[1] CANTíN Á, MOYA P, MIRANDA M A, et al. Synthesis and biologicalevaluation of new analogues of the active fungal metabolites N-(2-Methyl-3-oxodecanoyl)-2-pyrroline and N-(2-Methyl-3-oxodec-8-enoyl)-2-pyrroline(II)[J]. Journal of Agricultural and Food Chemistry, 2000, 48(8): 3682 -3688.
[2] 何碧茹. 轴手性螺氧化吲哚结构的不对称构建研究[D]. 大连理工大学,2023.
[3] KURTEVA V B, AFONSO C A M. Synthesis of cyclopentitols by ring-closingapproaches[J]. Chemical Reviews, 2009, 109(12): 6809 -6857.
[4] GRONDAL C, JEANTY M, ENDERS D. Organocatalytic cascade reactionsas a new tool in total synthesis[J]. Nature Chemistry, 2010, 2(3): 167 -178.
[5] CHENG D, ISHIHARA Y, TAN B, et al. Organocatalytic asymmetricassembly reactions: synthesis of spirooxindoles via organocascadestrategies[J]. ACS Catalysis, 2014, 4(3): 743 -762.
[6] NI H, CHAN W-L, LU Y. Phosphine-catalyzed asymmetric organicreactions[J]. Chemical Reviews, 2018, 118(18): 9344 -9411.
[7] HAYS S J, CAPRATHE B W, GILMORE J L, et al. 2 -Amino-4H-3,1-benzoxazin-4-ones as inhibitors of C1r serine protease[J]. Journal ofMedicinal Chemistry, 1998, 41(7): 1060-1067.
[8] KRANTZ A, SPENCER R W, TAM T F, et al. Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of humanleukocyte elastase[J]. J Med Chem, 1990, 33(2): 464 -479.
[9] TAKAHASHI H B, Y. CAPOLINO, A. J. GILMORE, et al. Discovery andSAR study of novel dihydroquinoline-containing glucocorticoid receptoragonists[J]. Bioorg Med Chem Lett, 2007, 17(18): 5091 -5095.
[10] GIRARD C, LIU S, CADEPOND F, et al. Etifoxine improves peripheral nerveregeneration and functional recovery[J]. Proc Natl Acad Sci U S A, 2008,105(51): 20505-20510.
[11] KOPELMAN P, BRYSON A, HICKLING R, et al. Cetilistat (ATL -962), anovel lipase inhibitor: a 12-week randomized, placebo-controlled study ofweight reduction in obese patients[J]. International Journal of Obesity, 2007,31(3): 494-499.
[12] ROSENBERG J, GUSTAFSSON F, GALATIUS S, et al. combination therapywith metolazone and loop diuretics in outpatients with refractory heart failure:an observational study and review of the literature[J]. Cardiovascular Drugsand Therapy, 2005, 19(4): 301-306.
[13] ROUSH G C, KAUR R, ERNST M E. Diuretics: a review and update[J].Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 19(1): 5 -13.
[14] FOLOPPE N, FISHER L M, HOWES R, et al. Identification of chemicallydiverse Chk1 inhibitors by receptor-based virtual screening[J]. Bioorganic &Medicinal Chemistry, 2006, 14(14): 4792-4802.
[15] CHAUHAN P, MAHAJAN S, ENDERS D. Asymmetric synthesis of pyrazolesand pyrazolones employing the reactivity of pyrazolin-5-one derivatives[J].Chemical Communications, 2015, 51(65): 12890 -12907.
[16] 张鹏飞. MBH 醇衍生物的不对称环化反应研究[D]. 哈尔滨工业大学,2020.
[17] ANTOSZCZAK M, STEVERDING D, SULIK M, et al. Anti -trypanosomalactivity of doubly modified salinomycin derivatives[J]. Eur J Med Chem,2019, 173: 90-98.
[18] SHI M, WANG F, ZHAO M-X, et al. The chemistry of the Morita-Baylis-Hillman reaction[M]. Royal Society of Chemistry, 2011.
[19] ELLEUCH H, MIHOUBI W, MIHOUBI M, et al. Potential antioxidantactivity of Morita-Baylis-Hillman adducts[J]. Bioorganic Chemistry, 2018,78: 24-28.
[20] WEI Y, SHI M. Recent advances in organocatalytic asymmetric Morita–Baylis–Hillman/aza-Morita-Baylis-Hillman reactions[J]. Chemical Reviews,2013, 113(8): 6659-6690.
[21] BASAVAIAH D, KUMARAGURUBARAN N. The Baylis -Hillman chemistryin aqueous media: a convenient synthesis of 2-methylenealkanoates andalkanenitriles[J]. Tetrahedron Letters, 2001, 42(3): 477-479.
[22] CHO C-W, KRISCHE M J. Regio- and stereoselective construction of γ-butenolides through phosphine-catalyzed substitution of Morita–Baylis–Hillman acetates: an organocatalytic allylic alkylation[J]. AngewandteChemie International Edition, 2004, 43(48): 6689 -6691.
[23] ZHANG T-Z, DAI L-X, HOU X-L. Enantioselective allylic substitution ofMorita–Baylis–Hillman adducts catalyzed by planar chiral
[2.2]paracyclophane monophosphines[J]. Tetrahedron: Asymmetry, 2007,18(16): 1990-1994.
[24] ZHONG F, LUO J, CHEN G Y, et al. Highly enantioselective regiodivergentallylic alkylations of MBH carbonates with phthalides[J]. J Am Chem Soc,2012, 134(24): 10222-10227.
[25] FENG J, LI X, CHENG J-P. An asymmetric allylic alkylation reaction of 3-alkylidene oxindoles[J]. Chemical Communications, 2015, 51(76): 14342 -14345.
[26] ZHAO S, ZHAO Y-Y, LIN J-B, et al. Organocatalyzed asymmetric vinylogousallylic–allylic alkylation of Morita-Baylis-Hillman carbonates with olefinicazlactones: facile access to chiral multifunctional α-amino acid derivatives[J].Organic Letters, 2015, 17(13): 3206 -3209.
[27] ZOU G-F, ZHANG S-Q, WANG J-X, et al. Asymmetric construction offunctionalized 1,2-dihydropyridine and pyridine derivatives with adjacentstereocenters via a unified metal-free catalytic approach[J]. The Journal ofOrganic Chemistry, 2016, 81(13): 5717 -5725.
[28] ZHU G, YANG J, BAO G, et al. Catalyst-controlled switch of regioselectivityin the asymmetric allylic alkylation of oxazolones with MBHCs[J]. ChemicalCommunications, 2016, 52(50): 7882 -7885.
[29] CHEN P, YUE Z, ZHANG J, et al. Phosphine -catalyzed asymmetricumpolung addition of trifluoromethyl ketimines to Morita-Baylis-Hillmancarbonates[J]. Angewandte Chemie International Edition, 2016, 55(42):13316-13320.
[30] XU J-X, CHU K-T, CHIANG M-H, et al. Organocatalytic asymmetric allylicalkylation of 2-methyl-3-nitroindoles: a route to direct enantioselectivefunctionalization of indole C(sp3)-H bonds[J]. Organic & BiomolecularChemistry, 2021, 19(7): 1503-1507.
[31] KANG T-C, ZHAO X, SHA F, et al. Highly enantioselective direct allylicalkylation of butenolides with Morita-Baylis-Hillman carbonates catalyzedby chiral squaramide-phosphine[J]. RSC Advances, 2015, 5(91): 74170 -74173.
[32] HU Y, YAN Z, SHI W, et al. Copper/ lewis base cooperatively catalyzedasymmetric allylic alkylation of Morita-Baylis-Hillman carbonates withazomethine ylides[J]. Chemical Communications, 2021, 57(65): 8059 -8062.
[33] MENG L, CHANG X, LIN Z, et al. Metal -free access to 3-Allyl-2-alkoxychromanones via phosphine-Catalyzed alkoxy allylation of chromoneswith MBH carbonates and alcohols[J]. Organic & Biomolecular Chemistry,2021, 19(12): 2663-2667.
[34] CHEN L, LI P. Organocatalytic regio- and enantioselective allylic alkylationof indolin-2-imines with MBH carbonates toward 3-allylindoles[J]. TheJournal of Organic Chemistry, 2023, 88(12): 7810 -7814.
[35] LIU C, SUN J, LI P. Chiral phosphine catalyzed allylic alkylation ofbenzylidene succinimides with Morita-Baylis-Hillman carbonates[J].Molecules, 2023, 28(6): 2825.
[36] DU Y, LU X, ZHANG C. A catalytic carbon-phosphorus ylide reaction:phosphane-catalyzed annulation of allylic compounds with electron-deficientalkenes[J]. Angewandte Chemie International Edition, 2003, 42(9): 1035 -1037.
[37] ZHONG N-J, WANG Y-Z, CHENG L, et al. Recent advances in the annulationof Morita-Baylis-Hillman adducts[J]. Organic & Biomolecular Chemistry,2018, 16(29): 5214-5227.
[38] TAN B, CANDEIAS N R, BARBAS C F. Core-structure-motivated design ofa phosphine-catalyzed
[3+2] cycloaddition reaction: enantioselectivesyntheses of spirocyclopenteneoxindoles[J]. Journal of the AmericanChemical Society, 2011, 133(13): 4672 -4675.
[39] ZHANG X-N, DENG H-P, HUANG L, et al. Phosphine-catalyzed asymmetric
[4+1] annulation of Morita-Baylis-Hillman carbonates with dicyano-2-methylenebut-3-enoates[J]. Chemical Communications, 2012, 48(69): 8664 -8666.
[40] HU F-L, WEI Y, SHI M. Phosphine-catalyzed asymmetric
[4+1] annulationof activated α,β-Unsaturated ketones with Morita-Baylis-Hillman carbonates:enantioselective synthesis of spirooxindoles containing two adjacentquaternary stereocenters[J]. Chemical Communications, 2014, 50(64): 8912 -8914.
[41] LEI Y, ZHANG X-N, YANG X-Y, et al. Regio- and diastereoselectiveconstruction of 1′,2′-(dihydrospiro[indoline-3,3′-pyrrol]-2′-yl)acrylatesthrough phosphine-catalyzed
[4+1] annulation of Morita-Baylis-Hillmancarbonates with oxindole-derived α,β-unsaturated imines[J]. RSC Advances,2015, 5(61): 49657-49661.
[42] ZHANG L, LIU H, QIAO G, et al. Phosphine -catalyzed highlyenantioselective
[3 + 3] cycloaddition of Morita-Baylis-Hillman carbonateswith C,N-cyclic szomethine imines[J]. J Am Chem Soc, 2015, 137(13): 4316 -4319.
[43] DENG H-P W, D.; WEI, Y.; SHI, M. Chiral multifunctional thiourea-Phosphine Catalyzed Asymmetric
[3+2] annulation of Morita–Baylis–Hillman carbonates with maleimides[J]. Beilstein J Org Chem, 2012, 8 , 1098-1104.
[44] DENG H-P, WEI Y, SHI M. Enantioselective synthesis of highlyfunctionalized trifluoromethyl-bearing cyclopentenes: asymmetric
[3+2] annulation of Morita-Baylis-Hillman carbonates withtrifluoroethylidenemalonates catalyzed by multifunctional thioureaphosphines[J]. 2012, 354(5): 783 -789.
[45] HU F, WEI Y, SHI M. Enantioselective synthesis of spirocyclic cyclopentenes:asymmetric
[3+2] annulation of 2 -arylideneindane-1,3-diones with MBHcarbonates derivatives catalyzed by multifunctional thiourea –phosphines[J].Tetrahedron, 2012, 68(38): 7911-7919.
[46] HU H, YU S, ZHU L, et al. Chiral bifunctional ferrocenylphosphine catalyzedhighly enantioselective
[3+2] cycloaddition reaction[J]. Organic &Biomolecular Chemistry, 2016, 14(2): 752 -760.
[47] PENG J, HUANG X, JIANG L, et al. Tertiary amine-catalyzedchemoselective and asymmetric
[3+2] annulation of Morita-Baylis-Hillmancarbonates of isatins with propargyl sulfones[J]. Organic Letters, 2011,13(17): 4584-4587.
[48] PENG J, RAN G-Y, DU W, et al. Tertiary-amine-catalyzed asymmetric
[3+2]annulations of Morita–Baylis–Hillman carbonates of isatins with nitroolefinsto construct spirooxindoles[J]. Synthesis, 2015, 47(17): 2538-2544.
[49] WANG K-K, DU W, ZHU J, et al. Construction of polycyclic spirooxindolesthrough
[3+2] annulations of Morita –Baylis–Hillman carbonates and 3-nitro-7-azaindoles[J]. Chinese Chemical Letters, 2017, 28(3): 512 -516.
[50] CHENG Y, HAN Y, LI P. Organocatalytic enantioselective
[1+4] annulationof Morita-Baylis-Hillman carbonates with electron-deficient olefins: accessto chiral 2,3-dihydrofuran derivatives[J]. Organic Letters, 2017, 19(18):4774-4777.
[51] WANG T, ZHANG P, LI W, et al. Phosphine-mediated enantioselective
[1+4]-annulation of Morita-Baylis-Hillman carbonates with 2-enoylpyridines[J].RSC Advances, 2018, 8(72): 41620 -41623.
[52] ZHANG P, GUO X, LIU C, et al. Enantioselective construction of pyridineN-Oxides featuring 2,3-dihydrofuran motifs via phosphine-catalyzed
[4+1]-annulation of 2-enoylpyridine N-Oxides with Morita-Baylis-HillmanCarbonates[J]. Organic Letters, 2019, 21(1): 152-155.
[53] CHENG Y, FANG Z, LI W, et al. Phosphine -mediated enantioselective
[4+1]annulations between ortho-quinone methides and Morita-Baylis-Hillmancarbonates[J]. Organic Chemistry Frontiers, 2018, 5(18): 2728 -2733.
[54] QIAN C, ZHANG P, LI W, et al. Phosphine-catalyzed enantioselective
[1+4]annulation of Morita-Baylis-Hillman carbonates with α,β-unsaturatedimines[J]. Asian Journal of Organic Chemistry, 2019, 8(2): 242 -245.
[55] GUO X, SHEN B, LIU C, et al. Rational design and organocatalyticenantioselective
[1+4]-annulations of MBH carbonates with modifiedenones[J]. Organic Chemistry Frontiers, 2023, 10(1): 150 -156.
[56] CHEN Z-C, CHEN Z, DU W, et al. Transformations of modified Morita-Baylis-Hillman adducts from isatins catalyzed by Lewis bases[J]. TheChemical Record, 2020, 20(6): 541 -555.
[57] MA J, YUAN Z-Z, KONG X-W, et al. Reagent-controlled tandem reactionsof vinyl epoxides: access to functionalized γ-Butenolides[J]. Organic Letters,2016, 18(6): 1450-1453.
[58] XIAO X, SHAO B, LI J, et al. Enantioselective synthesis of functionalized1,4-dihydropyrazolo-
[4′,3′:5,6]pyrano
[2,3-b]quinolines through ferrocenyl -phosphine-catalyzed annulation of modified MBH carbonates andpyrazolones[J]. Chemical Communications, 2021, 57(38): 4690 -4693.
[59] YANG Z-H, CHEN P, CHEN Z-C, et al. A double deprotonation strategy forcascade annulations of palladium–trimethylenemethanes and Morita -Baylis-Hillman carbonates to construct bicyclo
[3.1.0]hexane frameworks[J].Angewandte Chemie International Edition, 2021, 60(25): 13913-13917.
[60] LIAO J, XU J, WU Y, et al. 4 -(Dimethylamino)pyridine-Catalyzed (3+2)Annulation of Pyrazoledione-Derived Morita-Baylis-Hillman Carbonateswith 2-Arylideneindane-1,3-Diones: An Access to DispirocyclicCompounds[J]. Advanced Synthesis & Catalysis, 2022, 364(6): 1074 -1079.
[61] TIAN Z, JIANG J, YAN Z-H, et al. Catalytic asymmetric
[3+2] cycloadditionof pyrazolone-derived MBH carbonate: highly stereoselective construction ofthe bispiro-[pyrazolone-dihydropyrrole-oxindole] skeleton[J]. ChemicalCommunications, 2022, 58(35): 5363 -5366.
[62] WEI X, HUANG Y, KARIMI Z, et al. DMAP -catalyzed
[4+3] spiroannulationof pyrazolone-derived Morita-Baylis-Hillman carbonates with N-(ochloromethyl)aryl amides to forge spiro[pyrazolone-azepine] scaffolds[J].The Journal of Organic Chemistry, 2023, 88(14): 10190 -10198.
[63] WANG J, QI T, HE S, et al. Catalyst -controlled switchable (5+4)/(3+4)cycloadditions for the divergent synthesis of pyrazole-fused seven- and ninememberedheterocycles[J]. ACS Catalysis, 2023, 13(16): 10694 -10704.
[64] ZHANG F, DAI X, DAI L, et al. Phosphine -catalyzed enantioselective (3+2)annulation of vinylcyclopropanes with imines for the synthesis of chiralpyrrolidines[J]. Angewandte Chemie International Edition, 2022, 61(24):e202203212.
[65] DAI X, ZHANG F, DAI L, et al. Asymmetric dearomatization of electrondeficientheteroarenes by a phosphine-catalyzed
[3+2] annulation withvinylcyclopropanes[J]. CCS Chemistry, 2023, 5(9): 2023-2032.
[66] LIU M, LIAO J, DONG Y, et al. Acidic hydrogen-tethered allylic carbonatesfor phosphine-catalyzed (4+2) annulation of sulfamate-derived cyclicimines[J]. Advanced Synthesis & Catalysis, 2022, 364(13): 2146 -2151.
[67] LIU W, ZHANG L, LIU Y, et al. Chemoselective tandem SN2 ′/SN2′′/inter- orintramolecular Diels-Alder reaction of γ-vinyl MBH carbonates with phenolsand o-hydroxychalcones[J]. Chemical Communications, 2022, 58(70): 9794 -9797.
[68] ZHANG L, LIU Y, LI C-X, et al. Phosphine-promoted tandem intermolecularDiels-Alder reactions with pentadienyl 4-nitrobenzoate as a dieneprecursor[J]. Organic Letters, 2023, 25(35): 6506 -6510.附录68
[69] CAI W, HUANG Y. Metal free Dötz-Type aminobenzannulation reaction via1,1-dipoles cross-coupling[J]. Angewandte Chemie International Edition,2023, 62(41): e202310133.
[70] REN Y, SHI W, TANG Y, et al. Phosphine -catalyzed (3+2) annulation of γ-substituted cinnamic aldehyde-derived Morita-Baylis-Hillman carbonatesthrough remote activation[J]. Organic Letters, 2023, 25(40): 7374 -7379.
[71] BREUGST M, REISSIG H-U. The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition[J]. Angewandte Chemie International Edition, 2020,59(30): 12293-12307.
[72] HASHIMOTO T, MARUOKA K. Recent advances of catalytic asymmetric1,3-dipolar cycloadditions[J]. Chemical Reviews, 2015, 115(11): 5366 -5412.
[73] TIAN Y, DUAN M, LIU J, et al. Recent advances in metal-catalyzeddecarboxylative reactions of vinyl benzoxazinanones[J]. Advanced Synthesis& Catalysis, 2021, 363(19): 4461 -4474.
[74] WANG C, TUNGE J A. Asymmetric cycloadditions of palladium-polarizedaza-o-xylylenes[J]. Journal of the American Chemical Society, 2008, 130(26):8118-8119.
[75] LI T-R, TAN F, LU L-Q, et al. Asymmetric trapping of zwitterionicintermediates by sulphur ylides in a palladium-catalysed decarboxylationcycloaddition sequence[J]. Nature Communications, 2014, 5(1): 5500.
[76] XIONG W, JIANG X, ZHANG M-M, et al. A cooperative Pd/Co catalysissystem for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones withN-acylpyrazoles[J]. Chemical Communications, 2021, 57(99): 13566 -13569.
[77] WANG Q, QI X, LU L-Q, et al. Iron-catalyzed decarboxylative (4+1)cycloadditions: exploiting the reactivity of ambident iron-stabilizedintermediates[J]. Angewandte Chemie International Edition, 2016, 55(8):2840-2844.
[78] SONG J, ZHANG Z-J, GONG L-Z. Asymmetric
[4+2] annulation of C1ammonium enolates with copper-allenylidenes[J]. Angewandte ChemieInternational Edition, 2017, 56(19): 5212 -5216.
[79] ZHANG Z-J, ZHANG L, GENG R-L, et al. N-heterocyclic carbene/coppercooperative catalysis for the asymmetric synthesis of spirooxindoles[J].Angewandte Chemie International Edition, 2019, 58(35): 12190 -12194.
[80] LU S, ONG J-Y, POH S B, et al. Transition -metal-free decarboxylativepropargylic substitution/cyclization with either azolium enolates or acylanions[J]. Angewandte Chemie International Edition, 2018, 57(20): 5714 -5719.
[81] 吕博. 电喷雾串联质谱在制糖领域中的定性研究[D]. 黑龙江大学, 2022.
[82] KOBAYASHI Y, NAKANO Y, KIZAKI M, et al. Capsaicin -like anti-obeseactivities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptoragonist[J]. Planta Medica, 2001, 67(7): 628 -633.
[83] OLESEN J, DIENER H C, HUSSTEDT I W, et al. Calcitonin gene-relatedpeptide receptor antagonist BIBN 4096 BS for the acute treatment ofmigraine[J]. New England Journal of Medicine, 2004, 350(11): 1104 -1110.
[84] KING R W, KLABE R M, REID C D, et al. Potency of nonnucleoside reversetranscriptase inhibitors (NNRTIs) used in combination with other humanimmunodeficiency virus NNRTIs, NRTIs, or protease inhibitors[J].Antimicrobial Agents and Chemotherapy, 2002, 46(6 ): 1640-1646.
[85] JIANG B, DONG J J, SI Y G, et al. Highly enantioselective construction of aquaternary carbon center of dihydroquinazoline by asymmetric Mannichreaction and chiral recognition[J]. Advanced Synthesis & Catalysis, 2008,350(9): 1360-1366.
[86] XIE H, ZHANG Y, ZHANG S, et al. Bifunctional cinchona alkaloid thioureacatalyzed highly efficient, enantioselective aza-Henry reaction of cyclictrifluoromethyl ketimines: synthesis of anti-HIV drug DPC 083[J].Angewandte Chemie International Edition, 2011, 50(49): 11773-11776.
[87] LUO Y, XIE K-X, YUE D-F, et al. An organocatalytic asymmetric Mannichreaction of pyrazoleamides with cyclic trifluoromethyl ketimines:enantioselective access to dihydroquinazolinone skeletons[J]. Organic &Biomolecular Chemistry, 2018, 16(18): 3372 -3375.
[88] LI C, ZHANG S, LI S, et al. Ruthenium-catalyzed enantioselectivehydrogenation of quinoxalinones and quinazolinones[J]. Organic ChemistryFrontiers, 2022, 9(2): 400-406.
[89] WANG P-S, SHEN M-L, WANG T-C, et al. Access to chiral hydropyrimidinesthrough palladium-catalyzed asymmetric allylic C-H Amination[J].Angewandte Chemie International Edition, 2017, 56(50): 16032 -16036.
[90] LU Y-N, LAN J-P, MAO Y-J, et al. Catalytic asymmetric de novo constructionof dihydroquinazolinone scaffolds via enantioselective decarboxylative
[4+2]cycloadditions[J]. Chemical Communications, 2018, 54(96): 13527 -13530.
[91] WANG T, CHEN X, LI P. One-pot divergent synthesis of benzoxazines anddihydroquinolines from Morita-Baylis-Hillman alcohols[J]. EuropeanJournal of Organic Chemistry, 2022, 2022(30): e202200767.
[92] WILDE F, SPECKER E, NEUENSCHWANDER M, et al. Tractable synthesisof multipurpose screening compounds with under-represented molecularfeatures for an open access screening platform[J]. Molecular Diversity, 2014,18(3): 483-495.
[93] KUMAR V, KAUR K, GUPTA G K, et al. Pyrazole containing naturalproducts: Synthetic preview and biological significance[J]. European Journalof Medicinal Chemistry, 2013, 69: 735 -753.
[94] HUANG L-J, HOUR M-J, TENG C-M, et al. Synthesis and antiplateletactivities of N-arylmethyl-3,4-dimethylpyrano
[2,3-c]pyrazol-6-onederivatives[J]. CHEMICAL & PHARMACEUTICAL BULLETIN, 1992,40(9): 2547-2551.
[95] MANDHA S R, SILIVERI S, ALLA M, et al. Eco -friendly synthesis andbiological evaluation of substituted pyrano
[2,3-c]pyrazoles[J]. Bioorganic &Medicinal Chemistry Letters, 2012, 22(16): 5272-5278.
[96] KUO S C, HUANG L J, NAKAMURA H. Studies on heterocyclic compounds.6. synthesis and analgesic and antiinflammatory activities of 3,4 -dimethylpyrano
[2,3-c]pyrazol-6-one derivatives[J]. Journal of MedicinalChemistry, 1984, 27(4): 539-544.
[97] ZHANG Y, WU S, WANG S, et al. Divergent cascade construction ofskeletally diverse “privileged” pyrazole-derived molecular architectures[J].2015, 2015(9): 2030-2037.
[98] KUMARSWAMYREDDY N, KESAVAN V. Enantioselective synthesis ofdihydrospiro[indoline-3,4′-pyrano
[2,3-c]pyrazole] derivatives via Michael/Hemiketalization reaction[J]. Organic Letters, 2016, 18(6): 1354 -1357.
[99] NI C, TONG X. Amine-catalyzed asymmetric (3+3) annulations of β′-acetoxyallenoates: enantioselective synthesis of 4H-pyrans[J]. Journal of theAmerican Chemical Society, 2016, 138(25): 7872 -7875.
[100] CUI C-B, KAKEYA H, OSADA H. Spirotryprostatin B, a novel mammaliancell cycle inhibitor produced by Aspergillus fumigatus[J]. The Journal ofAntibiotics, 1996, 49(8): 832-835.
[101] YE Z, SHI L, SHAO X, et al. Pyrrole - and dihydropyrrole-fusedneonicotinoids: design, synthesis, and insecticidal evaluation[J]. Journal ofAgricultural and Food Chemistry, 2013, 61(2): 312 -319.
[102] MAGEDOV I V, LUCHETTI G, EVDOKIMOV N M, et al. Novel three -component synthesis and antiproliferative properties of diverselyfunctionalized pyrrolines[J]. Bioorganic & Medicinal Chemistry Letters,2008, 18(4): 1392-1396.
[103] FENG J-J, LIN T-Y, ZHU C-Z, et al. The divergent synthesis of nitrogenheterocycles by rhodium(I)-catalyzed intermolecular cycloadditions of vinylaziridines and alkynes[J]. Journal of the American Chemical Society, 2016,138(7): 2178-2181.
[104] MIURA T, TANAKA T, HIRAGA K, et al. Stereoselective synthesis of 2,3-dihydropyrroles from terminal alkynes, azides, and α,β-unsaturatedaldehydes via N-sulfonyl-1,2,3-triazoles[J]. Journal of the AmericanChemical Society, 2013, 135(37): 13652 -13655.
[105] TANG X, YANG M-C, YE C, et al. Catalyst-free
[3+2] cyclization of iminesand Morita-Baylis-Hillman carbonates: a general route to tetrahydropyrrolo
[2,1-a]isoquinolines and dihydropyrrolo
[2,1 -a]isoquinolines[J]. OrganicChemistry Frontiers, 2017, 4(11): 2128 -2133.
[106] TANG X, GAO Y-J, DENG H-Q, et al. Catalyst-free
[3+2] cyclization ofdihydroisoquinoline imines and isatin -derived Morita-Baylis-Hillmancarbonates via 1,5-electrocyclization: synthesis of tetrahydroisoquinoline -fused spirooxindoles[J]. Organic & Biomolecular Chemistry, 2018, 16(18):3362-3366.
[107] LIU D, SUN J, SUN Q, et al. Selective construction of spiro[indoline -3,5′-pyrrolo
[3,4-b]azepines] and spiro[indoline -3,3′-pyrroles] via a
[4+3]/
[3+2]cycloaddition reaction of α,β-unsaturated aldimines and MBH adducts ofisatins[J]. Organic Chemistry Frontiers, 2023, 10(2): 540 -547.
修改评论