[1] SHARMA K, LEE Y C, NAMBI S, et al. A Survey of Graph Neural Networks for SocialRecommender Systems: abs/2212.04481[A/OL]. 2022. https://api.semanticscholar.org/CorpusID:254408574.
[2] GAO C, ZHENG Y, LI N, et al. A Survey of Graph Neural Networks for Recommender Systems:Challenges, Methods, and Directions[J/OL]. ACM Transactions on Recommender Systems,2021, 1: 1 - 51. https://api.semanticscholar.org/CorpusID:237940542.
[3] XIAO T, WANG S. Towards Unbiased and Robust Causal Ranking for Recommender Systems[J/OL]. Proceedings of the Fifteenth ACM International Conference on Web Search and DataMining, 2022. https://api.semanticscholar.org/CorpusID:246828659.
[4] HE X, LIAO L, ZHANG H, et al. Neural Collaborative Filtering[J/OL]. Proceedings of the 26thInternational Conference on World Wide Web, 2017. https://api.semanticscholar.org/CorpusID:13907106.
[5] SARWAR B M, KARYPIS G, KONSTAN J A, et al. Item-based collaborative filtering recommendation algorithms[C/OL]//The Web Conference. 2001. https://api.semanticscholar.org/CorpusID:8047550.
[6] MUSTO C. Enhanced vector space models for content-based recommender systems[C/OL]//ACM Conference on Recommender Systems. 2010. https://api.semanticscholar.org/CorpusID:13388735.
[7] KOMPAN M, BIELIKOVÁ M. Content-Based News Recommendation[C/OL]//InternationalConference on Electronic Commerce and Web Technologies. 2010. https://api.semanticscholar.org/CorpusID:14605638.
[8] SANTANA M R O, SOARES A. Hybrid Model with Time Modeling for Sequential Recommender Systems: abs/2103.06138[A/OL]. 2021. https://api.semanticscholar.org/CorpusID:232170720.
[9] BURKE R. Hybrid Recommender Systems: Survey and Experiments[J/OL]. User Modelingand User-Adapted Interaction, 2002, 12: 331-370. https://api.semanticscholar.org/CorpusID:3970.
[10] OVAISI Z, HEINECKE S, LI J, et al. RGRecSys: A Toolkit for Robustness Evaluation ofRecommender Systems[J/OL]. Proceedings of the Fifteenth ACM International Conference onWeb Search and Data Mining, 2022. https://api.semanticscholar.org/CorpusID:245877841.
[11] ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant Risk Minimization:abs/1907.02893[A/OL]. 2019. https://api.semanticscholar.org/CorpusID:195820364.
[12] BLANCHARD G, DESHMUKH A A, DOGAN Ü, et al. Domain Generalization by MarginalTransfer Learning[J/OL]. Journal of machine learning research, 2017, 22: 2:1-2:55. https://api.semanticscholar.org/CorpusID:59362358.
[13] RENDLE S. Factorization Machines[J/OL]. 2010 IEEE International Conference on DataMining, 2010: 995-1000. https://api.semanticscholar.org/CorpusID:17265929.
[14] MA J, ZHOU C, CUI P, et al. Learning Disentangled Representations for Recommendation:abs/1910.14238[A/OL]. 2019. https://api.semanticscholar.org/CorpusID:202789109.
[15] WANG W, LIN X, FENG F, et al. Causal Representation Learning for Out-of-DistributionRecommendation[J/OL]. Proceedings of the ACM Web Conference 2022, 2022. https://api.semanticscholar.org/CorpusID:248367478.
[16] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J/OL]. 2018 IEEE/CVFConference on Computer Vision and Pattern Recognition, 2017: 7132-7141. https://api.semanticscholar.org/CorpusID:140309863.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module:abs/1807.06521[A/OL]. 2018. https://api.semanticscholar.org/CorpusID:49867180.
[18] WANG X, GIRSHICK R B, GUPTA A K, et al. Non-local Neural Networks[J/OL]. 2018IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 7794-7803. https://api.semanticscholar.org/CorpusID:4852647.
[19] FU J, LIU J, TIAN H, et al. Dual Attention Network for Scene Segmentation[J/OL]. 2019IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3141-3149. https://api.semanticscholar.org/CorpusID:52180375.
[20] VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is All you Need[C/OL]//NeuralInformation Processing Systems. 2017. https://api.semanticscholar.org/CorpusID:13756489.
[21] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C/OL]//North American Chapter of the Association forComputational Linguistics. 2019. https://api.semanticscholar.org/CorpusID:52967399.
[22] XIAO J, YE H, HE X, et al. Attentional Factorization Machines: Learning the Weight of FeatureInteractions via Attention Networks: abs/1708.04617[A/OL]. 2017. https://api.semanticscholar.org/CorpusID:3836251.
[23] ZHOU G, SONG C N, ZHU X, et al. Deep Interest Network for Click-Through Rate Prediction[J/OL]. Proceedings of the 24th ACM SIGKDD International Conference on KnowledgeDiscovery & Data Mining, 2017. https://api.semanticscholar.org/CorpusID:1637394.
[24] KANG W C, MCAULEY J. Self-Attentive Sequential Recommendation[J/OL]. 2018 IEEEInternational Conference on Data Mining, 2018: 197-206. https://api.semanticscholar.org/CorpusID:52127932.
[25] THIEBES S, LINS S, SUNYAEV A. Trustworthy artificial intelligence[J/OL]. ElectronicMarkets, 2020, 31: 447 - 464. https://api.semanticscholar.org/CorpusID:224877177.
[26] QUIONERO-CANDELA J, SUGIYAMA M, SCHWAIGHOFER A, et al. Dataset Shift inMachine Learning[C/OL]//2009. https://api.semanticscholar.org/CorpusID:61294087.
[27] SHEN Z, LIU J, HE Y, et al. Towards Out-Of-Distribution Generalization: A Survey:abs/2108.13624[A/OL]. 2021. https://api.semanticscholar.org/CorpusID:237364121.
[28] CAO L. Non-IID Recommender Systems: A Review and Framework of RecommendationParadigm Shifting: abs/2007.07217[A/OL]. 2016. https://api.semanticscholar.org/CorpusID:56098214.
[29] YANG C, WU Q, WEN Q, et al. Towards Out-of-Distribution Sequential Event Prediction: ACausal Treatment: abs/2210.13005[A/OL]. 2022. https://api.semanticscholar.org/CorpusID:253098828.
[30] HE Y, WANG Z, CUI P, et al. CausPref: Causal Preference Learning for Out-of-DistributionRecommendation[J/OL]. Proceedings of the ACM Web Conference 2022, 2022. https://api.semanticscholar.org/CorpusID:246652643.
[31] DIDELEZ V, PIGEOT I. Judea Pearl: Causality: Models, reasoning, and inference[J/OL].Politische Vierteljahresschrift, 2001, 42: 313-315. https://api.semanticscholar.org/CorpusID:141473148.
[32] NARENDRA T, SANKARAN A, VIJAYKEERTHY D, et al. Explaining Deep Learning Models using Causal Inference: abs/1811.04376[A/OL]. 2018. https://api.semanticscholar.org/CorpusID:53282816.
[33] ZHANG Y, FENG F, HE X, et al. Causal Intervention for Leveraging Popularity Bias in Recommendation[J/OL]. Proceedings of the 44th International ACM SIGIR Conference on Researchand Development in Information Retrieval, 2021. https://api.semanticscholar.org/CorpusID:234482660.
[34] SCHOLKOPF B, LOCATELLO F, BAUER S, et al. Towards Causal Representation Learning:abs/2102.11107[A/OL]. 2021. https://api.semanticscholar.org/CorpusID:231986372.
[35] WANG W, FENG F, HE X, et al. Deconfounded Recommendation for Alleviating Bias Amplification[J/OL]. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery& Data Mining, 2021. https://api.semanticscholar.org/CorpusID:235166201.
[36] WANG W, FENG F, HE X, et al. Clicks can be Cheating: Counterfactual Recommendation forMitigating Clickbait Issue[J/OL]. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020. https://api.semanticscholar.org/CorpusID:235185402.
[37] WANG Z, ZHANG J, XU H, et al. Counterfactual Data-Augmented Sequential Recommendation[J/OL]. Proceedings of the 44th International ACM SIGIR Conference on Researchand Development in Information Retrieval, 2021. https://api.semanticscholar.org/CorpusID:235792483.
[38] ZHANG S, YAO D, ZHAO Z, et al. CauseRec: Counterfactual User Sequence Synthesis forSequential Recommendation[J/OL]. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021. https://api.semanticscholar.org/CorpusID:235792358.
[39] ZHANG Y, FENG F, HE X, et al. Causal Intervention for Leveraging Popularity Bias in Recommendation[J/OL]. Proceedings of the 44th International ACM SIGIR Conference on Researchand Development in Information Retrieval, 2021. https://api.semanticscholar.org/CorpusID:234482660.
[40] ZOU H, CUI P, LI B, et al. Counterfactual Prediction for Bundle Treatment[C/OL]//NeuralInformation Processing Systems. 2020. https://api.semanticscholar.org/CorpusID:227275241.
[41] LIU D, CHENG P, ZHU H, et al. Debiased Representation Learning in Recommendation viaInformation Bottleneck[J/OL]. ACM Transactions on Recommender Systems, 2022, 1: 1 - 27.https://api.semanticscholar.org/CorpusID:253110445.
[42] XU H, XU Y, YANG Y. Causal Structure Representation Learning of Confounders in LatentSpace for Recommendation: abs/2311.03382[A/OL]. 2023. https://api.semanticscholar.org/CorpusID:265043201.
[43] WANG S, CHEN X, SHENG Q, et al. Causal Disentangled Variational Auto-Encoder forPreference Understanding in Recommendation[J/OL]. Proceedings of the 46th InternationalACM SIGIR Conference on Research and Development in Information Retrieval, 2023. https://api.semanticscholar.org/CorpusID:258180280.
[44] ZHOU C, BAI J, SONG J, et al. ATRank: An Attention-Based User Behavior Modeling Frame work for Recommendation: abs/1711.06632[A/OL]. 2017. https://api.semanticscholar.org/CorpusID:19112718.
[45] HU Q, HAN Z, LIN X, et al. Learning peer recommendation using attention-driven CNN withinteraction tripartite graph[J/OL]. Information Sciences, 2019, 479: 231-249. https://api.semanticscholar.org/CorpusID:59528813.
[46] LI J, REN P, CHEN Z, et al. Neural Attentive Session-based Recommendation[J/OL]. Pro ceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017.https://api.semanticscholar.org/CorpusID:21066930.
[47] WEN P, YUAN W, QIN Q, et al. Neural attention model for recommendation based on factor ization machines[J/OL]. Applied Intelligence, 2020, 51: 1829 - 1844. https://api.semanticscholar.org/CorpusID:225120760.
[48] KYBURG H E. Judea Pearl, Causality, Cambridge University Press (2000)[J/OL]. ArtificialIntelligence, 2005, 169: 174-179. https://api.semanticscholar.org/CorpusID:33390651.
[49] HE X, CHUA T S. Neural Factorization Machines for Sparse Predictive Analytics[J/OL]. Pro ceedings of the 40th International ACM SIGIR Conference on Research and Development inInformation Retrieval, 2017. https://api.semanticscholar.org/CorpusID:2021204.
[50] LIANG D, KRISHNAN R G, HOFFMAN M D, et al. Variational Autoencoders for Col laborative Filtering[J/OL]. Proceedings of the 2018 World Wide Web Conference, 2018.https://api.semanticscholar.org/CorpusID:3361310.
修改评论