中文版 | English
题名

轴手性芳基异喹啉化合物的催化不对称合成

其他题名
CATALYTIC ASYMMETRIC SYNTHESIS OF AXIALLY CHIRAL ARYL ISOQUINOLINE COMPOUNDS
姓名
姓名拼音
JIANG Pengying
学号
11949017
学位类型
博士
学位专业
085274 能源与环保
学科门类/专业学位类别
08 工学
导师
谭斌
导师单位
化学系
论文答辩日期
2024-04-22
论文提交日期
2024-06-19
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

轴手性分子由于其在催化不对称合成领域中作为配体和催化剂的优异表现受到越来越多的关注。轴手性芳基异喹啉作为其中一类核心骨架,具有独特的结构和化学性质,在多种不对称转化中展现出富有竞争力的对映选择性诱导能力。然而,目前在工业上合成芳基异喹啉类化合物仍比较依赖于1-卤代异喹啉与芳基硼酸的交叉偶联反应。原料来源受限及原子利用率差等因素使得具有芳基异喹啉骨架的催化剂及配体的市售价格均十分昂贵。同时,这类骨架的不对称构建从1993年开始探索至今已发展了多种策略,包括化学拆分,动力学拆分或动态动力学转化以及不对称环化等。但是其中大部分报道都需要使用昂贵的过渡金属与手性配体,这也在一定程度上限制了轴手性芳基异喹啉化合物在催化不对称合成中的进一步应用开发。因此,从更为廉价易得的原料出发,借助更为绿色环保的有机催化平台,开发更多经济、实用、高效的策略来不对称构建轴手性芳基异喹啉骨架具有重要的研究意义。本论文以此为主要研究目标,通过对QUINOL (1-(isoquinolin-1-yl)naphthalen-2-ol) 骨架上官能团的多样式不对称转化,借助(动态)动力学拆分策略实现了轴手性芳基异喹啉骨架的催化不对称构建,获得了一系列具有应用前景的配体和催化剂。主要研究内容包括:

首先,从价格低廉的异喹啉和2-萘酚底物出发在无金属催化下通过偶联后氧化快速合成了QUINOL氮氧化物。利用骨架上的酚羟基,以肉桂醛为酰基化试剂,借助手性氮杂卡宾 (NHC, N-heterocyclic carbene) 催化,实现了QUINOL氮氧化物的动力学拆分,以高达99%ee值回收轴手性QUINOL氮氧化物。产物能够进一步转化为QUINAP (1-(2-(diphenylphosphanyl)naphthalen-1-yl)isoquinoline)且对映体纯度得到很好的保持。此外,通过对肉桂醛当量的调整,能以大于40%的收率及高达93%ee值获得QUINOL氮氧酰基化产物。对比之前的工作,该策略不需要在底物上预置官能团,能直接利用QUINOL氮氧化物自身的结构进行转化,为轴手性芳基异喹啉氮氧化合物的合成提供了一种新的更为绿色环保的有机合成策略。

其次,利用芳基异喹啉骨架的异喹啉部分,通过轴手性酮对氮原子的选择性催化不对称氧化反应实现了QUINAPO ((1-(isoquinolin-1-yl)naphthalen-2-yl)di-phenylphosphine oxide) 类化合物的动力学拆分。该反应具有良好的底物普适性,最高能以50%的收率,95%ee值回收轴手性QUINAPO类化合物,以及最高51%的收率,93%ee值合成轴手性QUINAPO N-氧化物产物。经过还原能获得两种构型的轴手性QUINAP且对映选择性保持。同时,轴手性QUINAPO N-氧化物作为路易斯碱催化剂在多种不对称转化中表现出良好的对映选择性控制能力。该手性酮催化氧化模式同样可以用于QUINOL类化合物的动力学拆分以及芳基吡啶类化合物的不对称转化。通过有机催化的方式,在避免过渡金属使用的同时为具有不同取代基的轴手性QUINAP衍生物的合成提供了一种新的方式。

最后,手性酮催化不对称氧化被成功应用于构筑轴手性联异喹啉氮氧化合物。在已有报道中,该类骨架的手性来源仅依赖于与[1,1'-binaphthalene]-2,2'-diol (BINOL) 共结晶拆分,结构类型较为单一且主要为3,3’-位含有不同芳基取代的C2对称结构。而通过手性酮参与的1,1’-联异喹啉的催化不对称氧化可同时合成C2对称及非C2对称两种类型轴手性联异喹啉氮氧化合物,为该类骨架的合成提供了一种催化不对称的策略并丰富了催化剂结构类型。以上三种方式均是在更为绿色环保的有机催化的策略下进行的,同时反应的产率以及对映选择性控制均有了一定提升,为进一步的应用于工程化生产奠定了基础。

其他摘要

Axially chiral molecules have garnered significant attention for their exceptional performance as ligands and catalysts in the realm of catalytic asymmetric synthesis. Among these, atropisomeric aryl isoquinoline stands out as a core skeleton with unique structural and chemical properties. It has found widespread use in various asymmetric transformations, showcasing excellent stereochemical induction capabilities. However, the industrial synthesis of compounds containing this skeleton has thus far relied on the cross-coupling reaction between C1-halogenated isoquinolines and aryl boric acids catalyzed by transition metals, such as palladium. This approach suffers from limitations such as a restricted supply of starting materials, low atom economy, and the use of costly rare metals and chiral ligands. Consequently, the high cost of aryl isoquinoline-based catalysts and ligands has remained an obstacle. Although numerous strategies have been developed to construct this highly valuable framework since the groundbreaking work in 1993, such as chemical resolution, kinetic resolution or dynamic kinetic transformation, and atroposelective cyclization, many of these methods rely on expensive transition metals and chiral ligands, leading to a substantial increase in production costs. Undoubtedly, the high cost has limited the further application of aryl isoquinoline-based catalysts in asymmetric catalytic synthesis. Consequently, it is of great research significance to explore alternative, cost-effective, and practical approaches to construct the atroposelective aryl isoquinoline scaffold using environmentally friendly organocatalysis platforms with cheaper and more readily available materials. In this regard, the primary objective of this thesis has been achieved through the asymmetric transformation of functionalities on the QUINOL (1-(isoquinolin-1-yl)naphthalen-2-ol) core in a (dynamic) kinetic resolution manner, resulting in a series of promising chiral ligands and catalysts. The main content of this thesis includes:

Firstly, QUINOL N-oxide compounds were efficiently synthesized by employing a cross-coupling reaction between inexpensive isoquinolines and 2-naphthols, without the need for transition metals. Subsequently, the nitrogen atom was selectively oxidized. Leveraging the phenolic hydroxyl group of the resulting skeleton, a chiral N-heterocyclic carbene (NHC) catalyst was utilized to achieve the kinetic resolution of QUINOL N-oxides. This process allowed for the recovery of the starting materials with high enantioselectivity (up to 99% ee). Moreover, the recovered materials could be further transformed into QUINAP (1-(2-(diphenylphosphanyl)naphthalen-1-yl)isoquinoline) without any loss of stereochemical integrity. Additionally, by adjusting the loading of cinnamaldehyde, the acylated products could be obtained with moderate yields (up to 40%) and high enantiopurity (93% ee). Notably, this approach diverged from previous methods by directly utilizing the structure of QUINOL N-oxides themselves for subsequent transformations, rather than relying on pre-existing functional groups on the substrate. Consequently, this strategy introduced a novel greener and more environmentally friendly approach for the preparation of axially chiral aryl isoquinoline N-oxides.

Secondly, using the isoquinoline part of the aryl isoquinoline scaffold, the kinetic resolution of QUINAPOs   ((1-(isoquinolin-1-yl)naphthalen-2-yl)di-phenylphosphine oxides) was accomplished by enantioselective oxidation of nitrogen atom on aryl isoquinoline scaffold with atropisomeric ketone. This reaction displayed broad substrate generality. The oxidized products could be generated with up to 51% yield and 93% ee and meanwhile, QUINAPOs with up to 50% yield and 95% ee remained. The highly enantioenriched products could be readily reduced to QUINAPs while preserving the stereochemical integrity. Importantly, the enantiopure QUINAPO N-oxide demonstrated its utility as a chiral Lewis base catalyst, exhibiting excellent enantiocontrol in various asymmetric transformations. Furthermore, the application of this chiral ketone catalytic oxidation was extended to the kinetic resolution of QUINOLs and the asymmetric transformation of aryl-pyridines.

Finally, this chiral ketone catalyzed asymmetric oxidation was successfully applied to construct atropisomeric [1,1'-biisoquinoline]-2,2'-dioxide skeleton. Previous reports relied on co-crystallization resolution with enantiopure BINOL to obtain compounds bearing this scaffold. The resulting products were typically C2 symmetrical, with different aryl substitutions at the 3,3' positions. However, through the asymmetric oxidation of 1,1'-biisoquinolines under chiral ketone catalysis, both C2 symmetric and non-C2 symmetric atropisomers could be produced. It provided a catalytic asymmetric strategy for the synthesis of such scaffold and enriched the types of catalyst structures. The above three methods are all carried out under the more green organic catalysis strategy, and the reaction yield and enantioselective control have been improved to a certain extent, laying a foundation for further application in engineering production.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[1] 鲍得福. 1-芳基取代异喹啉化合物的合成 [D]. 吉林大学, 2022. DOI:10.27162/d.cnki.gjlin.2022.006018.
[2] 谭佳敏,余雅君,关猛,等. 基于异喹啉骨架结构的新型聚集诱导发光分子的设计与合成 [J]. 有机化学, 2022, 42(11): 3776-3783.
[3] 聂飞,黄观波,戴雷,等. 基于苯并呋喃-异喹啉的红光铱配合物的合成及电致发光性质 [J]. 有机化学, 2022, 42(5): 1423-1430.
[4] CARROLL A-M, O'SULLIVAN T P, GUIRY P J. The Development of Enantioselective Rhodium-Catalysed Hydroboration of Olefins [J]. Advanced Synthesis & Catalysis, 2005, 347(5): 609-631.
[5] BROWN J M, HULMES D I, LAYZELL T P. Effective Asymmetric Hydroboration Catalysed by a Rhodium Complex of 1-(2-Diphenylphosphino-1-naphthyl)isoquinoline [J]. Journal of the Chemical Society, Chemical Communications, 1993, (22): 1673-1674.
[6] DOUCET H, FERNANDEZ E, LAYZELL T P, et al. The Scope of Catalytic Asymmetric Hydroboration/Oxidation with Rhodium Complexes of 1,1′‐(2‐Diarylphosphino‐1‐naphthyl)isoquinolines [J]. Chemistry - A European Journal, 1999, 5(4): 1320-1330.
[7] FERNANDEZ E, MAEDA K, HOOPER M W, et al. Catalytic Asymmetric Hydroboration/Amination and Alkylamination with Rhodium Complexes of 1,1′-(2-Diarylphosphino-1-naphthyl)isoquinoline [J]. Chemistry - A European Journal, 2000, 6(10): 1840-1846.
[8] KWONG F Y, YANG Q, MAK T C W, et al. A New Atropisomeric P,N Ligand for Rhodium-Catalyzed Asymmetric Hydroboration [J]. The Journal of Organic Chemistry, 2002, 67(9): 2769-2777.
[9] CONNOLLY D J, LACEY P M, MCCARTHY M, et al. Preparation and Resolution of a Modular Class of Axially Chiral Quinazoline-Containing Ligands and Their Application in Asymmetric Rhodium-Catalyzed Olefin Hydroboration [J]. The Journal of Organic Chemistry, 2004, 69(20): 6572-6589.
[10] KNöPFEL T F, ASCHWANDEN P, ICHIKAWA T, et al. Readily Available Biaryl P,N Ligands for Asymmetric Catalysis [J]. Angewandte Chemie International Edition, 2004, 43(44): 5971-5973.
[11] MORGAN J B, MILLER S P, MORKEN J P. Rhodium-Catalyzed Enantioselective Diboration of Simple Alkenes [J]. Journal of the American Chemical Society, 2003, 125(29): 8702-8703.
[12] VALK J-M, CLARIDGE T D W, BROWN J M, et al. Synthesis and Chemistry of a New P-N Chelating Ligand; (R) and (S)-6-(2’-Diphenylphosphino-1’-naphthyl)Phenanthridine [J]. Tetrahedron: Asymmetry, 1995, 6(10): 2597-2610.
[13] KLOETZING R J, KNOCHEL P. Ferrocenyl-QUINAP: a Planar Chiral P,N-Ligand for Palladium-Catalyzed Allylic Substitution Reactions [J]. Tetrahedron: Asymmetry, 2006, 17(1): 116-123.
[14] FEKNER T, MüLLER-BUNZ H, GUIRY P J. Synthesis and Application of Quinazoline-Oxazoline-Containing (Quinazox) Ligands [J]. Organic Letters, 2006, 8(22): 5109-5112.
[15] KORADIN C, POLBORN K, KNOCHEL P. Enantioselective Synthesis of Propargylamines by Copper-Catalyzed Addition of Alkynes to Enamines [J]. Angewandte Chemie International Edition, 2002, 41(14): 2535-2538.
[16] GOMMERMANN N, KORADIN C, POLBORN K, et al. Enantioselective, Copper(I)-Catalyzed Three-Component Reaction for the Preparation of Propargylamines [J]. Angewandte Chemie International Edition, 2003, 42(46): 5763-5766.
[17] GOMMERMANN N, KNOCHEL P. Practical Highly Enantioselective Synthesis of Propargylamines through a Copper-Catalyzed One-Pot Three-Component Condensation Reaction [J]. Chemistry - A European Journal, 2006, 12(16): 4380-4392.
[18] CARDOSO F S P, ABBOUD K A, APONICK A. Design, Preparation, and Implementation of an Imidazole-Based Chiral Biaryl P,N-Ligand for Asymmetric Catalysis [J]. Journal of the American Chemical Society, 2013, 135(39): 14548-14551.
[19] PAIOTI P H S, ABBOUD K A, APONICK A. Catalytic Enantioselective Synthesis of Amino Skipped Diynes [J]. Journal of the American Chemical Society, 2016, 138(7): 2150-2153.
[20] ROKADE B V, GUIRY P J. Diastereofacial π-Stacking as an Approach To Access an Axially Chiral P,N-Ligand for Asymmetric Catalysis [J]. ACS Catalysis, 2017, 7(4): 2334-2338.
[21] CHEN C, LI X, SCHREIBER S L. Catalytic Asymmetric
[3+2] Cycloaddition of Azomethine Ylides. Development of a Versatile Stepwise, Three-Component Reaction for Diversity-Oriented Synthesis [J]. Journal of the American Chemical Society, 2003, 125(34): 10174-10175.
[22] LIM A D, CODELLI J A, REISMAN S E. Catalytic Asymmetric Synthesis of Highly Substituted Pyrrolizidines [J]. Chemical Science, 2013, 4(2): 650-654.
[23] TAYLOR A M, SCHREIBER S L. Enantioselective Addition of Terminal Alkynes to Isolated Isoquinoline Iminiums [J]. Organic Letters, 2006, 8(1): 143-146.
[24] LI X, KONG L, GAO Y, et al. Enantioselective Hydrogenation of Olefins with Axial Chiral Iridium QUINAP Complex [J]. Tetrahedron Letters, 2007, 48(22): 3915-3917.
[25] MIURA T, YAMAUCHI M, KOSAKA A, et al. Nickel-Catalyzed Regio- and Enantioselective Annulation Reactions of 1,2,3,4-Benzothiatriazine-1,1(2H)-dioxides with Allenes [J]. Angewandte Chemie International Edition, 2010, 49(29): 4955-4957.
[26] JUNGK P, FISCHER F, HAPKE M. In Situ-Generated Chiral Co(I)-Catalyst for Asymmetric
[2+2+2] Cycloadditions of Triynes [J]. ACS Catalysis, 2016, 6(5): 3025-3029.
[27] CORTRIGHT S B, HUFFMAN J C, YODER R A, et al. IAN Amines:  Chiral C2-Symmetric Zirconium(IV) Complexes from Readily Modified Axially Chiral C1-Symmetric β-Diketimines [J]. Organometallics, 2004, 23(10): 2238-2250.
[28] MALKOV A V, DUFKOVá L, FARRUGIA L, et al. Quinox, a Quinoline-Type N-Oxide, as Organocatalyst in the Asymmetric Allylation of Aromatic Aldehydes with Allyltrichlorosilanes: The Role of Arene-Arene Interactions [J]. Angewandte Chemie International Edition, 2003, 42(31): 3674-3677.
[29] MALKOV A V, RAMíREZ-LóPEZ P, BIEDERMANNOVá L, et al. On the Mechanism of Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by QUINOX, a Chiral Isoquinoline N-Oxide [J]. Journal of the American Chemical Society, 2008, 130(15): 5341-5348.
[30] NAKAJIMA M, SAITO M, SHIRO M, et al. (S)-3,3’-Dimethyl-2,2’-biquinoline N,N’-Dioxide as an Efficient Catalyst for Enantioselective Addition of Allyltrichlorosilanes to Aldehydes [J]. Journal of the American Chemical Society, 1998, 120(25): 6419-6420.
[31] NAKAJIMA M, SAITO M, UEMURA M, et al. Enantioselective Ring Opening of meso-Epoxides with Tetrachlorosilane Catalyzed by Chiral Bipyridine N,N’-Dioxide Derivatives [J]. Tetrahedron Letters, 2002, 43(49): 8827-8829.
[32] NAKAJIMA M. Chiral N-Oxides as Catalysts or Ligands in Enantioselective Reactions [J]. Journal of Synthetic Organic Chemistry, Japan, 2003, 61(11): 1081-1087.
[33] REEP C, MORGANTE P, PEVERATI R, et al. Axial-Chiral Biisoquinoline N,N’-Dioxides Bearing Polar Aromatic C-H Bonds as Catalysts in Sakurai-Hosomi-Denmark Allylation [J]. Organic Letters, 2018, 20(18): 5757-5761.
[34] FERNáNDEZ E, GUIRY P J, CONNOLE K P T, et al. Quinap and Congeners: Atropos P,N-Ligands for Asymmetric Catalysis [J]. The Journal of Organic Chemistry, 2014, 79(12): 5391-5400.
[35] ROKADE B V, GUIRY P J. Axially Chiral P,N-Ligands: Some Recent Twists and Turns [J]. ACS Catalysis, 2018, 8(1): 624-643.
[36] ALCOCK N W, BROWN J M, HULMES D I. Synthesis and Resolution of 1-(2-Diphenylphosphino-1-naphthyl)Isoquinoline; a P,N Chelating Ligand for Asymmetric Catalysis [J]. Tetrahedron: Asymmetry, 1993, 4(4): 743-756.
[37] LIM C W, TISSOT O, MATTISON A, et al. Practical Preparation and Resolution of 1-(2’-Diphenylphosphino-1’-naphthyl)isoquinoline:  A Useful Ligand for Catalytic Asymmetric Synthesis [J]. Organic Process Research & Development, 2003, 7(3): 379-384.
[38] DOUCET H, BROWN J M. Synthesis of 1’-(2-(Diarylphosphino)1-naphthyl)isoquinolines; Variation of the Aryl Substituent [J]. Tetrahedron: Asymmetry, 1997, 8(22): 3775-3784.
[39] GAUTHERON CHAPOULAUD V, AUDOUX J, PLé N, et al. Synthesis of 4-(2-Diphenylphosphino-1-naphthyl)-2-phenylquinazoline; a Potential P-N Chelating Ligand for Asymmetric Catalysis [J]. Tetrahedron Letters, 1999, 40(51): 9005-9007.
[40] LACEY P M, MCDONNELL C M, GUIRY P J. Synthesis and Resolution of 2-Methyl-Quinazolinap, a New Atropisomeric Phosphinamine Ligand for Asymmetric Catalysis [J]. Tetrahedron Letters, 2000, 41(14): 2475-2478.
[41] FLEMING W J, MüLLER-BUNZ H, LILLO V, et al. Axially Chiral P-N Ligands for the Copper Catalyzed β-Borylation of α,β-Unsaturated Esters [J]. Organic & Biomolecular Chemistry, 2009, 7(12): 2520-2524.
[42] THALER T, GEITTNER F, KNOCHEL P. A Novel Synthetic Approach towards Chiral QUINAP via Diastereomeric Sulfoxide Intermediates [J]. Synlett, 2007, 2007 (17): 2655-2658.
[43] CLAYDEN J, FLETCHER S P, MCDOUALL J J W, et al. Controlling Axial Conformation in 2-Arylpyridines and 1-Arylisoquinolines: Application to the Asymmetric Synthesis of QUINAP by Dynamic Thermodynamic Resolution [J]. Journal of the American Chemical Society, 2009, 131(14): 5331-5343.
[44] BHAT V, WANG S, STOLTZ B M, et al. Asymmetric Synthesis of QUINAP via Dynamic Kinetic Resolution [J]. Journal of the American Chemical Society, 2013, 135(45): 16829-16832.
[45] RAMíREZ-LóPEZ P, ROS A, ESTEPA B, et al. A Dynamic Kinetic C-P Cross-Coupling for the Asymmetric Synthesis of Axially Chiral P,N Ligands [J]. ACS Catalysis, 2016, 6(6): 3955-3964.
[46] LUESSE S B, COUNCELLER C M, WILT J C, et al. A Preparation of Enantiomerically Enriched Axially Chiral β-Diketimines: Synthesis of (-)- and (+)-IAN Amine [J]. Organic Letters, 2008, 10(12): 2445-2447.
[47] CORTRIGHT S B, JOHNSTON J N. IAN-Amines: Direct Entry to a Chiral C2-Symmetric Zirconium(IV) β-Diketimine Complex [J]. Angewandte Chemie International Edition, 2002, 41(2): 345-348.
[48] RAMíREZ-LóPEZ P, ROS A, ROMERO-ARENAS A, et al. Synthesis of IAN-type N,N-Ligands via Dynamic Kinetic Asymmetric Buchwald-Hartwig Amination [J]. Journal of the American Chemical Society, 2016, 138(37): 12053-12056.
[49] GAO D-W, GU Q, YOU S-L. Pd(II)-Catalyzed Intermolecular Direct C-H Bond Iodination: An Efficient Approach toward the Synthesis of Axially Chiral Compounds via Kinetic Resolution [J]. ACS Catalysis, 2014, 4(8): 2741-2745.
[50] YAO L, GASHAW WOLDEGIORGIS A, HUANG S, et al. Palladium-Catalyzed Directed Atroposelective C-H Iodination to Synthesize Axial Chiral Biaryl N-Oxides via Enantioselective Desymmetrization Strategy [J]. Chemistry - A European Journal, 2023, 29(5): e202203051.
[51] MIYAJI R, ASANO K, MATSUBARA S. Bifunctional Organocatalysts for the Enantioselective Synthesis of Axially Chiral Isoquinoline N-Oxides [J]. Journal of the American Chemical Society, 2015, 137(21): 6766-6769.
[52] STANILAND S, ADAMS R W, MCDOUALL J J W, et al. Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl N-Oxide Lewis Base Catalysts [J]. Angewandte Chemie International Edition, 2016, 55(36): 10755-10759.
[53] YUAN X, WANG J. Atropoenantioselective Synthesis of Heterobiaryl N-Oxides via Dynamic Kinetic Resolution [J]. Science China Chemistry, 2022, 65(12): 2512-2516.
[54] YANG Q-Q, CHEN C, YAO D, et al. Catalytic Atroposelective Synthesis of Axially Chiral Azomethine Imines and Neuroprotective Activity Evaluation [J]. Angewandte Chemie International Edition, 2023, 63(5): e202312663.
[55] ANDRUS M B, SEKHAR B B V S. Synthesis and Preliminary Use of Naphthyl Quinazoline and Isoquinoline Oxazolines for Asymmetric Allylic Oxidation [J]. Journal of Heterocyclic Chemistry, 2001, 38(6): 1265-1271.
[56] BAKER R W, REA S O, SARGENT M V, et al. Enantioselective Synthesis of Axially Chiral 1-(1-Naphthyl)Isoquinolines and 2-(1-Naphthyl)Pyridines through Sulfoxide Ligand Coupling Reactions [J]. Tetrahedron, 2005, 61(15): 3733-3743.
[57] SAKIYAMA N, HOJO D, NOGUCHI K, et al. Enantioselective Synthesis of Axially Chiral 1-Arylisoquinolines by Rhodium-Catalyzed
[2+2+2] Cycloaddition [J]. Chemistry - A European Journal, 2011, 17(5): 1428-1432.
[58] SUN L, CHEN H, LIU B, et al. Rhodium-Catalyzed Atroposelective Construction of Indoles via C-H Bond Activation [J]. Angewandte Chemie International Edition, 2021, 60(15): 8391-8395.
[59] MOSQUERA Á, PENA M A, PéREZ SESTELO J, et al. Synthesis of Axially Chiral 1,1’-Binaphthalenes by Palladium-Catalysed Cross-Coupling Reactions of Triorganoindium Reagents [J]. European Journal of Organic Chemistry, 2013, 2013(13): 2555-2562.
[60] ROS A, ESTEPA B, RAMíREZ-LóPEZ P, et al. Dynamic Kinetic Cross-Coupling Strategy for the Asymmetric Synthesis of Axially Chiral Heterobiaryls [J]. Journal of the American Chemical Society, 2013, 135(42): 15730-15733.
[61] HORNILLOS V, ROS A, RAMíREZ-LóPEZ P, et al. Synthesis of Axially Chiral Heterobiaryl Alkynes via Dynamic Kinetic Asymmetric Alkynylation [J]. Chemical Communications, 2016, 52(98): 14121-14124.
[62] KATTELA S, ROQUE D. CORREIA C, ROS A, et al. Pd-Catalyzed Dynamic Kinetic Asymmetric Cross-Coupling of Heterobiaryl Bromides with N-Tosylhydrazones [J]. Organic Letters, 2022, 24(21): 3812-3816.
[63] SUN T, ZHANG Z, SU Y, et al. Nickel-Catalyzed Enantioconvergent Transformation of Anisole Derivatives via Cleavage of C-OMe Bond [J]. Journal of the American Chemical Society, 2023, 145(29): 15721-15728.
[64] KAKIUCHI F, LE GENDRE P, YAMADA A, et al. Atropselective Alkylation of Biaryl Compounds by Means of Transition Metal-Catalyzed C-H/Olefin Coupling [J]. Tetrahedron: Asymmetry, 2000, 11(13): 2647-2651.
[65] ZHENG J, YOU S-L. Construction of Axial Chirality by Rhodium-Catalyzed Asymmetric Dehydrogenative Heck Coupling of Biaryl Compounds with Alkenes [J]. Angewandte Chemie International Edition, 2014, 53(48): 13244-13247.
[66] ZHENG J, CUI W-J, ZHENG C, et al. Synthesis and Application of Chiral Spiro Cp Ligands in Rhodium-Catalyzed Asymmetric Oxidative Coupling of Biaryl Compounds with Alkenes [J]. Journal of the American Chemical Society, 2016, 138(16): 5242-5245.
[67] WANG Q, CAI Z-J, LIU C-X, et al. Rhodium-Catalyzed Atroposelective C-H Arylation: Efficient Synthesis of Axially Chiral Heterobiaryls [J]. Journal of the American Chemical Society, 2019, 141(24): 9504-9510.
[68] WANG Q, ZHANG W-W, SONG H, et al. Rhodium-Catalyzed Atroposelective Oxidative C-H/C-H Cross-Coupling Reaction of 1-Aryl Isoquinoline Derivatives with Electron-Rich Heteroarenes [J]. Journal of the American Chemical Society, 2020, 142(37): 15678-15685.
[69] ZHANG W-W, LIU C-X, YANG P, et al. Rhodium-Catalyzed Atroposelective C-H/C-H Cross-Coupling Reaction between 1-Aryl Isoquinoline Derivatives and Indolizines [J]. Organic Letters, 2022, 24(2): 564-569.
[70] ZHENG D-S, ZHENG J, WANG Q, et al. Rhodium(III)-Catalyzed Atroposelective C-H Indolylization of 1-Aryl Isoquinolines with 3-Indolylphenyliodonium Salts† [J]. Chinese Journal of Chemistry, 2023, 41(20): 2684-2690.
[71] ZHENG D-S, ZHANG W-W, GU Q, et al. Rh(III)-Catalyzed Atroposelective C-H Iodination of 1-Aryl Isoquinolines [J]. ACS Catalysis, 2023, 13(8): 5127-5134.
[72] ROS A, ESTEPA B, LóPEZ-RODRíGUEZ R, et al. Use of Hemilabile N,N Ligands in Nitrogen-Directed Iridium-Catalyzed Borylations of Arenes [J]. Angewandte Chemie International Edition, 2011, 50(49): 11724-11728.
[73] ROMERO-ARENAS A, HORNILLOS V, IGLESIAS-SIGüENZA J, et al. Ir-Catalyzed Atroposelective Desymmetrization of Heterobiaryls: Hydroarylation of Vinyl Ethers and Bicycloalkenes [J]. Journal of the American Chemical Society, 2020, 142(5): 2628-2639.
[74] VáZQUEZ-DOMíNGUEZ P, ROMERO-ARENAS A, FERNáNDEZ R, et al. Ir-Catalyzed Asymmetric Hydroarylation of Alkynes for the Synthesis of Axially Chiral Heterobiaryls [J]. ACS Catalysis, 2023, 13(1): 42-48.
[75] ZHOU Q, YIN S-Y, ZHENG D-S, et al. Enantioselective Synthesis of Axially Chiral 1-Arylisoquinolines by Iridium(I)-Catalyzed Hydroarylation of Alkynes [J]. Synlett, 2023, 34(12): 1442-1446.
[76] XIONG M, CHEN F, SHU Y, et al. Iridium(I)-Catalyzed Atroposelective Alkenylation of Heterobiaryls with Terminal Alkynes [J]. Organic Letters, 2023, 25(31): 5703-5708.
[77] JIANG X, XIONG W, DENG S, et al. Construction of Axial Chirality via Asymmetric Radical Trapping by Cobalt under Visible Light [J]. Nature Catalysis, 2022, 5(9): 788-797.
[78] XIONG W, JIANG X, WANG W-C, et al. Dynamic Kinetic Reductive Conjugate Addition for Construction of Axial Chirality Enabled by Synergistic Photoredox/Cobalt Catalysis [J]. Journal of the American Chemical Society, 2023, 145(14): 7983-7991.
[79] MOSER D, JANA K, SPARR C. Atroposelective PIII/PV=O Redox Catalysis for the Isoquinoline-Forming Staudinger–aza-Wittig Reaction [J]. Angewandte Chemie International Edition, 2023, 62(39): e202309053.
[80] 范开放. 无金属偶联策略构建芳基异喹啉 [D]. 哈尔滨工业大学, 2019. DOI:10.27061/d.cnki.ghgdu.2019.002020
[81] HASSAN J, SéVIGNON M, GOZZI C, et al. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction [J]. Chemical Reviews, 2002, 102(5): 1359-1470.
[82] BRINGMANN G, PRICE MORTIMER A J, KELLER P A, et al. Atroposelective Synthesis of Axially Chiral Biaryl Compounds [J]. Angewandte Chemie International Edition, 2005, 44(34): 5384-5427.
[83] SURRY D S, BUCHWALD S L. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination [J]. Angewandte Chemie International Edition, 2008, 47(34): 6338-6361.
[84] WU J-S, CHENG S-W, CHENG Y-J, et al. Donor-Acceptor Conjugated Polymers Based on Multifused Ladder-Type Arenes for Organic Solar Cells [J]. Chemical Society Reviews, 2015, 44(5): 1113-1154.
[85] HOWARD R H, ALONSO-MORENO C, BROOMFIELD L M, et al. Synthesis and Structures of Complexes with Axially Chiral Isoquinolinyl-Naphtholate Ligands [J]. Dalton Transactions, 2009, (40): 8667-8682.
[86] LU S, POH S B, ZHAO Y. Kinetic Resolution of 1,1’-Biaryl-2,2’-Diols and Amino Alcohols through NHC-Catalyzed Atroposelective Acylation [J]. Angewandte Chemie International Edition, 2014, 53(41): 11041-11045.
[87] YANG G, GUO D, MENG D, et al. NHC-Catalyzed Atropoenantioselective Synthesis of Axially Chiral Biaryl Amino Alcohols via a Cooperative Strategy [J]. Nature Communications, 2019, 10(1): 3062.
[88] 赵薇,刘京,何向奎,等. 氮杂环卡宾(NHC)催化的联芳基二醛去对称化构建轴手性醛类化合物 [J]. 有机化学, 2022, 42(8): 2504-2514.
[89] Zheng C, You S-L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors [J]. Chemical Society Reviews, 2012, 41(6): 2498-2518.
[90] MA G, DENG J, SIBI M P. Fluxionally Chiral DMAP Catalysts: Kinetic Resolution of Axially Chiral Biaryl Compounds [J]. Angewandte Chemie International Edition, 2014, 53(44): 11818-11821.
[91] TANG W, ZHANG X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation [J]. Chemical Reviews, 2003, 103(8): 3029-3070.
[92] XIE J-H, ZHOU Q-L. Chiral Diphosphine and Monodentate Phosphorus Ligands on a Spiro Scaffold for Transition-Metal-Catalyzed Asymmetric Reactions [J]. Accounts of Chemical Research, 2008, 41(5): 581-593.
[93] FRAMERY E, ANDRIOLETTI B, LEMAIRE M. Recent Progress in Homogeneous Supported Asymmetric Catalysis: Example of the BINAP and the BOX Ligands [J]. Tetrahedron: Asymmetry, 2010, 21(9): 1110-1124.
[94] WENCEL-DELORD J, PANOSSIAN A, LEROUX F R, et al. Recent Advances and New Concepts for the Synthesis of Axially Stereoenriched Biaryls [J]. Chemical Society Reviews, 2015, 44(11): 3418-3430.
[95] FROHN M, SHI Y. Chiral Ketone-Catalyzed Asymmetric Epoxidation of Olefins [J]. Synthesis, 2000, 2000(14): 1979-2000.
[96] ZHU Y, WANG Q, CORNWALL R G, et al. Organocatalytic Asymmetric Epoxidation and Aziridination of Olefins and Their Synthetic Applications [J]. Chemical Reviews, 2014, 114(16): 8199-8256.
[97] BERGIN E, O'CONNOR C T, ROBINSON S B, et al. Synthesis of P-Stereogenic Phosphorus Compounds. Asymmetric Oxidation of Phosphines under Appel Conditions [J]. Journal of the American Chemical Society, 2007, 129(31): 9566-9567.
[98] HAN J, SOLOSHONOK V A, KLIKA K D, et al. Chiral Sulfoxides: Advances in Asymmetric Synthesis and Problems with the Accurate Determination of the Stereochemical Outcome [J]. Chemical Society Reviews, 2018, 47(4): 1307-1350.
[99] MIYANO S, LU L D L, VITI S M, et al. Kinetic Resolution of Racemic beta-Hydroxy Amines by Enantioselective N-Oxide Formation [J]. The Journal of Organic Chemistry, 1983, 48(20): 3608-3611.
[100] COLONNA S, GAGGERO N, DRABOWICZ J, et al. The First Efficient Bovine Serum Albumin Catalyzed Asymmetric Oxidation of Tertiary Amines to the Corresponding N-Oxides via Kinetic Dynamic Resolution [J]. Chem. Commun. (Cambridge), 1999, (18): 1787-1788.
[101] BHADRA S, YAMAMOTO H. Catalytic Asymmetric Synthesis of N-Chiral Amine Oxides [J]. Angewandte Chemie International Edition, 2016, 55(42): 13043-13046.
[102] HSIEH S-Y, TANG Y, CROTTI S, et al. Catalytic Enantioselective Pyridine N-Oxidation [J]. Journal of the American Chemical Society, 2019, 141(46): 18624-18629.
[103] STONE E A, CUTRONA K J, MILLER S J. Asymmetric Catalysis upon Helically Chiral Loratadine Analogues Unveils Enantiomer-Dependent Antihistamine Activity [J]. Journal of the American Chemical Society, 2020, 142(29): 12690-12698.
[104] TANG Y, MILLER S J. Catalytic Enantioselective Synthesis of Pyridyl Sulfoximines [J]. Journal of the American Chemical Society, 2021, 143(24): 9230-9235.
[105] CHENG J K, XIANG S-H, LI S, et al. Recent Advances in Catalytic Asymmetric Construction of Atropisomers [J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[106] DA B-C, XIANG S-H, LI S, et al. Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds [J]. Chinese Journal of Chemistry, 2021, 39(7): 1787-1796.
[107] CHENG J K, XIANG S-H, TAN B. Organocatalytic Enantioselective Synthesis of Axially Chiral Molecules: Development of Strategies and Skeletons [J]. Accounts of Chemical Research, 2022, 55(20): 2920-2937.
[108] JOLLIFFE J D, ARMSTRONG R J, SMITH M D. Catalytic Enantioselective Synthesis of atropisomeric biaryls by a cation-directed O-alkylation [J]. Nature Chemistry, 2017, 9(6): 558-562.
[109] JONES B A, BALAN T, JOLLIFFE J D, et al. Practical and Scalable Kinetic Resolution of BINOLs Mediated by a Chiral Counterion [J]. Angewandte Chemie International Edition, 2019, 58(14): 4596-4600.
[110] URAGUCHI D, TSUTSUMI R, OOI T. Catalytic Asymmetric Oxidation of N-Sulfonyl Imines with Hydrogen Peroxide–Trichloroacetonitrile System [J]. Journal of the American Chemical Society, 2013, 135(22): 8161-8164.
[111] ZHANG S, LI G, LI L, et al. Alloxan-Catalyzed Biomimetic Oxidations with Hydrogen Peroxide or Molecular Oxygen [J]. ACS Catalysis, 2020, 10(1): 245-252.
[112] YANG D, YIP Y-C, CHEN J, et al. Significant Effects of Nonconjugated Remote Substituents in Catalytic Asymmetric Epoxidation [J]. Journal of the American Chemical Society, 1998, 120(30): 7659-7660.
[113] WANG Z-X, TU Y, FROHN M, et al. An Efficient Catalytic Asymmetric Epoxidation Method [J]. Journal of the American Chemical Society, 1997, 119(46): 11224-11235.
[114] STEARMAN C J, BEHAR V. Screening Chiral Fluorinated Binaphthyl Ketone Catalysts for Asymmetric Epoxidation [J]. Tetrahedron Letters, 2002, 43(11): 1943-1946.
[115] MELLO R, FIORENTINO M, FUSCO C, et al. Oxidations by Methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of Saturated Hydrocarbons [J]. Journal of the American Chemical Society, 1989, 111(17): 6749-6757.
[116] DENMARK S E, WU Z, CRUDDEN C M, et al. Catalytic Epoxidation of Alkenes with Oxone. 2. Fluoro Ketones [J]. The Journal of Organic Chemistry, 1997, 62(24): 8288-8289.
[117] DENMARK S E, WU Z. The Development of Chiral, Nonracemic Dioxiranes for the Catalytic, Enantioselective Epoxidation of Alkenes [J]. Synlett, 1999, 1999(Sup. 1): 847-859.
[118] YANG D, WANG X-C, WONG M-K, et al. Highly Enantioselective Epoxidation of trans-Stilbenes Catalyzed by Chiral Ketones [J]. Journal of the American Chemical Society, 1996, 118(45): 11311-11312.
[119] YANG D, YIP Y-C, TANG M-W, et al. A C2 Symmetric Chiral Ketone for Catalytic Asymmetric Epoxidation of Unfunctionalized Olefins [J]. Journal of the American Chemical Society, 1996, 118(2): 491-492.
[120] YANG D, WONG M-K, YIP Y-C, et al. Design and Synthesis of Chiral Ketones for Catalytic Asymmetric Epoxidation of Unfunctionalized Olefins [J]. Journal of the American Chemical Society, 1998, 120(24): 5943-5952.
[121] SONG C E, KIM Y H, LEE K C, et al. New C2-symmetric chiral ketones for catalytic asymmetric epoxidation of unfunctionalized olefins [J]. Tetrahedron: Asymmetry, 1997, 8(17): 2921-2926.
[122] CONSTABLE E C, HARTSHORN R M, HOUSECROFT C E. 1,1’-Biisoquinolines-Neglected Ligands in the Heterocyclic Diimine Family that Provoke Stereochemical Reflections [J]. Molecules, 2021, 26(6): 1584.
[123] 白冰,杨静,张改红,毛多斌. 氮氧化物有机小分子催化剂在不对称反应中的应用 [J]. 有机化学, 2015, 35(5): 975-983.
[124] LIU B, LYSTROM L, BROWN S L, et al. Impact of Benzannulation Site at the Diimine (N^N) Ligand on the Excited-State Properties and Reverse Saturable Absorption of Biscyclometalated Iridium(III) Complexes [J]. Inorganic Chemistry, 2019, 58(9): 5483-5493.
[125] DONEY A C, ROOKS B J, LU T, et al. Design of Organocatalysts for Asymmetric Propargylations through Computational Screening [J]. ACS Catalysis, 2016, 6(11): 7948-7955.
[126] FUKAZAWA Y, VAGANOV V Y, SHIPILOVSKIKH S A, et al. Stereoselective Synthesis of Atropisomeric Bipyridine N,N’-Dioxides by Oxidative Coupling [J]. Organic Letters, 2019, 21(12): 4798-4802.
[127] SUN S, REEP C, ZHANG C, et al. Design and Synthesis of 3,3’-Triazolyl Biisoquinoline N,N’-Dioxides via Hiyama Cross-Coupling of 4-Trimethylsilyl-1,2,3-Triazoles [J]. Tetrahedron Letters, 2021, 81: 153338.
[128] BULYGINA L A, KHRUSHCHEVA N S, SOKOLOV V I, et al. Synthesis and Catalytic Activity of a Complex of 1,1´-Bis-isoquinoline N,N’-Dioxide with PdCl2 [J]. Russian Chemical Bulletin, 2015, 64(2): 429-431.
[129] MALAKOOTI R, HERAVI M M, AMIRI Z, et al. [Cu(bpdo)2·2H2O]2+/Mon-Tmorillonite: a Highly Effective and Recyclable Catalyst for the Synthesis of 2-Amino-4H-chromenes, 2-Amino-4H-benzopyrans and Spiroacenaphthylene Derivatives via MCR in Aqueous Media [J]. Research on Chemical Intermediates, 2022, 48(7): 3143-3169.
[130] KARACHOUSOS-SPILIOTAKOPOULOS K, TANGOULIS V, PANAGIOTOU N, et al. Luminescence Thermometry and Field Induced Slow Magnetic Relaxation Based on a Near Infrared Emissive Heterometallic Complex [J]. Dalton Transactions, 2022, 51(21): 8208-8216.

所在学位评定分委会
化学
国内图书分类号
O625.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765676
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
蒋鹏英. 轴手性芳基异喹啉化合物的催化不对称合成[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11949017-蒋鹏英-化学系.pdf(11590KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[蒋鹏英]的文章
百度学术
百度学术中相似的文章
[蒋鹏英]的文章
必应学术
必应学术中相似的文章
[蒋鹏英]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。