[1] LAKOWICZ JR. Principles of fluorescence spectroscopy[M]. 3rd edn. New York: Springer, 2006.
[2] HAN C, ZHANG X, HUANG S, et al. MOF‐on‐MOF‐derived hollow Co3O4/In2O3 xanostructure for efficient photocatalytic CO2 reduction[J]. Advanced Science, 2023, 10(19): 2300797.
[3] HUSSAIN M Z, YANG Z, HUANG Z, et al. Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment[J]. Advanced Science, 2021, 8(14): 2100625.
[4] LOPEZ‐MAGANO A, DALIRAN S, OVEISI A R, et al. Recent advances in the use of covalent organic frameworks as heterogenous photocatalysts in organic synthesis[J]. Advanced Materials, 2023, 35(24): 2209475.
[5] LI H, YANG Q, WANG Z, et al. Iridium complex with specific intercalation in the G-Quadruplex: a phosphorescence and electrochemiluminescence Dual-Mode homogeneous biosensor for enzyme-free and label-Free detection of microRNA[J]. ACS Sensors, 2023, 8(4): 1529−1535.
[6] ZHOU W L, LIN W, CHEN Y, et al. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging[J]. Chemical Science, 2022, 13(27): 7976−7989.
[7] BAEK S H, PARK J Y, WOO S J, et al. Synergistic enhancement of emitting dipole orientation between Pt‐based phosphorescent sensitizers and boron‐based multi‐resonance fluorescent emitters for high‐performance phosphor‐sensitized fluorescent organic light‐emitting diodes[J]. Small Structures, 2024: 2300564.
[8] CHEN G, WANG J, CHEN W C, et al. Triphenylamine‐functionalized multiple‐resonance TADF emitters with accelerated reverse intersystem crossing and aggregation‐induced emission enhancement for narrowband OLEDs[J]. Advanced Functional Materials, 2023, 33(12): 2211893.
[9] EVANS R C, DOUGLAS P, WINSCOM C J. Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes[J]. Coordination Chemistry Reviews, 2006, 250(15−16): 2093−2126.
[10] TO W P, WAN Q, TONG G S M, et al. Recent advances in metal triplet emitters with d6, d8, and d10 electronic configurations[J]. Trends in Chemistry, 2020, 2(9): 796−812.
[11] RAVOTTO L, CERONI P. Aggregation induced phosphorescence of metal complexes: From principles to applications [J]. Coordination Chemistry Reviews, 2017, 346: 62−76.
[12] RUAN Z, YANG J, LI Y, et al. Dual‐emissive iridium(III) complexes and their applications in biological sensing and imaging [J]. ChemBioChem, 2024, 25(9): e202400094.
[13] RASHID A, MONDAL S, GHOSH P. Development and application of ruthenium(II) and iridium(III) based complexes for anion sensing [J]. Molecules, 2023, 28(3): 1231.
[14] WAN Q, YANG J, TO W P, et al. Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexe[J]. Proceedings of the National Academy of Sciences, 2020, 118(1): e2019265118.
[15] ZHANG Z, WU P, WANG K, et al. Manipulation of Pt···Pt interaction in platinum complex by methyl group to achieve single-doped white OLEDs: An approach to simulation of daylight from dawn until dusk [J]. ACS Materials Letters, 2023, 5(4): 920−927.
[16] Williams J A G. Photochemistry and photophysics of coordination compounds: platinum[J]. Photochemistry and Photophysics of Coordination Compounds II, 2007: 205−268.
[17] MAGNUS G. Ueber einige verbindungen des platinchlorürs[J]. Annalen der Physik, 1828, 90(10): 239−242.
[18] ATOJI M, RICHARDSON J W, RUNDLE R. On the crystal structures of the magnus salts, Pt(NH3)4PtCl41[J]. Journal of the American Chemical Society, 1957, 79(12): 3017−3020.
[19] ALLAMPALLY N K, MAYORAL M J, CHANSAI S, et al. Control over the self‐assembly modes of PtII complexes by alkyl chain variation: from slipped to parallel π‐Stacks[J]. Chemistry–A European Journal, 2016, 22(23): 7810−7816.
[20] CHANG K C, LIN J L, SHEN Y T, et al. Synthesis and photophysical properties of self‐assembled metallogels of platinum(II) ccetylide complexes with elaborate long‐chain Pyridine‐2,6‐Dicarboxamides[J]. Chemistry–A European Journal, 2012, 18(5): 1312−1321.
[21] YAM V W W, AU V K M, LEUNG S Y L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes[J]. Chemical reviews, 2015, 115(15): 7589−7728.
[22] LU W, ROY V A L, CHE C M. Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes[J]. Chemical Communications, 2006, (38): 3972−3974.
[23] LU W, CHEN Y, ROY V A L, et al. Supramolecular polymers and chromonic mesophases self‐organized from phosphorescent cationic organoplatinum(II) complexes in water[J]. Angewandte Chemie International Edition, 2009, 48(41): 7621−7625.
[24] TONG K C, WAN P K, LOK C N, et al. Dynamic supramolecular self-assembly of platinum(II) complexes perturbs an autophagy–lysosomal system and triggers cancer cell death[J]. Chemical Science, 2021, 12(46): 15229−15238.
[25] YAM V W W, TANG R P L, WONG K M C, et al. Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes[J]. Organometallics, 2001, 20(22): 4476−4482.
[26] TAM A Y Y, WONG K M C, WANG G, et al. Luminescent metallogels of platinum(II) terpyridyl complexes: interplay of metal⋯metal, π–π and hydrophobic–hydrophobic interactions on gel formation[J]. Chemical communications, 2007, (20): 2028−2030.
[27] AU-YEUNG H L, LEUNG S Y L, YAM V W W. Solvent-assisted supramolecular assembly of cyclotetrasiloxane–functionalized alkynylplatinum(II) terpyridine complexes[J]. CCS Chemistry, 2019, 1(5): 464−475.
[28] LEUNG S Y L, WONG K M C, YAM V W W. Self-assembly of alkynylplatinum(II) terpyridine amphiphiles into nanostructures via steric control and metal–metal interactions[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2845−2850.
[29] LI B, WANG Y, CHAN M H Y, et al. Supramolecular assembly of organoplatinum(II) complexes for subcellular distribution and cell viability monitoring with differentiated imaging[J]. Angewandte Chemie International Edition, 2022, 61(49): e202210703.
[30] WANG Y, LI N, CHU L, et al. Dual enhancement of phosphorescence and circularly polarized luminescence through entropically driven self‐assembly of a platinum(II) complex [J]. Angewandte Chemie International Edition, 2024: e202403898.
[31] LIU M, HAN Y, ZHONG H, et al. Supramolecular chirogenesis induced by platinum(II) tweezers with excellent environmental tolerance[J]. Angewandte Chemie International Edition, 2020, 60(7): 3498−3503.
[32] ROMO-ISLAS G, BURGUERA S, FRONTERA A, et al. Investigating the impact of packing and environmental factors on the luminescence of Pt(N^N^N) chromophores [J]. Inorganic Chemistry, 2024, 63: 2821−2832.
[33] KOMIYA N, MURAOKA T, IIDA M, et al. Ultrasound-induced emission enhancement based on structure-dependent homo-and heterochiral aggregations of chiral binuclear platinum complexes[J]. Journal of the American Chemical Society, 2011, 133(40): 16054−16061.
[34] IKESHITA M, ITO M, NAOTA T.Variations in the solid-state emissions of clothespin-shaped binuclear tran-bis(salicylaldiminato)platinum(II) with halogen functionalities[J]. European Journal of Inorganic Chemistry, 2019, 2019(31): 3561−3571.
[35] PARK G, JEONG D Y, YU S Y, et al. Enhancing circularly polarized phosphorescence via integrated top‐down and bottom‐up approach[J]. Angewandte Chemie International Edition, 2023, 62(41): e202309762.
[36] SCHMIDBAUR H. Ludwig Mond lecture. High-carat gold compounds[J]. Chemical Society Reviews, 1995, 24(6): 391−400.
[37] ZENG L, ZHOU M, JIN R. Evolution of excited-state behaviors of gold complexes, nanoclusters and nanoparticles[J]. ChemPhysChem, 2024: e202300687.
[38] CHAN C W, WONG W T, CHE C M. Gold (III) photooxidants. photophysical, photochemical properties, and crystal structure of a luminescent cyclometalated gold (III) complex of 2, 9-diphenyl-1, 10-phenanthroline [J]. Inorganic Chemistry, 1994, 33(7): 1266−1272.
[39] LIU H Q, CHEUNG T C, PENG S M, et al. Novel luminescent cyclometaiated and terpyridine gold(III) complexes and DNA binding studies[J]. Journal of the Chemical Society, Chemical Communications, 1995, (17): 1787−1788.
[40] WAN Q, XIA J, LU W, et al. Kinetically controlled self-assembly of phosphorescent AuIII aggregates and ligand-to-metal-metal charge transfer excited state: a combined spectroscopic and DFT/TDDFT study[J]. Journal of the American Chemical Society, 2019, 141(29): 11572−11582.
[41] LEUNG M Y, LEUNG S Y L, YIM K C, et al. Multiresponsive luminescent cationic cyclometalated gold(III) amphiphiles and their supramolecular assembly[J]. Journal of the American Chemical Society, 2019, 141(49): 19466−19478.
[42] CHEN Y, LI K, LLOYD H O, et al. Tetrakis (arylisocyanide) rhodium (I) salts in water: NIR luminescent and conductive supramolecular polymeric nanowires with hierarchical organization[J]. Angewandte Chemie International Edition, 2010, 51(49): 9968−9971.
[43] CHAN A K W, WONG K M C, YAM V W W. Supramolecular assembly of isocyanorhodium(I) complexes: an interplay of rhodium(I)···rhodium(I) Interactions, hydrophobic–hydrophobic interactions, and host–guest chemistry[J]. Journal of the American Chemical Society, 2015, 137(21): 6920−6931.
[44] WEI W, WANG J, KANG X, et al. Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium(I) zwitterions[J]. Chemical Science, 2023, 14(41): 11490−11498.
[45] BISCHOFF L, BAUDEQUIN C, HOARAU C, et al. Organometallic fluorophores of d8 metals (Pd, Pt, Au)[M]. Advances in Organometallic Chemistry, 2018: 73−134.
[46] DALMAU D, URRIOLABEITIA E P. Luminescence and palladium: the odd couple[J]. Molecules, 2023, 28(6): 2663.
[47] LOWRY M S, BERNHARD S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium (III) complexes and their applications[J]. Chemistry–A European Journal, 2006, 12(31): 7970−7977.
[48] ANDERSON P A, DEACON G B, HAARMANN K H, et al. Designed synthesis of mononuclear tris(heteroleptic) ruthenium complexes containing bidentate polypyridyl ligands[J]. Inorganic Chemistry, 1995, 34(24): 6145−6157.
[49] LA DEDA M, GHEDINI M, AIELLO I, et al. Organometallic emitting dyes: palladium(II) nile red complexes[J]. Journal of Organometallic Chemistry, 2005, 690(4): 857−861.
[50] AIELLO I, GHEDINI M, LA DEDA M. Synthesis and spectroscopic characterization of organometallic chromophores for photoluminescent materials: cyclopalladated complexes[J]. Journal of Luminescence, 2002, 96(2-4): 249−259.
[51] PUGLIESE T, GODBERT N, AIELLO I, et al. Organometallic red-emitting chromophores: a computational and experimental study on cyclometallated Nile Red complexes of palladium(II) and platinum(II) acetylacetonates and hexafluoroacetylacetonates[J]. Dalton Transactions, 2008, (46): 6563−6572.
[52] ZHU W, FAN L. Room temperature phosphorescence of a palladium(II) complex sensitized by unsymmetric perylene bisimide[J]. Dyes and Pigments, 2008, 76(3): 663−668.
[53] RIESE S, HOLZAPFEL M, SCHMIEDEL A, et al. Photoinduced dynamics of bis-dipyrrinato-palladium(II) and porphodimethenato-palladium(II) complexes: Governing near infrared phosphorescence by structural restriction[J]. Inorganic Chemistry, 2018, 57(20): 12480−12488.
[54] YAO Y, HOU C L, YANG Z S, et al. Unusual near infrared(NIR) fluorescent palladium(II) macrocyclic complexes containing M-C bonds with bioimaging capability[J]. Chemical Science, 2019, 10(43): 10170−10178.
[55] CHOW P K, MA C, TO W P, et al. Strongly phosphorescent palladium(II) complexes of tetradentate ligands with mixed oxygen, carbon, and nitrogen donor atoms: photophysics, photochemistry, and applications[J]. Angewandte Chemie International Edition, 2013, 52(45): 11775−11779.
[56] ZHU Z Q, PARK C D, KLIMES K, et al. Highly efficient blue OLEDs based on metal‐assisted delayed fluorescence Pd(II) complexes[J]. Advanced Optical Materials, 2019, 7(6): 1801518.
[57] LAI S W, CHAN M C W, CHEUNG T C, et al. Probing d8−d8 interactions in luminescent mono-and binuclear cyclometalated platinum(II) complexes of 6-Phenyl-2,2'-bipyridines[J]. Inorganic Chemistry, 1999, 38(18): 4046−4055.
[58] WU Z X, Wu L Z, YANG Q Z, et al. Tuning the excited‐state properties of cyclometalated platinum(II) complexes of 6‐Phenyl‐2,2′‐bipyridine by ancillary acetylide ligand[J]. Chinese Journal of Chemistry, 2003, 21(2): 196−199.
[59] MISKOWSKI V M, HOULDING V H, CHE C M, et al. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands mixed complexes with halide ligands[J]. Inorganic Chemistry, 1993, 32(11): 2518−2524.
[60] MURAHASHI T, KUROSAWA H. Organopalladium complexes containing palladium-palladium bonds[J]. Coordination Chemistry Reviews, 2002, 231(1-2): 207−228.
[61] LU Y, JIANG Y, GAO X, et al. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts [J]. Journal of the American Chemical Society, 2014, 136(33): 11687−11697.
[62] LIN J, ZOU C, ZHANG X, et al. Highly phosphorescent organopalladium(II) complexes with metal-metal-to-ligand charge-transfer excited states in fluid solutions[J]. Dalton Transactions, 2019, 48(28): 10417−10421.
[63] WAN Q, TO W P, YANG C, et al. The metal–metal‐to‐ligand charge transfer excited state and supramolecular polymerization of luminescent pincer PdII-isocyanide complexes[J]. Angewandte Chemie International Edition, 2018, 57(12): 3089−3093.
[64] ZOU C, LIN J, SUO S, et al. Palladium(II) N-heterocyclic allenylidene complexes with extended intercationic Pd···Pd interactions and MMLCT phosphorescence[J]. Chemical Communications, 2018, 54(42): 5319−5322.
[65] LIN J, XIE M, ZHANG X, et al. Helically chiral Pd(II) complexes containing intramolecular Pd···Pd metallophilicity as circularly polarized molecular phosphors[J]. Chemical Communications, 2021, 57(13): 1627−1630.
[66] WAN Q, TO W P, CHANG X, et al. Controlled synthesis of PdII and PtII supramolecular copolymer with sequential multiblock and amplified phosphorescence[J]. Chem, 2020, 6(4): 945−967.
[67] BOULECHFAR C, FERKOUS H, DELIMI A, et al. Schiff bases and their metal complexes: a review on the history, synthesis, and applications [J]. Inorganic Chemistry Communications, 2023, 150: 110451.
[68] CHOW P K, TO W P, LOW K H, et al. Luminescent palladium(II) complexes with π‐extended cyclometalated [RC^N^NR′] and pentafluorophenylacetylide ligands: spectroscopic, photophysical, and photochemical properties[J]. Chemistry-An Asian Journal, 2014, 9(2): 534−545.
[69] HUNG F F, WU S X, TO W P, et al. Palladium (II) acetylide complexes with pincer‐type ligands: photophysical properties, intermolecular interactions, and photo‐cytotoxicity[J]. Chemistry-An Asian Journal, 2017, 12(1): 145−158.
[70] ZHOU X Q, WANG P, RAMU V, et al. In vivo metallophilic self-assembly of a light-activated anticancer drug[J]. Nature Chemistry, 2023, 15(7): 980−987.
[71] ASAY M, DONNADIEU B, SCHOELLER W W, et al. Synthesis of allenylidene lithium and silver complexes, and subsequent transmetalation reactions[J]. Angewandte Chemie International Edition, 2009, 48(26): 4796−4799.
[72] HANSMANN M M, ROMINGER F, HASHMI A S K. Gold-allenylidenes-an experimental and theoretical study[J]. Chemical Science, 2013, 4(4): 1552−1559.
[73] NAOKI K, YUTARO K, YUKATSU S, et al. Protonation-induced chromism of pyridylethynyl-appended [core plus exo]-type Au8 clusters. resonance-coupled electronic perturbation through π-conjugated group [J]. Journal of the American Chemical Society, 2013, 135(43): 16078−16081.
[74] SCHWAB P, LEVIN M D, MICHL J. Molecular rods. 1. simple axial rods [J]. Chemical Reviews, 1999, 99(7): 1863−1934.
[75] VAN SLAGEREN J, WINTER R F, KLEIN A, et al. Long-lived higher excited state luminescence from new ruthenium(II)–allenylidene complexes[J]. Journal of organometallic chemistry, 2003, 670(1-2): 137−143.
[76] KESSLER F, CURCHOD B F, TAVERNELLI I, et al. A simple approach to room temperature phosphorescent allenylidene complexes[J]. Angewandte Chemie International Edition, 2012, 51(32): 8030−8033.
[77] XIAO X S, KWONG W L, GUAN X, et al. Platinum(II) and gold(III) allenylidene complexes: phosphorescence, self‐assembled nanostructures and cytotoxicity[J]. Chemistry-A European Journal, 2013, 19(29): 9457−9462.
[78] XIAO X-S, ZOU C, GUAN X, et al. Homoleptic gold(I) N-heterocyclic allenylidene complexes: excited-state properties and lyotropic chromonics[J]. Chemical Communications, 2016, 52(28): 4983−4986.
[79] LIN J, PENG F, XIE M, et al. Dicationic diimine Pt(II) bis(N-heterocyclic allenylidene) complexes: extended Pt···Pt chains, NIR phosphorescence, and chromonics[J]. Inorganic Chemistry, 2023, 62(26): 10077−10091.
[80] YANG X, GAO X, ZHENG Y-X, et al. Recent progress of circularly polarized luminescence materials from chinese perspectives [J]. CCS Chemistry, 2023, 5(12): 2760−2789.
[81] SCHADT M. Liquid crystal materials and liquid crystal displays[J]. Annual Review of Materials Science, 1997, 27(1): 305−379.
[82] TANABE T, SATO T, FUKAISHI K, et al. Circularly polarized (CPL) 3D monitors attract attention again for medical applications[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 987−990.
[83] ZHANG M, GUO Q, LI Z, et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging[J]. Science Advances, 2023, 9(43): eadi9944.
[84] HEFFERN M C, MATOSZIUK L M, MEADE T J. Lanthanide probes for cioresponsive imaging[J]. Chemical Reviews, 2013, 114(8): 4496−4539.
[85] SHUVAEV S, FOX M A, PARKER D. Monitoring of the ADP/ATP ratio by induced circularly polarised europium luminescence[J]. Angewandte Chemie International Edition, 2018, 57(25): 7488−7492.
[86] IMAI Y, NAKANO Y, KAWAI T, et al. A smart sensing method for object identification using circularly polarized luminescence from coordination‐driven self‐assembly[J]. Angewandte Chemie International Edition, 2018, 57(29): 8973−8978.
[87] SETHY R, KUMAR J, METIVIER R, et al. Enantioselective light harvesting with perylenediimide guests on self‐assembled chiral naphthalenediimide nanofibers[J]. Angewandte Chemie International Edition, 2017, 56(47): 15053−15057.
[88] YANG Y, DA COSTA R C, FUCHTER M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor[J]. Nature Photonics, 2013, 7(8): 634−638.
[89] LI C, YANG X, HAN J, et al. Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence[J]. Materials Advances, 2021, 2(12): 3851−3855.
[90] LIN S, TANG Y, KANG W, et al. Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption[J]. Nature Communications, 2023, 14(1): 3005.
[91] WANG X, ZHAO B, DENG J. Liquid crystals doped with chiral fluorescent polymer: multi‐color circularly polarized fluorescence and room‐temperature phosphorescence with high dissymmetry factor and anti‐counterfeiting application[J]. Advanced Materials, 2023, 35(49): 2304405.
[92] MUTHIG A M T, MROZEK O, FERSCHKE T, et al. Mechano-stimulus and environment-dependent circularly polarized TADF in chiral copper(I) complexes and their application in OLEDs[J]. Journal of the American Chemical Society, 2023, 145(8): 4438−4449.
[93] SONG J, XIAO H, FANG L, et al. Highly phosphorescent planar chirality by bridging two square-planar platinum(II) complexes: chirality induction and circularly polarized luminescence[J]. Journal of the American Chemical Society, 2022, 144(5): 2233−2244.
[94] SONG J, XIAO H, ZHANG B, et al. Metal‐induced planar chirality of soft‐bridged binuclear platinum(II) complexes: 100 % phosphorescence quantum yields, chiral self‐sorting, and circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302011.
[95] WANG X, MA S, ZHAO B, et al. Frontiers in circularly polarized phosphorescent materials[J]. Advanced Functional Materials, 2023, 33(20): 2214364.
[96] Cao R, Zhou X, Dai H, et al. Thermoregulated CPL-active flexible polymer/perovskite hybrid materials with high luminescence dissymmetry factor[J]. Advanced Optical Materials, 2024, 2400066.
[97] DEE C, ZINNA F, KITZMANN W R, et al. Strong circularly polarized luminescence of an octahedral chromium(III) complex[J]. Chemical Communications, 2019, 55(87): 13078−13081.
[98] JIMENEZ J R, PONCET M, MIGUEZ‐LAGO S, et al. Bright long‐lived circularly polarized luminescence in chiral chromium(III) Complexes[J]. Angewandte Chemie International Edition, 2021, 60(18): 10095−10102.
[99] KITZMANN W R, MOLL J, HEINZE K. Spin-flip luminescence[J]. Photochemical & Photobiological Sciences, 2022, 21(7): 1309–1331.
[100] JIANG P, MIKHERDOV A S, ITO H, et al. Crystallization-induced chirality transfer in conformationally flexible azahelicene Au(I) complexes with circularly polarized luminescence activation[J]. Journal of the American Chemical Society, 2024, 146(18): 12463–12472.
[101] WILLIS O G, PETRI F, PESCITELLI G, et al. Efficient 1400–1600 nm circularly polarized luminescence from a tuned chiral erbium complex[J]. Angewandte Chemie International Edition, 2022, 61(34): e202208326.
[102] LUNKLEY J L, SHIROTANI D, YAMANARI K, et al. Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis (3-heptafluoro-butylryl-(+)-camphorato) Eu (III) complexes in EtOH and CHCl3 solutions[J]. Journal of the American Chemical Society, 2008, 130(42): 13814−13815.
[103] SATO S, YOSHII A, TAKAHASHI S, et al. Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity[J]. Proceedings of the National Academy of Sciences, 2017, 114(50): 13097−13101.
[104] TOYA M, OMINE T, ISHIWARI F, et al. Expanded
[2,1][n]carbohelicenes with 15-and 17-benzene rings[J]. Journal of the American Chemical Society, 2023, 145(21): 11553−11565.
[105] ZHANG F, RAUCH F, SWAIN A, et al. Efficient narrowband circularly polarized light emitters based on 1,4‐B,N‐embedded rigid donor–acceptor helicenes[J]. Angewandte Chemie International Edition, 2023, 62(16): e202218965.
[106] XU H, MA C-S, YU C-Y, et al. Reversible inversion of circularly polarized luminescence in a coassembly supramolecular structure with achiral sulforhodamine B Dyes[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25201−25211.
[107] Heo J M, Kim J, Hasan M I, et al. Directed chiral self-assembly of purely organic phosphors for room-temperature circularly polarized phosphorescence[J]. Advanced Optical Materials, 2024: 2400572.
[108] ARRICO L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chemistry-A European Journal, 2020, 27(9): 2920−2934.
[109] GUO Q, ZHANG M, TONG Z, et al. Multimodal-responsive circularly polarized luminescence security materials[J]. Journal of the American Chemical Society, 2023, 145(7): 4246−4253.
[110] ZHOU Y, LI H, ZHU T, et al. A highly luminescent chiral tetrahedral Eu4L4(L′)4 cage: chirality induction, chirality memory, and circularly polarized luminescence[J]. Journal of the American Chemical Society, 2019, 141(50): 19634−19643.
[111] GONG Z L, ZHONG Y W. Handedness-inverted polymorphic helical assembly and circularly polarized luminescence of chiral platinum complexes[J]. Science China Chemistry, 2021, 64(5): 788−799.
[112] GONG Z-L, ZHU X, ZHOU Z, et al. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications[J]. Science China Chemistry, 2021, 64(12): 2060−2104.
[113] SANG Y, HAN J, ZHAO T, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J]. Advanced Materials, 2019, 32(41): 1900110.
[114] PARK G, JEONG D Y, YU S Y, et al. Enhancing circularly polarized phosphorescence via integrated top‐down and bottom‐up approach[J]. Angewandte Chemie International Edition, 2023, 62(41): e202309762.
[115] LI W J, GU Q, WANG X Q, et al. AIE‐active chiral
[3]rotaxanes with switchable circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2021, 60(17): 9507−9515.
[116] YANG X, HAN J, WANG Y, et al. Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence[J]. Chemical Science, 2019, 10(1): 172−178.
[117] LI X, HU W, WANG Y, et al. Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs)[J]. Chemical Communications, 2019, 55(35): 5179−5182.
[118] LI Y, YAO K, CHEN Y, et al. Full‐color and white circularly polarized luminescence promoted by liquid crystal self‐assembly containing chiral naphthalimide dyes[J]. Advanced Optical Materials, 2021, 9(20): 2100961.
[119] YANG X, JIN X, ZHAO T, et al. Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification[J]. Materials Chemistry Frontiers, 2021, 5(13): 4821−4832.
[120] ZHAO D, HE H, GU X, et al. Circularly polarized luminescence and a reflective photoluminescent chiral nematic liquid crystal display based on an aggregation‐induced emission luminogen[J]. Advanced Optical Materials, 2016, 4(4): 534−439.
[121] YE F Y, HU M, DU C, et al. Clear disclosure of hierarchical chirality transfer mechanism and wide full‐color and white‐light CPL emissions with both high glum and intensity by TPE helicates[J]. Advanced Optical Materials, 2022, 11(2): 2201784.
[122] ZHOU L, QIU J, WANG C, et al. Synthesis of α-aminosilanes by 1,2-metalate rearrangement deoxygenative silylation of aromatic amides[J]. Organic Letters, 2022, 24(17): 3249−3253.
[123] LI X, LIU N, ZHANG H, et al. CoA adducts of 4-Oxo-4-phenylbut-2-enoates: Inhibitors of MenB from the M. tuberculosis menaquinone biosynthesis pathway[J]. ACS Medicinal Chemistry Letters, 2011, 2(11): 818−823.
[124] SMULDERS M M J, NIEUWENHUIZEN M M L, DEGREEF T F A, et al. How to distinguish isodesmic from cooperative supramolecular polymerisation[J]. Chemistry-A European Journal, 2009, 16(1): 362−367.
[125] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16[J]. 2016.
[126] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of chemical physics, 2010, 132(15): 154104.
[127] Becke, Axel D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7):5648-5652.
[128] ROY L E, HAY P J, MARTIN R L. Revised basis sets for the LANL effective core potentials[J]. Journal of Chemical Theory and Computation, 2008, 4(7): 1029−1031.
[129] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28: 213−222.
[130] WAN Q, XIAO K, LI Z, et al. Optical signal modulation in photonic waveguiding heteroarchitectures with continuously variable visible‐to‐near‐infrared emission color[J]. Advanced Materials, 2022, 34(45): 2204839.
[131] CAFFREY D F, GORAI T, RAWSON B, et al. Ligand chirality transfer from solution state to the crystalline self‐assemblies in circularly polarized luminescence (CPL) active lanthanide systems [J]. Advanced Science, 2024: 2307448.
[132] PAN H, HOU B, JIANG Y, et al. Control of kinetic pathways toward supramolecular chiral polymorphs for tunable circularly polarized luminescence [J]. Chemistry-A European Journal, 2024: e202400899.
[133] LI X, LI Q, WANG Y, et al. Strong aggregation‐induced CPL response promoted by chiral emissive nematic liquid crystals (N*‐LCs)[J]. Chemistry-A European Journal, 2018, 24(48): 12607−12612.
[134] ZHOU X Q, WANG P, RAMU V, et al. In vivo metallophilic self-assembly of a light-activated anticancer drug[J]. Nature Chemistry, 2023, 15(7): 980−987.
[135] 苏笠, 杨劲, 王友群, 等. 化合物脂水分配系数计算软件及比较研究[J]. 中国药科大学学报, 2008, 39(2): 178−182.
[136] GONG Z L, LI Z Q, ZHONG Y W. Circularly polarized luminescence of coordination aggregates[J]. Aggregate, 2022, 3(5): e177.
[137] WANG J, ZHUANG G, CHEN M, et al. Selective synthesis of conjugated chiral macrocycles: sidewall segments of (−)/(+)‐(12,4) carbon nanotubes with strong circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2019, 59(4): 1619−1626.
[138] MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes[J]. Journal of the American Chemical Society, 2022, 144(14): 6148−6153.
[139] LI Y, LIU K, LI X, et al. The amplified circularly polarized luminescence regulated from D-A type AIE-active chiral emitters via liquid crystals system[J]. Chemical Communications, 2020, 56(7): 1117−1120.
[140] YANG X, HAN J, WANG Y, et al. Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence[J]. Chemical Science, 2019, 10(1): 172−178.
[141] LI X, HU W, WANG Y, et al. Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs)[J]. Chemical Communications, 2019, 55(35): 5179−5182.
[142] MAGANA J R, PEREZ-CALM A, RODRIGUEZ-ABREU C. Chromonic nematic liquid crystals in a room-temperature ionic liquid[J]. Chemical Communications, 2022, 58(11): 1724−1727.
[143] ATTWOOD T K, LYDON J E, HALL C, et al. The distinction between chromonic and amphiphilic lyotropic mesophases[J]. Liquid Crystals, 1990, 7(5): 657−668.
[144] GAO Q, ZOU C, LU W. Lyotropic chromonic mesophases derived from metal-organic complexes[J]. Chem Asian J, 2018, 13(21): 3092−3105.
[145] SUZUKI T, KOJIMA Y. Structural evolution during drying process in lyotropic chromonic liquid crystal[J]. Molecular Crystals and Liquid Crystals, 2017, 648(1): 29−34.
[146] BERRIDE F, TROCHE-PESQUEIRA E, FEIO G, et al. Chiral amplification of disodium cromoglycate chromonics induced by a codeine derivative[J]. Soft Matter, 2017, 13(38): 6810−6815.
[147] BAE Y J, YANG H J, SHIN S H, et al. A novel thin film polarizer from photocurable non-aqueous lyotropic chromonic liquid crystal solutions[J]. Journal of Materials Chemistry, 2011, 21(7): 2074−2077.
[148] ZHOU L, QIU J, WANG C, et al. Synthesis of alpha-aminosilanes by 1,2-metalate rearrangement deoxygenative silylation of aromatic amides[J]. Organic Letters, 2022, 24(17): 3249−3253.
[149] WAN Q, XIAO X S, TO W P, et al. Counteranion- and solvent-mediated chirality transfer in the supramolecular polymerization of luminescent platinum(II) complexes[J]. Angewandte Chemie International Edition, 2018, 57(52): 17189−17193.
[150] HARRISON W J, MATEER D L, TIDDY G J. Liquid-crystalline J-aggregates formed by aqueous ionic cyanine dyes[J]. The journal of physical chemistry, 1996, 100(6): 2310−2321.
[151] TAM-CHANG S-W, IVERSON I K, HELBLEY J. Study of the chromonic liquid-crystalline phases of bis-(N, N-diethylaminoethyl) perylene-3,4,9,10-tetracarboxylic diimide dihydrochloride by polarized optical microscopy and 2H NMR spectroscopy[J]. Langmuir, 2004, 20(2): 342−347.
[152] DIERKING I. Textures of liquid crystals[M]. John Wiley & Sons, 2003.
[153] JEONG J, HAN G, JOHNSON A T C, et al. Homeotropic alignment of lyotropic chromonic liquid crystals using noncovalent interactions[J]. Langmuir, 2014, 30(10): 2914−2920.
[154] KIM G H, LEE W-J, KIM H N, et al. Effects of boundary and bulk control technology in cholesteric liquid crystals[J]. Molecular Crystals and Liquid Crystals, 2016, 633(1): 72−79.
[155] MEYERHOFER D, SUSSMAN A, WILLIAMS R. Electro-optic and hydrodynamic properties of nematic liquid films with free surfaces[J]. Journal of Applied Physics, 1972, 43(9): 3685−3689.
[156] CHEN Z, SUZUKI Y, IMAYOSHI A, et al. Solvent-free autocatalytic supramolecular polymerization[J]. Nature Materials, 2021, 21(2): 253−261.
[157] WANG Y, NIU D, OUYANG G, et al. Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence[J]. Nature Communications, 2022, 13(1): 1710.
[158] XU H, MA C S, YU C Y, et al. Reversible inversion of circularly polarized luminescence in a coassembly supramolecular structure with achiral sulforhodamine B Dyes[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25201−25211.
修改评论