHANG M, SMITH B D. A Macrobicyclic Receptor with Versatile Recognition Properties: Simultaneous Binding of an Ion Pair and Selective Complexation of Dimethylsulfoxide[J]. Journal of the American Chemical Society, 2000, 122(26): 6201-6207.
[76] VISSER H C, RUDKEVICH D M, VERBOOM W, et al. Anion Carrier Mediated Membrane Transport of Phosphate: Selectivity of H2PO4− over Cl− [J]. Journal of the American Chemical Society, 1994, 116(25): 11554-11555.
[77] HOLST J R, TREWIN A, COOPER A I. Porous Organic Molecules[J]. Nature Chemistry, 2010, 2(11): 915-920.
[78] JIN Y, VOSS B A, NOBLE R D, et al. A Shape-Persistent Organic Molecular Cage with High Selectivity for the Adsorption of CO2 over N2[J]. Angewandte Chemie International Edition, 2010, 49(36): 6348-6351.
[79] WANG D-X, WANG Q-Q, HAN Y, et al. Versatile Anion-π Interactions between Halides and a Conformationally Rigid Bis(tetraoxacalix
[2]arene
[2]triazine) Cage and Their Directing Effect on Molecular Assembly[J]. Chemistry - A European Journal, 2010, 16(44): 13053-13057.
[80] KLEIN E, CRUMP M P, DAVIS A P. Carbohydrate Recognition in Water by a Tricyclic Polyamide Receptor[J]. Angewandte Chemie International Edition, 2005, 44(2): 298-302.
[81] TROMANS R A, CARTER T S, CHABANNE L, et al. A Biomimetic Receptor for Glucose[J]. Nature Chemistry, 2019, 11(1): 52-56.
[82] JIA F, HUPATZ H, YANG L-P, et al. Naphthocage: A Flexible yet Extremely Strong Binder for Singly Charged Organic Cations[J]. Journal of the American Chemical Society, 2019, 141(10): 4468-4473.
[83] JIA F, SCHRöDER H V, YANG L-P, et al. Redox-Responsive Host-Guest Chemistry of a Flexible Cage with Naphthalene Walls[J]. Journal of the American Chemical Society, 2020, 142(7): 3306-3310.
[84] LI A, XIONG S, ZHOU W, et al. Superphane: a New Lantern-like Receptor for Encapsulation of a Water Dimer[J]. Chemical Communications, 2021, 57(37): 4496-4499.
[85] ZHOU W, LI A, GALE P A, et al. A Highly Selective Superphane for ReO4− Recognition and Extraction[J]. Cell Reports Physical Science, 2022, 3(5): 100875.
[86] JIAO T, CHEN L, YANG D, et al. Trapping White Phosphorus within a Purely Organic Molecular Container Produced by Imine Condensation[J]. Angewandte Chemie International Edition, 2017, 56(46): 14545-14550.
[87] CHEN Y, WU G, CHEN B, et al. Self-Assembly of a Purely Covalent Cage with Homochirality by Imine Formation in Water[J]. Angewandte Chemie International Edition, 2021, 60(34): 18815-18820.
[88] CHEN Y, CAO Z, FENG T, et al. Enantioselective Self-Assembly of a Homochiral Tetrahedral Cage Comprising Only Achiral Precursors[J]. Angewandte Chemie International Edition, 2024: e202400467.
[89] WANG H, FANG S, WU G, et al. Constraining Homo- and Heteroanion Dimers in Ultraclose Proximity within a Self-Assembled Hexacationic Cage[J]. Journal of the American Chemical Society, 2020, 142(47): 20182-20190.
[90] WU Y, ZHANG C, FANG S, et al. A Self-Assembled Cage Binding Iodide Anions over Other Halide Ions in Water[J]. Angewandte Chemie International Edition, 2022, 61(38): e202209078.
[91] ZHENG X, ZHANG Y, WU G, et al. Temperature-Dependent Self-Assembly of a Purely Organic Cage in Water[J]. Chemical Communications, 2018, 54(25): 3138-3141.
[92] CHEN Y, TANG H, CHEN H, et al. Self-Assembly via Condensation of Imine or Its N-Substituted Derivatives[J]. Accounts of Chemical Research, 2023, 56(20): 2838-2850.
[93] SAMANTA J, TANG M, ZHANG M, et al. Tripodal Organic Cages with Unconventional CH···O Interactions for Perchlorate Remediation in Water[J]. Journal of the American Chemical Society, 2023, 145(40): 21723-21728.
[94] KIRCHNER P H, SCHRAMM L, IVANOVA S, et al. A Water-Stable Boronate Ester Cage[J]. Journal of the American Chemical Society, 2024, 146(8): 5305-5315.
[95] WOODS G F, REED F T, ARTHUR T E, et al. m-Diarylbenzenes[J]. Journal of the American Chemical Society, 1951, 73(8): 3854-3856.
[96] LIU H, HE Y, JIAO J, et al. A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers[J]. Chemistry - A European Journal, 2016, 22(42): 14988-14997.
[97] YAO H, WANG Y-M, QUAN M, et al. Adsorptive Separation of Benzene, Cyclohexene, and Cyclohexane by Amorphous Nonporous Amide Naphthotube Solids[J]. Angewandte Chemie International Edition, 2020, 59(45): 19945-19950.
[98] YIN C, TAI X, LI X, et al. Side Chain Engineering of Semiconducting Polymers for Improved NIR-II Fluorescence Imaging and Photothermal Therapy[J]. Chemical Engineering Journal, 2022, 428: 132098.
[99] ITO K. Slide-Ring Materials using Topological Supramolecular Architecture[J]. Current Opinion in Solid State and Materials Science, 2010, 14(2): 28-34.
[100]LIU C, MORIMOTO N, JIANG L, et al. Tough Hydrogels with Rapid Self-Reinforcement[J]. Science, 2021, 372(6546): 1078-1081.
[101]CAI J, SESSLER J L. Neutral CH and Cationic CH Donor Groups as Anion Receptors[J]. Chemical Society Reviews, 2014, 43(17): 6198-6213.
[102]SNOWDEN T S, BISSON A P, ANSLYN E V. A Comparison of NH-π versus Lone Pair Hydrogen Bonding Effects on Carbon Acid pKa Shifts[J]. Journal of the American Chemical Society, 1999, 121(26): 6324-6325.
[103]LAUER J C, BHAT A S, BARWIG C, et al.
[2+3] Amide Cages by Oxidation of
[2+3] Imine Cages - Revisiting Molecular Hosts for Highly Efficient Nitrate Binding[J]. Chemistry - A European Journal, 2022, 28(51): e202201527.
[104]LAL G, LEE S J, SPASYUK D M, et al. Amphiphile-Like Self Assembly of Metal Organic Polyhedra Having Both Polar and Non-polar Groups[J]. Chemical Communications, 2018, 54(14): 1722-1725.
[105]ITO N, KUDO H, KAMEYAMA A, et al. Synthesis and Characterization of Fluorine-Containing Polyesters by the Polyaddition of Bis(epoxide)s with Active Diesters[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(1): 213-222.
修改评论