中文版 | English
题名

N-杂环亚丙二烯基Pd(II)化合物及其磷光超分子组装体研究

其他题名
Phosphorescent Supramolecular Assemblies of N-Heterocyclic Allenylidene Pd(II) Compounds
姓名
姓名拼音
ZHOU Ning
学号
12131214
学位类型
博士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
陆为
导师单位
化学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    d8电子构型的有机金属化合物具有独特的四配位的平面几何结构,在非共价相互作用力驱动下能够自组装成结构多样的磷光超分子纳米材料。相较于应用广泛的Pt(II)磷光材料,Pd(II)化合物的研究尚待深入,其较低的d-d轨道能级和高动力学活性为其实现在室温下稳定磷光提出了挑战。
    采用刚性6-苯基-2,2’-联吡啶配体同时促进Pd···Pd相互作用的策略可以实现Pd(II)化合物组装体的高效发光。N-杂环亚丙二烯基的引入可以提高Pd(II)化合物的稳定性并有助于超分子自组装体的构建。本文设计合成了14种稳定的阳离子型N-杂环亚丙二烯基-Pd(II)化合物,并与4种同结构的Pt(II)化合物进行了对比研究,系统地研究了其光物理性质和自组装行为。
    通过在配体中引入各种官能团,可以有目的地调控Pd(II)化合物的组装和发光特性。引入亲脂性烷基至配体的吡啶环,使化合物在非极性溶剂中构建组装体并具有磷光特性,并通过改变烷基碳原子个数可以调节化合物在不同溶剂中的组装。引入F原子至苯环2,5位,实现了发射波长的红移,而给电子基团的引入则导致发射蓝移。通过改变抗衡阴离子,Pd(II)化合物可以在不同溶剂中组装发光。Cl有助于Pd(II)化合物在水溶液中的稳定组装,而亲脂性阴离子则促进Pd(II)化合物在非极性溶剂中的组装,并能在手性柠檬烯中诱导圆偏振发射信号(|glum|可达1.18×10−3)。
通过在配体上引入手性基团,Pd(II)化合物在乙腈中形成了具有溶色液晶特性的组装体,并展现出高不对称因子(0.76)和高磷光发射量子产率(0.38)。此外将手性Pd(II)化合物掺杂到液晶溶剂中也可以实现手性转移并增强圆偏振磷光。
    同结构的Pd(II)和Pt(II)化合物在非极性溶剂中的二元共组装磷光发射可以通过改变Pd/Pt比例来调控,实现可见光区域-近红外区域的多色发光。
    本文合成的阳离子型N-杂环亚丙二烯基-Pd(II)化合物可以通过形成组装体展现出源自3MMLCT激发态的磷光特性。通过对Pd(II)化合物的两亲性调控,能够在不同溶剂中构建出形貌有序的磷光超分子组装体,为磷光Pd(II)化合物构效关系的研究和组装体的构建及应用提供了经验。

其他摘要

Organic metal compounds with d8 electronic configurations possess a unique four-coordinate planar geometric structure, which can self-assemble into structurally diverse phosphorescent supramolecular nanomaterials driven by non-covalent interactions. Compared to the widely used Pt(II) phosphorescent materials, research on Pd(II) compounds remains to be further explored. Their lower d-d orbital energy levels and high kinetic activity present challenges for achieving stable phosphorescence at room temperature.
A strategy involving the use of a rigid 6-phenyl-2,2'-bipyridine ligand to facilitate Pd···Pd interactions can lead to efficient luminescence of Pd(II) compound assemblies. The introduction of N-heterocyclic allenylidene (NHA) can enhance the stability of Pd(II) compounds and contribute to the construction of supramolecular self-assemblies. In this study, we designed and synthesized 14 stable cationic NHA-Pd(II) compounds and compared them with four structurally similar Pt(II) compounds, systematically investigating their photophysical properties and self-assembly behaviors.
The assembly and luminescent characteristics of Pd(II) compounds were selectively modulated by the introduction of different functional groups onto the ligand. The incorporation of lipophilic alkyl chains into the pyridine ring of the ligand allowed for the construction of assemblies with phosphorescent properties in nonpolar solvents, with the assembly of the compounds in different solvents being adjustable by varying the number of carbon atoms in the alkyl chains. The introduction of fluorine atoms to the 2,5 positions of the phenyl ring resulted in a redshift of the emission wavelength, while the incorporation of electron-donating groups led to a blueshift. The Pd(II) compounds were capable of assembling and exhibiting luminescence in different solvents upon alteration of the counterions. The Cl was conducive to the stable assembly of Pd(II) compounds in aqueous solutions, whereas lipophilic anions promoted the assembly of Pd(II) compounds in nonpolar solvents and induced circularly polarized luminescence signals in chiral limonene, with |glum| values reaching up to 1.18×10−3.
The introduction of chiral groups onto the ligand resulted in the formation of assemblies with solvatochromic liquid crystalline characteristics in acetonitrile for Pd(II) compounds. These assemblies exhibited a high |glum| values (0.76) and a high phosphorescence quantum yield (0.38). Furthermore, the doping of chiral Pd(II) compounds into a liquid crystal solvent also facilitated the transfer of chirality and enhanced circularly polarized phosphorescence.
The binary co-assembly of structurally identical Pd(II) and Pt(II) compounds in nonpolar solvents, which resulted in phosphorescent emission, was tunable by adjusting the ratio of Pd to Pt. This adjustment enabled the achievement of multicolored luminescence spanning the visible to the near-infrared region.
The cationic N-heterocyclic allenylidene-palladium(II) compounds synthesized in this study were capable of exhibiting phosphorescent characteristics originating from the 3MMLCT (metal-to-metal ligand charge transfer) excited state through the formation of assemblies. By modulating the amphiphilic nature of the Pd(II) compounds, it was possible to construct morphologically ordered phosphorescent supramolecular assemblies in various solvents. This study provided valuable experience for the study of structure-activity relationships of phosphorescent Pd(II) compounds, as well as for the assembly and application of the resulting supramolecular structures.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] LAKOWICZ JR. Principles of fluorescence spectroscopy[M]. 3rd edn. New York: Springer, 2006.
[2] HAN C, ZHANG X, HUANG S, et al. MOF‐on‐MOF‐derived hollow Co3O4/In2O3 xanostructure for efficient photocatalytic CO2 reduction[J]. Advanced Science, 2023, 10(19): 2300797.
[3] HUSSAIN M Z, YANG Z, HUANG Z, et al. Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment[J]. Advanced Science, 2021, 8(14): 2100625.
[4] LOPEZ‐MAGANO A, DALIRAN S, OVEISI A R, et al. Recent advances in the use of covalent organic frameworks as heterogenous photocatalysts in organic synthesis[J]. Advanced Materials, 2023, 35(24): 2209475.
[5] LI H, YANG Q, WANG Z, et al. Iridium complex with specific intercalation in the G-Quadruplex: a phosphorescence and electrochemiluminescence Dual-Mode homogeneous biosensor for enzyme-free and label-Free detection of microRNA[J]. ACS Sensors, 2023, 8(4): 1529−1535.
[6] ZHOU W L, LIN W, CHEN Y, et al. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging[J]. Chemical Science, 2022, 13(27): 7976−7989.
[7] BAEK S H, PARK J Y, WOO S J, et al. Synergistic enhancement of emitting dipole orientation between Pt‐based phosphorescent sensitizers and boron‐based multi‐resonance fluorescent emitters for high‐performance phosphor‐sensitized fluorescent organic light‐emitting diodes[J]. Small Structures, 2024: 2300564.
[8] CHEN G, WANG J, CHEN W C, et al. Triphenylamine‐functionalized multiple‐resonance TADF emitters with accelerated reverse intersystem crossing and aggregation‐induced emission enhancement for narrowband OLEDs[J]. Advanced Functional Materials, 2023, 33(12): 2211893.
[9] EVANS R C, DOUGLAS P, WINSCOM C J. Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes[J]. Coordination Chemistry Reviews, 2006, 250(15−16): 2093−2126.
[10] TO W P, WAN Q, TONG G S M, et al. Recent advances in metal triplet emitters with d6, d8, and d10 electronic configurations[J]. Trends in Chemistry, 2020, 2(9): 796−812.
[11] RAVOTTO L, CERONI P. Aggregation induced phosphorescence of metal complexes: From principles to applications [J]. Coordination Chemistry Reviews, 2017, 346: 62−76.
[12] RUAN Z, YANG J, LI Y, et al. Dual‐emissive iridium(III) complexes and their applications in biological sensing and imaging [J]. ChemBioChem, 2024, 25(9): e202400094.
[13] RASHID A, MONDAL S, GHOSH P. Development and application of ruthenium(II) and iridium(III) based complexes for anion sensing [J]. Molecules, 2023, 28(3): 1231.
[14] WAN Q, YANG J, TO W P, et al. Strong metal–metal Pauli repulsion leads to repulsive metallophilicity in closed-shell d8 and d10 organometallic complexe[J]. Proceedings of the National Academy of Sciences, 2020, 118(1): e2019265118.
[15] ZHANG Z, WU P, WANG K, et al. Manipulation of Pt···Pt interaction in platinum complex by methyl group to achieve single-doped white OLEDs: An approach to simulation of daylight from dawn until dusk [J]. ACS Materials Letters, 2023, 5(4): 920−927.
[16] Williams J A G. Photochemistry and photophysics of coordination compounds: platinum[J]. Photochemistry and Photophysics of Coordination Compounds II, 2007: 205−268.
[17] MAGNUS G. Ueber einige verbindungen des platinchlorürs[J]. Annalen der Physik, 1828, 90(10): 239−242.
[18] ATOJI M, RICHARDSON J W, RUNDLE R. On the crystal structures of the magnus salts, Pt(NH3)4PtCl41[J]. Journal of the American Chemical Society, 1957, 79(12): 3017−3020.
[19] ALLAMPALLY N K, MAYORAL M J, CHANSAI S, et al. Control over the self‐assembly modes of PtII complexes by alkyl chain variation: from slipped to parallel π‐Stacks[J]. Chemistry–A European Journal, 2016, 22(23): 7810−7816.
[20] CHANG K C, LIN J L, SHEN Y T, et al. Synthesis and photophysical properties of self‐assembled metallogels of platinum(II) ccetylide complexes with elaborate long‐chain Pyridine‐2,6‐Dicarboxamides[J]. Chemistry–A European Journal, 2012, 18(5): 1312−1321.
[21] YAM V W W, AU V K M, LEUNG S Y L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes[J]. Chemical reviews, 2015, 115(15): 7589−7728.
[22] LU W, ROY V A L, CHE C M. Self-assembled nanostructures with tridentate cyclometalated platinum(II) complexes[J]. Chemical Communications, 2006, (38): 3972−3974.
[23] LU W, CHEN Y, ROY V A L, et al. Supramolecular polymers and chromonic mesophases self‐organized from phosphorescent cationic organoplatinum(II) complexes in water[J]. Angewandte Chemie International Edition, 2009, 48(41): 7621−7625.
[24] TONG K C, WAN P K, LOK C N, et al. Dynamic supramolecular self-assembly of platinum(II) complexes perturbs an autophagy–lysosomal system and triggers cancer cell death[J]. Chemical Science, 2021, 12(46): 15229−15238.
[25] YAM V W W, TANG R P L, WONG K M C, et al. Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes[J]. Organometallics, 2001, 20(22): 4476−4482.
[26] TAM A Y Y, WONG K M C, WANG G, et al. Luminescent metallogels of platinum(II) terpyridyl complexes: interplay of metal⋯metal, π–π and hydrophobic–hydrophobic interactions on gel formation[J]. Chemical communications, 2007, (20): 2028−2030.
[27] AU-YEUNG H L, LEUNG S Y L, YAM V W W. Solvent-assisted supramolecular assembly of cyclotetrasiloxane–functionalized alkynylplatinum(II) terpyridine complexes[J]. CCS Chemistry, 2019, 1(5): 464−475.
[28] LEUNG S Y L, WONG K M C, YAM V W W. Self-assembly of alkynylplatinum(II) terpyridine amphiphiles into nanostructures via steric control and metal–metal interactions[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2845−2850.
[29] LI B, WANG Y, CHAN M H Y, et al. Supramolecular assembly of organoplatinum(II) complexes for subcellular distribution and cell viability monitoring with differentiated imaging[J]. Angewandte Chemie International Edition, 2022, 61(49): e202210703.
[30] WANG Y, LI N, CHU L, et al. Dual enhancement of phosphorescence and circularly polarized luminescence through entropically driven self‐assembly of a platinum(II) complex [J]. Angewandte Chemie International Edition, 2024: e202403898.
[31] LIU M, HAN Y, ZHONG H, et al. Supramolecular chirogenesis induced by platinum(II) tweezers with excellent environmental tolerance[J]. Angewandte Chemie International Edition, 2020, 60(7): 3498−3503.
[32] ROMO-ISLAS G, BURGUERA S, FRONTERA A, et al. Investigating the impact of packing and environmental factors on the luminescence of Pt(N^N^N) chromophores [J]. Inorganic Chemistry, 2024, 63: 2821−2832.
[33] KOMIYA N, MURAOKA T, IIDA M, et al. Ultrasound-induced emission enhancement based on structure-dependent homo-and heterochiral aggregations of chiral binuclear platinum complexes[J]. Journal of the American Chemical Society, 2011, 133(40): 16054−16061.
[34] IKESHITA M, ITO M, NAOTA T.Variations in the solid-state emissions of clothespin-shaped binuclear tran-bis(salicylaldiminato)platinum(II) with halogen functionalities[J]. European Journal of Inorganic Chemistry, 2019, 2019(31): 3561−3571.
[35] PARK G, JEONG D Y, YU S Y, et al. Enhancing circularly polarized phosphorescence via integrated top‐down and bottom‐up approach[J]. Angewandte Chemie International Edition, 2023, 62(41): e202309762.
[36] SCHMIDBAUR H. Ludwig Mond lecture. High-carat gold compounds[J]. Chemical Society Reviews, 1995, 24(6): 391−400.
[37] ZENG L, ZHOU M, JIN R. Evolution of excited-state behaviors of gold complexes, nanoclusters and nanoparticles[J]. ChemPhysChem, 2024: e202300687.
[38] CHAN C W, WONG W T, CHE C M. Gold (III) photooxidants. photophysical, photochemical properties, and crystal structure of a luminescent cyclometalated gold (III) complex of 2, 9-diphenyl-1, 10-phenanthroline [J]. Inorganic Chemistry, 1994, 33(7): 1266−1272.
[39] LIU H Q, CHEUNG T C, PENG S M, et al. Novel luminescent cyclometaiated and terpyridine gold(III) complexes and DNA binding studies[J]. Journal of the Chemical Society, Chemical Communications, 1995, (17): 1787−1788.
[40] WAN Q, XIA J, LU W, et al. Kinetically controlled self-assembly of phosphorescent AuIII aggregates and ligand-to-metal-metal charge transfer excited state: a combined spectroscopic and DFT/TDDFT study[J]. Journal of the American Chemical Society, 2019, 141(29): 11572−11582.
[41] LEUNG M Y, LEUNG S Y L, YIM K C, et al. Multiresponsive luminescent cationic cyclometalated gold(III) amphiphiles and their supramolecular assembly[J]. Journal of the American Chemical Society, 2019, 141(49): 19466−19478.
[42] CHEN Y, LI K, LLOYD H O, et al. Tetrakis (arylisocyanide) rhodium (I) salts in water: NIR luminescent and conductive supramolecular polymeric nanowires with hierarchical organization[J]. Angewandte Chemie International Edition, 2010, 51(49): 9968−9971.
[43] CHAN A K W, WONG K M C, YAM V W W. Supramolecular assembly of isocyanorhodium(I) complexes: an interplay of rhodium(I)···rhodium(I) Interactions, hydrophobic–hydrophobic interactions, and host–guest chemistry[J]. Journal of the American Chemical Society, 2015, 137(21): 6920−6931.
[44] WEI W, WANG J, KANG X, et al. Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium(I) zwitterions[J]. Chemical Science, 2023, 14(41): 11490−11498.
[45] BISCHOFF L, BAUDEQUIN C, HOARAU C, et al. Organometallic fluorophores of d8 metals (Pd, Pt, Au)[M]. Advances in Organometallic Chemistry, 2018: 73−134.
[46] DALMAU D, URRIOLABEITIA E P. Luminescence and palladium: the odd couple[J]. Molecules, 2023, 28(6): 2663.
[47] LOWRY M S, BERNHARD S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium (III) complexes and their applications[J]. Chemistry–A European Journal, 2006, 12(31): 7970−7977.
[48] ANDERSON P A, DEACON G B, HAARMANN K H, et al. Designed synthesis of mononuclear tris(heteroleptic) ruthenium complexes containing bidentate polypyridyl ligands[J]. Inorganic Chemistry, 1995, 34(24): 6145−6157.
[49] LA DEDA M, GHEDINI M, AIELLO I, et al. Organometallic emitting dyes: palladium(II) nile red complexes[J]. Journal of Organometallic Chemistry, 2005, 690(4): 857−861.
[50] AIELLO I, GHEDINI M, LA DEDA M. Synthesis and spectroscopic characterization of organometallic chromophores for photoluminescent materials: cyclopalladated complexes[J]. Journal of Luminescence, 2002, 96(2-4): 249−259.
[51] PUGLIESE T, GODBERT N, AIELLO I, et al. Organometallic red-emitting chromophores: a computational and experimental study on cyclometallated Nile Red complexes of palladium(II) and platinum(II) acetylacetonates and hexafluoroacetylacetonates[J]. Dalton Transactions, 2008, (46): 6563−6572.
[52] ZHU W, FAN L. Room temperature phosphorescence of a palladium(II) complex sensitized by unsymmetric perylene bisimide[J]. Dyes and Pigments, 2008, 76(3): 663−668.
[53] RIESE S, HOLZAPFEL M, SCHMIEDEL A, et al. Photoinduced dynamics of bis-dipyrrinato-palladium(II) and porphodimethenato-palladium(II) complexes: Governing near infrared phosphorescence by structural restriction[J]. Inorganic Chemistry, 2018, 57(20): 12480−12488.
[54] YAO Y, HOU C L, YANG Z S, et al. Unusual near infrared(NIR) fluorescent palladium(II) macrocyclic complexes containing M-C bonds with bioimaging capability[J]. Chemical Science, 2019, 10(43): 10170−10178.
[55] CHOW P K, MA C, TO W P, et al. Strongly phosphorescent palladium(II) complexes of tetradentate ligands with mixed oxygen, carbon, and nitrogen donor atoms: photophysics, photochemistry, and applications[J]. Angewandte Chemie International Edition, 2013, 52(45): 11775−11779.
[56] ZHU Z Q, PARK C D, KLIMES K, et al. Highly efficient blue OLEDs based on metal‐assisted delayed fluorescence Pd(II) complexes[J]. Advanced Optical Materials, 2019, 7(6): 1801518.
[57] LAI S W, CHAN M C W, CHEUNG T C, et al. Probing d8−d8 interactions in luminescent mono-and binuclear cyclometalated platinum(II) complexes of 6-Phenyl-2,2'-bipyridines[J]. Inorganic Chemistry, 1999, 38(18): 4046−4055.
[58] WU Z X, Wu L Z, YANG Q Z, et al. Tuning the excited‐state properties of cyclometalated platinum(II) complexes of 6‐Phenyl‐2,2′‐bipyridine by ancillary acetylide ligand[J]. Chinese Journal of Chemistry, 2003, 21(2): 196−199.
[59] MISKOWSKI V M, HOULDING V H, CHE C M, et al. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands mixed complexes with halide ligands[J]. Inorganic Chemistry, 1993, 32(11): 2518−2524.
[60] MURAHASHI T, KUROSAWA H. Organopalladium complexes containing palladium-palladium bonds[J]. Coordination Chemistry Reviews, 2002, 231(1-2): 207−228.
[61] LU Y, JIANG Y, GAO X, et al. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts [J]. Journal of the American Chemical Society, 2014, 136(33): 11687−11697.
[62] LIN J, ZOU C, ZHANG X, et al. Highly phosphorescent organopalladium(II) complexes with metal-metal-to-ligand charge-transfer excited states in fluid solutions[J]. Dalton Transactions, 2019, 48(28): 10417−10421.
[63] WAN Q, TO W P, YANG C, et al. The metal–metal‐to‐ligand charge transfer excited state and supramolecular polymerization of luminescent pincer PdII-isocyanide complexes[J]. Angewandte Chemie International Edition, 2018, 57(12): 3089−3093.
[64] ZOU C, LIN J, SUO S, et al. Palladium(II) N-heterocyclic allenylidene complexes with extended intercationic Pd···Pd interactions and MMLCT phosphorescence[J]. Chemical Communications, 2018, 54(42): 5319−5322.
[65] LIN J, XIE M, ZHANG X, et al. Helically chiral Pd(II) complexes containing intramolecular Pd···Pd metallophilicity as circularly polarized molecular phosphors[J]. Chemical Communications, 2021, 57(13): 1627−1630.
[66] WAN Q, TO W P, CHANG X, et al. Controlled synthesis of PdII and PtII supramolecular copolymer with sequential multiblock and amplified phosphorescence[J]. Chem, 2020, 6(4): 945−967.
[67] BOULECHFAR C, FERKOUS H, DELIMI A, et al. Schiff bases and their metal complexes: a review on the history, synthesis, and applications [J]. Inorganic Chemistry Communications, 2023, 150: 110451.
[68] CHOW P K, TO W P, LOW K H, et al. Luminescent palladium(II) complexes with π‐extended cyclometalated [RC^N^NR′] and pentafluorophenylacetylide ligands: spectroscopic, photophysical, and photochemical properties[J]. Chemistry-An Asian Journal, 2014, 9(2): 534−545.
[69] HUNG F F, WU S X, TO W P, et al. Palladium (II) acetylide complexes with pincer‐type ligands: photophysical properties, intermolecular interactions, and photo‐cytotoxicity[J]. Chemistry-An Asian Journal, 2017, 12(1): 145−158.
[70] ZHOU X Q, WANG P, RAMU V, et al. In vivo metallophilic self-assembly of a light-activated anticancer drug[J]. Nature Chemistry, 2023, 15(7): 980−987.
[71] ASAY M, DONNADIEU B, SCHOELLER W W, et al. Synthesis of allenylidene lithium and silver complexes, and subsequent transmetalation reactions[J]. Angewandte Chemie International Edition, 2009, 48(26): 4796−4799.
[72] HANSMANN M M, ROMINGER F, HASHMI A S K. Gold-allenylidenes-an experimental and theoretical study[J]. Chemical Science, 2013, 4(4): 1552−1559.
[73] NAOKI K, YUTARO K, YUKATSU S, et al. Protonation-induced chromism of pyridylethynyl-appended [core plus exo]-type Au8 clusters. resonance-coupled electronic perturbation through π-conjugated group [J]. Journal of the American Chemical Society, 2013, 135(43): 16078−16081.
[74] SCHWAB P, LEVIN M D, MICHL J. Molecular rods. 1. simple axial rods [J]. Chemical Reviews, 1999, 99(7): 1863−1934.
[75] VAN SLAGEREN J, WINTER R F, KLEIN A, et al. Long-lived higher excited state luminescence from new ruthenium(II)–allenylidene complexes[J]. Journal of organometallic chemistry, 2003, 670(1-2): 137−143.
[76] KESSLER F, CURCHOD B F, TAVERNELLI I, et al. A simple approach to room temperature phosphorescent allenylidene complexes[J]. Angewandte Chemie International Edition, 2012, 51(32): 8030−8033.
[77] XIAO X S, KWONG W L, GUAN X, et al. Platinum(II) and gold(III) allenylidene complexes: phosphorescence, self‐assembled nanostructures and cytotoxicity[J]. Chemistry-A European Journal, 2013, 19(29): 9457−9462.
[78] XIAO X-S, ZOU C, GUAN X, et al. Homoleptic gold(I) N-heterocyclic allenylidene complexes: excited-state properties and lyotropic chromonics[J]. Chemical Communications, 2016, 52(28): 4983−4986.
[79] LIN J, PENG F, XIE M, et al. Dicationic diimine Pt(II) bis(N-heterocyclic allenylidene) complexes: extended Pt···Pt chains, NIR phosphorescence, and chromonics[J]. Inorganic Chemistry, 2023, 62(26): 10077−10091.
[80] YANG X, GAO X, ZHENG Y-X, et al. Recent progress of circularly polarized luminescence materials from chinese perspectives [J]. CCS Chemistry, 2023, 5(12): 2760−2789.
[81] SCHADT M. Liquid crystal materials and liquid crystal displays[J]. Annual Review of Materials Science, 1997, 27(1): 305−379.
[82] TANABE T, SATO T, FUKAISHI K, et al. Circularly polarized (CPL) 3D monitors attract attention again for medical applications[J]. SID Symposium Digest of Technical Papers, 2015, 46(1): 987−990.
[83] ZHANG M, GUO Q, LI Z, et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging[J]. Science Advances, 2023, 9(43): eadi9944.
[84] HEFFERN M C, MATOSZIUK L M, MEADE T J. Lanthanide probes for cioresponsive imaging[J]. Chemical Reviews, 2013, 114(8): 4496−4539.
[85] SHUVAEV S, FOX M A, PARKER D. Monitoring of the ADP/ATP ratio by induced circularly polarised europium luminescence[J]. Angewandte Chemie International Edition, 2018, 57(25): 7488−7492.
[86] IMAI Y, NAKANO Y, KAWAI T, et al. A smart sensing method for object identification using circularly polarized luminescence from coordination‐driven self‐assembly[J]. Angewandte Chemie International Edition, 2018, 57(29): 8973−8978.
[87] SETHY R, KUMAR J, METIVIER R, et al. Enantioselective light harvesting with perylenediimide guests on self‐assembled chiral naphthalenediimide nanofibers[J]. Angewandte Chemie International Edition, 2017, 56(47): 15053−15057.
[88] YANG Y, DA COSTA R C, FUCHTER M J, et al. Circularly polarized light detection by a chiral organic semiconductor transistor[J]. Nature Photonics, 2013, 7(8): 634−638.
[89] LI C, YANG X, HAN J, et al. Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence[J]. Materials Advances, 2021, 2(12): 3851−3855.
[90] LIN S, TANG Y, KANG W, et al. Photo-triggered full-color circularly polarized luminescence based on photonic capsules for multilevel information encryption[J]. Nature Communications, 2023, 14(1): 3005.
[91] WANG X, ZHAO B, DENG J. Liquid crystals doped with chiral fluorescent polymer: multi‐color circularly polarized fluorescence and room‐temperature phosphorescence with high dissymmetry factor and anti‐counterfeiting application[J]. Advanced Materials, 2023, 35(49): 2304405.
[92] MUTHIG A M T, MROZEK O, FERSCHKE T, et al. Mechano-stimulus and environment-dependent circularly polarized TADF in chiral copper(I) complexes and their application in OLEDs[J]. Journal of the American Chemical Society, 2023, 145(8): 4438−4449.
[93] SONG J, XIAO H, FANG L, et al. Highly phosphorescent planar chirality by bridging two square-planar platinum(II) complexes: chirality induction and circularly polarized luminescence[J]. Journal of the American Chemical Society, 2022, 144(5): 2233−2244.
[94] SONG J, XIAO H, ZHANG B, et al. Metal‐induced planar chirality of soft‐bridged binuclear platinum(II) complexes: 100 % phosphorescence quantum yields, chiral self‐sorting, and circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302011.
[95] WANG X, MA S, ZHAO B, et al. Frontiers in circularly polarized phosphorescent materials[J]. Advanced Functional Materials, 2023, 33(20): 2214364.
[96] Cao R, Zhou X, Dai H, et al. Thermoregulated CPL-active flexible polymer/perovskite hybrid materials with high luminescence dissymmetry factor[J]. Advanced Optical Materials, 2024, 2400066.
[97] DEE C, ZINNA F, KITZMANN W R, et al. Strong circularly polarized luminescence of an octahedral chromium(III) complex[J]. Chemical Communications, 2019, 55(87): 13078−13081.
[98] JIMENEZ J R, PONCET M, MIGUEZ‐LAGO S, et al. Bright long‐lived circularly polarized luminescence in chiral chromium(III) Complexes[J]. Angewandte Chemie International Edition, 2021, 60(18): 10095−10102.
[99] KITZMANN W R, MOLL J, HEINZE K. Spin-flip luminescence[J]. Photochemical & Photobiological Sciences, 2022, 21(7): 1309–1331.
[100] JIANG P, MIKHERDOV A S, ITO H, et al. Crystallization-induced chirality transfer in conformationally flexible azahelicene Au(I) complexes with circularly polarized luminescence activation[J]. Journal of the American Chemical Society, 2024, 146(18): 12463–12472.
[101] WILLIS O G, PETRI F, PESCITELLI G, et al. Efficient 1400–1600 nm circularly polarized luminescence from a tuned chiral erbium complex[J]. Angewandte Chemie International Edition, 2022, 61(34): e202208326.
[102] LUNKLEY J L, SHIROTANI D, YAMANARI K, et al. Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis (3-heptafluoro-butylryl-(+)-camphorato) Eu (III) complexes in EtOH and CHCl3 solutions[J]. Journal of the American Chemical Society, 2008, 130(42): 13814−13815.
[103] SATO S, YOSHII A, TAKAHASHI S, et al. Chiral intertwined spirals and magnetic transition dipole moments dictated by cylinder helicity[J]. Proceedings of the National Academy of Sciences, 2017, 114(50): 13097−13101.
[104] TOYA M, OMINE T, ISHIWARI F, et al. Expanded
[2,1][n]carbohelicenes with 15-and 17-benzene rings[J]. Journal of the American Chemical Society, 2023, 145(21): 11553−11565.
[105] ZHANG F, RAUCH F, SWAIN A, et al. Efficient narrowband circularly polarized light emitters based on 1,4‐B,N‐embedded rigid donor–acceptor helicenes[J]. Angewandte Chemie International Edition, 2023, 62(16): e202218965.
[106] XU H, MA C-S, YU C-Y, et al. Reversible inversion of circularly polarized luminescence in a coassembly supramolecular structure with achiral sulforhodamine B Dyes[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25201−25211.
[107] Heo J M, Kim J, Hasan M I, et al. Directed chiral self-assembly of purely organic phosphors for room-temperature circularly polarized phosphorescence[J]. Advanced Optical Materials, 2024: 2400572.
[108] ARRICO L, DI BARI L, ZINNA F. Quantifying the overall efficiency of circularly polarized emitters[J]. Chemistry-A European Journal, 2020, 27(9): 2920−2934.
[109] GUO Q, ZHANG M, TONG Z, et al. Multimodal-responsive circularly polarized luminescence security materials[J]. Journal of the American Chemical Society, 2023, 145(7): 4246−4253.
[110] ZHOU Y, LI H, ZHU T, et al. A highly luminescent chiral tetrahedral Eu4L4(L′)4 cage: chirality induction, chirality memory, and circularly polarized luminescence[J]. Journal of the American Chemical Society, 2019, 141(50): 19634−19643.
[111] GONG Z L, ZHONG Y W. Handedness-inverted polymorphic helical assembly and circularly polarized luminescence of chiral platinum complexes[J]. Science China Chemistry, 2021, 64(5): 788−799.
[112] GONG Z-L, ZHU X, ZHOU Z, et al. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications[J]. Science China Chemistry, 2021, 64(12): 2060−2104.
[113] SANG Y, HAN J, ZHAO T, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application[J]. Advanced Materials, 2019, 32(41): 1900110.
[114] PARK G, JEONG D Y, YU S Y, et al. Enhancing circularly polarized phosphorescence via integrated top‐down and bottom‐up approach[J]. Angewandte Chemie International Edition, 2023, 62(41): e202309762.
[115] LI W J, GU Q, WANG X Q, et al. AIE‐active chiral
[3]rotaxanes with switchable circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2021, 60(17): 9507−9515.
[116] YANG X, HAN J, WANG Y, et al. Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence[J]. Chemical Science, 2019, 10(1): 172−178.
[117] LI X, HU W, WANG Y, et al. Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs)[J]. Chemical Communications, 2019, 55(35): 5179−5182.
[118] LI Y, YAO K, CHEN Y, et al. Full‐color and white circularly polarized luminescence promoted by liquid crystal self‐assembly containing chiral naphthalimide dyes[J]. Advanced Optical Materials, 2021, 9(20): 2100961.
[119] YANG X, JIN X, ZHAO T, et al. Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification[J]. Materials Chemistry Frontiers, 2021, 5(13): 4821−4832.
[120] ZHAO D, HE H, GU X, et al. Circularly polarized luminescence and a reflective photoluminescent chiral nematic liquid crystal display based on an aggregation‐induced emission luminogen[J]. Advanced Optical Materials, 2016, 4(4): 534−439.
[121] YE F Y, HU M, DU C, et al. Clear disclosure of hierarchical chirality transfer mechanism and wide full‐color and white‐light CPL emissions with both high glum and intensity by TPE helicates[J]. Advanced Optical Materials, 2022, 11(2): 2201784.
[122] ZHOU L, QIU J, WANG C, et al. Synthesis of α-aminosilanes by 1,2-metalate rearrangement deoxygenative silylation of aromatic amides[J]. Organic Letters, 2022, 24(17): 3249−3253.
[123] LI X, LIU N, ZHANG H, et al. CoA adducts of 4-Oxo-4-phenylbut-2-enoates: Inhibitors of MenB from the M. tuberculosis menaquinone biosynthesis pathway[J]. ACS Medicinal Chemistry Letters, 2011, 2(11): 818−823.
[124] SMULDERS M M J, NIEUWENHUIZEN M M L, DEGREEF T F A, et al. How to distinguish isodesmic from cooperative supramolecular polymerisation[J]. Chemistry-A European Journal, 2009, 16(1): 362−367.
[125] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16[J]. 2016.
[126] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of chemical physics, 2010, 132(15): 154104.
[127] Becke, Axel D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7):5648-5652.
[128] ROY L E, HAY P J, MARTIN R L. Revised basis sets for the LANL effective core potentials[J]. Journal of Chemical Theory and Computation, 2008, 4(7): 1029−1031.
[129] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. Theoretica Chimica Acta, 1973, 28: 213−222.
[130] WAN Q, XIAO K, LI Z, et al. Optical signal modulation in photonic waveguiding heteroarchitectures with continuously variable visible‐to‐near‐infrared emission color[J]. Advanced Materials, 2022, 34(45): 2204839.
[131] CAFFREY D F, GORAI T, RAWSON B, et al. Ligand chirality transfer from solution state to the crystalline self‐assemblies in circularly polarized luminescence (CPL) active lanthanide systems [J]. Advanced Science, 2024: 2307448.
[132] PAN H, HOU B, JIANG Y, et al. Control of kinetic pathways toward supramolecular chiral polymorphs for tunable circularly polarized luminescence [J]. Chemistry-A European Journal, 2024: e202400899.
[133] LI X, LI Q, WANG Y, et al. Strong aggregation‐induced CPL response promoted by chiral emissive nematic liquid crystals (N*‐LCs)[J]. Chemistry-A European Journal, 2018, 24(48): 12607−12612.
[134] ZHOU X Q, WANG P, RAMU V, et al. In vivo metallophilic self-assembly of a light-activated anticancer drug[J]. Nature Chemistry, 2023, 15(7): 980−987.
[135] 苏笠, 杨劲, 王友群, 等. 化合物脂水分配系数计算软件及比较研究[J]. 中国药科大学学报, 2008, 39(2): 178−182.
[136] GONG Z L, LI Z Q, ZHONG Y W. Circularly polarized luminescence of coordination aggregates[J]. Aggregate, 2022, 3(5): e177.
[137] WANG J, ZHUANG G, CHEN M, et al. Selective synthesis of conjugated chiral macrocycles: sidewall segments of (−)/(+)‐(12,4) carbon nanotubes with strong circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2019, 59(4): 1619−1626.
[138] MUKTHAR N F M, SCHLEY N D, UNG G. Strong circularly polarized luminescence at 1550 nm from enantiopure molecular erbium complexes[J]. Journal of the American Chemical Society, 2022, 144(14): 6148−6153.
[139] LI Y, LIU K, LI X, et al. The amplified circularly polarized luminescence regulated from D-A type AIE-active chiral emitters via liquid crystals system[J]. Chemical Communications, 2020, 56(7): 1117−1120.
[140] YANG X, HAN J, WANG Y, et al. Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence[J]. Chemical Science, 2019, 10(1): 172−178.
[141] LI X, HU W, WANG Y, et al. Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs)[J]. Chemical Communications, 2019, 55(35): 5179−5182.
[142] MAGANA J R, PEREZ-CALM A, RODRIGUEZ-ABREU C. Chromonic nematic liquid crystals in a room-temperature ionic liquid[J]. Chemical Communications, 2022, 58(11): 1724−1727.
[143] ATTWOOD T K, LYDON J E, HALL C, et al. The distinction between chromonic and amphiphilic lyotropic mesophases[J]. Liquid Crystals, 1990, 7(5): 657−668.
[144] GAO Q, ZOU C, LU W. Lyotropic chromonic mesophases derived from metal-organic complexes[J]. Chem Asian J, 2018, 13(21): 3092−3105.
[145] SUZUKI T, KOJIMA Y. Structural evolution during drying process in lyotropic chromonic liquid crystal[J]. Molecular Crystals and Liquid Crystals, 2017, 648(1): 29−34.
[146] BERRIDE F, TROCHE-PESQUEIRA E, FEIO G, et al. Chiral amplification of disodium cromoglycate chromonics induced by a codeine derivative[J]. Soft Matter, 2017, 13(38): 6810−6815.
[147] BAE Y J, YANG H J, SHIN S H, et al. A novel thin film polarizer from photocurable non-aqueous lyotropic chromonic liquid crystal solutions[J]. Journal of Materials Chemistry, 2011, 21(7): 2074−2077.
[148] ZHOU L, QIU J, WANG C, et al. Synthesis of alpha-aminosilanes by 1,2-metalate rearrangement deoxygenative silylation of aromatic amides[J]. Organic Letters, 2022, 24(17): 3249−3253.
[149] WAN Q, XIAO X S, TO W P, et al. Counteranion- and solvent-mediated chirality transfer in the supramolecular polymerization of luminescent platinum(II) complexes[J]. Angewandte Chemie International Edition, 2018, 57(52): 17189−17193.
[150] HARRISON W J, MATEER D L, TIDDY G J. Liquid-crystalline J-aggregates formed by aqueous ionic cyanine dyes[J]. The journal of physical chemistry, 1996, 100(6): 2310−2321.
[151] TAM-CHANG S-W, IVERSON I K, HELBLEY J. Study of the chromonic liquid-crystalline phases of bis-(N, N-diethylaminoethyl) perylene-3,4,9,10-tetracarboxylic diimide dihydrochloride by polarized optical microscopy and 2H NMR spectroscopy[J]. Langmuir, 2004, 20(2): 342−347.
[152] DIERKING I. Textures of liquid crystals[M]. John Wiley & Sons, 2003.
[153] JEONG J, HAN G, JOHNSON A T C, et al. Homeotropic alignment of lyotropic chromonic liquid crystals using noncovalent interactions[J]. Langmuir, 2014, 30(10): 2914−2920.
[154] KIM G H, LEE W-J, KIM H N, et al. Effects of boundary and bulk control technology in cholesteric liquid crystals[J]. Molecular Crystals and Liquid Crystals, 2016, 633(1): 72−79.
[155] MEYERHOFER D, SUSSMAN A, WILLIAMS R. Electro-optic and hydrodynamic properties of nematic liquid films with free surfaces[J]. Journal of Applied Physics, 1972, 43(9): 3685−3689.
[156] CHEN Z, SUZUKI Y, IMAYOSHI A, et al. Solvent-free autocatalytic supramolecular polymerization[J]. Nature Materials, 2021, 21(2): 253−261.
[157] WANG Y, NIU D, OUYANG G, et al. Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence[J]. Nature Communications, 2022, 13(1): 1710.
[158] XU H, MA C S, YU C Y, et al. Reversible inversion of circularly polarized luminescence in a coassembly supramolecular structure with achiral sulforhodamine B Dyes[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25201−25211.

所在学位评定分委会
化学
国内图书分类号
O641.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765675
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
周宁. N-杂环亚丙二烯基Pd(II)化合物及其磷光超分子组装体研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12131214-周宁-化学系.pdf(21185KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周宁]的文章
百度学术
百度学术中相似的文章
[周宁]的文章
必应学术
必应学术中相似的文章
[周宁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。