中文版 | English
题名

苯并噁嗪型MBH加合物的环化反应

其他题名
ANNULATION OF BENZOOXAZINE-BASED MBH ADDUCTS
姓名
姓名拼音
LU Zhongyue
学号
12132767
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
李鹏飞
导师单位
化学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Morita–Baylis–Hillman(MBH)加合物是有机合成中一种强力的合成砌块,常扮演一原子或三原子合成子,可以与亲电型偶极体进行环化反应形成多种环状化合物。虽然关于MBH加合物的环化反应的研究已有了诸多报道,但仍主要局限于醛和靛红衍生的两类MBH加合物,导致反应模式单一,反应位点固定,底物范围狭窄等诸多不足。基于此,本论文设计了一类新型的苯并噁嗪型MBH加合物,并开发新的反应模式,增加反应位点,为合成更多具有新颖环状骨架的化合物提供一条高效的合成路径。主要研究工作如下:

开发了手性膦催化的苯并噁嗪型MBH加合物与异氰酸酯的不对称[4+2]环化反应。在温和的反应条件下,以高产率和高对映选择性获得了手性二氢喹唑啉酮衍生物。

发展了手性膦催化的苯并噁嗪型MBH加合物与吡唑啉酮的不对称[3+3]串联环化反应。在温和的反应条件下,以高产率、高对映选择性及非对映选择性合成了四氢吡喃并吡唑化合物,建立了一种绿色、高效合成四氢吡喃并吡唑活性骨架的方法。

发展了无催化剂参与的苯并噁嗪型MBH加合物与α,β-不饱和N-芳基亚胺的[3+2]环化反应,以高收率和高非对映选择性获得了一系列3,4-二氢吡咯衍生物。该反应具有步骤经济性好、原料易得等特点,可用于构建具有结构多样性的二氢吡咯衍生物。

简言之,本文开发了一类新型的MBH加合物,并分别实现了该类底物作为四原子合成子的不对称[4+2]环化反应和作为三原子合成子的不对称[3+3]串联环化反应和[3+2]环化反应。

其他摘要

Morita–Baylis–Hillman (MBH) adducts are powerful building blocks in organic synthesis, often serving as one-atom or three-atom synthons that undergo annulation reactions with electrophilic dipolarophiles to form various cyclic compounds. Although there have been numerous reports on the cyclization reactions of MBH adducts, they have mainly been limited to two classes: those derived from aldehydes and isatin, resulting in rigid reaction patterns, fixed reaction sites, and narrow substrate scopes. Based on this, this paper designs a novel class of benzooxazine-based MBH adducts and develops new reaction modes to increase reaction sites, providing an efficient synthetic pathway for the synthesis of more compounds with novel ring frameworks. The main research works are as follows:

The research group developed a chiral phosphine-catalyzed asymmetric [4+2] cyclization reaction of benzooxazine-based MBH adducts with isocyanates. Under mild reaction conditions, chiral dihydroquinazolinones derivatives were obtained with high yields and high enantioselectivity.

A chiral phosphine-catalyzed asymmetric [3+3] cascade cyclization reaction of benzooxazine-based MBH adducts with pyrazolones was developed. Under mild reaction conditions, tetrahydrofuran-fused pyrazoline compounds were synthesized with high yields, high enantioselectivity, and diastereoselectivity, establishing a green and efficient method for synthesizing tetrahydrofuran-fused pyrazoline scaffolds.

A catalyst-free [3+2] cyclization reaction of benzooxazine-based MBH adducts with α,β-unsaturated N-aryl imines was developed to obtain a series of 3,4-dihydropyrrole derivatives with high yields and high diastereoselectivity. This reaction features good step economy and readily available starting materials, making it suitable for constructing structurally diverse dihydropyrrole derivatives.

In summary, this paper developed a novel class of MBH adducts and realized their asymmetric [4+2] cyclization reactions as four-atom synthons and asymmetric [3+3] cascade cyclization reactions and [3+2] cyclization reactions as three-atom synthons.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] CANTíN Á, MOYA P, MIRANDA M A, et al. Synthesis and biologicalevaluation of new analogues of the active fungal metabolites N-(2-Methyl-3-oxodecanoyl)-2-pyrroline and N-(2-Methyl-3-oxodec-8-enoyl)-2-pyrroline(II)[J]. Journal of Agricultural and Food Chemistry, 2000, 48(8): 3682 -3688.
[2] 何碧茹. 轴手性螺氧化吲哚结构的不对称构建研究[D]. 大连理工大学,2023.
[3] KURTEVA V B, AFONSO C A M. Synthesis of cyclopentitols by ring-closingapproaches[J]. Chemical Reviews, 2009, 109(12): 6809 -6857.
[4] GRONDAL C, JEANTY M, ENDERS D. Organocatalytic cascade reactionsas a new tool in total synthesis[J]. Nature Chemistry, 2010, 2(3): 167 -178.
[5] CHENG D, ISHIHARA Y, TAN B, et al. Organocatalytic asymmetricassembly reactions: synthesis of spirooxindoles via organocascadestrategies[J]. ACS Catalysis, 2014, 4(3): 743 -762.
[6] NI H, CHAN W-L, LU Y. Phosphine-catalyzed asymmetric organicreactions[J]. Chemical Reviews, 2018, 118(18): 9344 -9411.
[7] HAYS S J, CAPRATHE B W, GILMORE J L, et al. 2 -Amino-4H-3,1-benzoxazin-4-ones as inhibitors of C1r serine protease[J]. Journal ofMedicinal Chemistry, 1998, 41(7): 1060-1067.
[8] KRANTZ A, SPENCER R W, TAM T F, et al. Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of humanleukocyte elastase[J]. J Med Chem, 1990, 33(2): 464 -479.
[9] TAKAHASHI H B, Y. CAPOLINO, A. J. GILMORE, et al. Discovery andSAR study of novel dihydroquinoline-containing glucocorticoid receptoragonists[J]. Bioorg Med Chem Lett, 2007, 17(18): 5091 -5095.
[10] GIRARD C, LIU S, CADEPOND F, et al. Etifoxine improves peripheral nerveregeneration and functional recovery[J]. Proc Natl Acad Sci U S A, 2008,105(51): 20505-20510.
[11] KOPELMAN P, BRYSON A, HICKLING R, et al. Cetilistat (ATL -962), anovel lipase inhibitor: a 12-week randomized, placebo-controlled study ofweight reduction in obese patients[J]. International Journal of Obesity, 2007,31(3): 494-499.
[12] ROSENBERG J, GUSTAFSSON F, GALATIUS S, et al. combination therapywith metolazone and loop diuretics in outpatients with refractory heart failure:an observational study and review of the literature[J]. Cardiovascular Drugsand Therapy, 2005, 19(4): 301-306.
[13] ROUSH G C, KAUR R, ERNST M E. Diuretics: a review and update[J].Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 19(1): 5 -13.
[14] FOLOPPE N, FISHER L M, HOWES R, et al. Identification of chemicallydiverse Chk1 inhibitors by receptor-based virtual screening[J]. Bioorganic &Medicinal Chemistry, 2006, 14(14): 4792-4802.
[15] CHAUHAN P, MAHAJAN S, ENDERS D. Asymmetric synthesis of pyrazolesand pyrazolones employing the reactivity of pyrazolin-5-one derivatives[J].Chemical Communications, 2015, 51(65): 12890 -12907.
[16] 张鹏飞. MBH 醇衍生物的不对称环化反应研究[D]. 哈尔滨工业大学,2020.
[17] ANTOSZCZAK M, STEVERDING D, SULIK M, et al. Anti -trypanosomalactivity of doubly modified salinomycin derivatives[J]. Eur J Med Chem,2019, 173: 90-98.
[18] SHI M, WANG F, ZHAO M-X, et al. The chemistry of the Morita-Baylis-Hillman reaction[M]. Royal Society of Chemistry, 2011.
[19] ELLEUCH H, MIHOUBI W, MIHOUBI M, et al. Potential antioxidantactivity of Morita-Baylis-Hillman adducts[J]. Bioorganic Chemistry, 2018,78: 24-28.
[20] WEI Y, SHI M. Recent advances in organocatalytic asymmetric Morita–Baylis–Hillman/aza-Morita-Baylis-Hillman reactions[J]. Chemical Reviews,2013, 113(8): 6659-6690.
[21] BASAVAIAH D, KUMARAGURUBARAN N. The Baylis -Hillman chemistryin aqueous media: a convenient synthesis of 2-methylenealkanoates andalkanenitriles[J]. Tetrahedron Letters, 2001, 42(3): 477-479.
[22] CHO C-W, KRISCHE M J. Regio- and stereoselective construction of γ-butenolides through phosphine-catalyzed substitution of Morita–Baylis–Hillman acetates: an organocatalytic allylic alkylation[J]. AngewandteChemie International Edition, 2004, 43(48): 6689 -6691.
[23] ZHANG T-Z, DAI L-X, HOU X-L. Enantioselective allylic substitution ofMorita–Baylis–Hillman adducts catalyzed by planar chiral
[2.2]paracyclophane monophosphines[J]. Tetrahedron: Asymmetry, 2007,18(16): 1990-1994.
[24] ZHONG F, LUO J, CHEN G Y, et al. Highly enantioselective regiodivergentallylic alkylations of MBH carbonates with phthalides[J]. J Am Chem Soc,2012, 134(24): 10222-10227.
[25] FENG J, LI X, CHENG J-P. An asymmetric allylic alkylation reaction of 3-alkylidene oxindoles[J]. Chemical Communications, 2015, 51(76): 14342 -14345.
[26] ZHAO S, ZHAO Y-Y, LIN J-B, et al. Organocatalyzed asymmetric vinylogousallylic–allylic alkylation of Morita-Baylis-Hillman carbonates with olefinicazlactones: facile access to chiral multifunctional α-amino acid derivatives[J].Organic Letters, 2015, 17(13): 3206 -3209.
[27] ZOU G-F, ZHANG S-Q, WANG J-X, et al. Asymmetric construction offunctionalized 1,2-dihydropyridine and pyridine derivatives with adjacentstereocenters via a unified metal-free catalytic approach[J]. The Journal ofOrganic Chemistry, 2016, 81(13): 5717 -5725.
[28] ZHU G, YANG J, BAO G, et al. Catalyst-controlled switch of regioselectivityin the asymmetric allylic alkylation of oxazolones with MBHCs[J]. ChemicalCommunications, 2016, 52(50): 7882 -7885.
[29] CHEN P, YUE Z, ZHANG J, et al. Phosphine -catalyzed asymmetricumpolung addition of trifluoromethyl ketimines to Morita-Baylis-Hillmancarbonates[J]. Angewandte Chemie International Edition, 2016, 55(42):13316-13320.
[30] XU J-X, CHU K-T, CHIANG M-H, et al. Organocatalytic asymmetric allylicalkylation of 2-methyl-3-nitroindoles: a route to direct enantioselectivefunctionalization of indole C(sp3)-H bonds[J]. Organic & BiomolecularChemistry, 2021, 19(7): 1503-1507.
[31] KANG T-C, ZHAO X, SHA F, et al. Highly enantioselective direct allylicalkylation of butenolides with Morita-Baylis-Hillman carbonates catalyzedby chiral squaramide-phosphine[J]. RSC Advances, 2015, 5(91): 74170 -74173.
[32] HU Y, YAN Z, SHI W, et al. Copper/ lewis base cooperatively catalyzedasymmetric allylic alkylation of Morita-Baylis-Hillman carbonates withazomethine ylides[J]. Chemical Communications, 2021, 57(65): 8059 -8062.
[33] MENG L, CHANG X, LIN Z, et al. Metal -free access to 3-Allyl-2-alkoxychromanones via phosphine-Catalyzed alkoxy allylation of chromoneswith MBH carbonates and alcohols[J]. Organic & Biomolecular Chemistry,2021, 19(12): 2663-2667.
[34] CHEN L, LI P. Organocatalytic regio- and enantioselective allylic alkylationof indolin-2-imines with MBH carbonates toward 3-allylindoles[J]. TheJournal of Organic Chemistry, 2023, 88(12): 7810 -7814.
[35] LIU C, SUN J, LI P. Chiral phosphine catalyzed allylic alkylation ofbenzylidene succinimides with Morita-Baylis-Hillman carbonates[J].Molecules, 2023, 28(6): 2825.
[36] DU Y, LU X, ZHANG C. A catalytic carbon-phosphorus ylide reaction:phosphane-catalyzed annulation of allylic compounds with electron-deficientalkenes[J]. Angewandte Chemie International Edition, 2003, 42(9): 1035 -1037.
[37] ZHONG N-J, WANG Y-Z, CHENG L, et al. Recent advances in the annulationof Morita-Baylis-Hillman adducts[J]. Organic & Biomolecular Chemistry,2018, 16(29): 5214-5227.
[38] TAN B, CANDEIAS N R, BARBAS C F. Core-structure-motivated design ofa phosphine-catalyzed
[3+2] cycloaddition reaction: enantioselectivesyntheses of spirocyclopenteneoxindoles[J]. Journal of the AmericanChemical Society, 2011, 133(13): 4672 -4675.
[39] ZHANG X-N, DENG H-P, HUANG L, et al. Phosphine-catalyzed asymmetric
[4+1] annulation of Morita-Baylis-Hillman carbonates with dicyano-2-methylenebut-3-enoates[J]. Chemical Communications, 2012, 48(69): 8664 -8666.
[40] HU F-L, WEI Y, SHI M. Phosphine-catalyzed asymmetric
[4+1] annulationof activated α,β-Unsaturated ketones with Morita-Baylis-Hillman carbonates:enantioselective synthesis of spirooxindoles containing two adjacentquaternary stereocenters[J]. Chemical Communications, 2014, 50(64): 8912 -8914.
[41] LEI Y, ZHANG X-N, YANG X-Y, et al. Regio- and diastereoselectiveconstruction of 1′,2′-(dihydrospiro[indoline-3,3′-pyrrol]-2′-yl)acrylatesthrough phosphine-catalyzed
[4+1] annulation of Morita-Baylis-Hillmancarbonates with oxindole-derived α,β-unsaturated imines[J]. RSC Advances,2015, 5(61): 49657-49661.
[42] ZHANG L, LIU H, QIAO G, et al. Phosphine -catalyzed highlyenantioselective
[3 + 3] cycloaddition of Morita-Baylis-Hillman carbonateswith C,N-cyclic szomethine imines[J]. J Am Chem Soc, 2015, 137(13): 4316 -4319.
[43] DENG H-P W, D.; WEI, Y.; SHI, M. Chiral multifunctional thiourea-Phosphine Catalyzed Asymmetric
[3+2] annulation of Morita–Baylis–Hillman carbonates with maleimides[J]. Beilstein J Org Chem, 2012, 8 , 1098-1104.
[44] DENG H-P, WEI Y, SHI M. Enantioselective synthesis of highlyfunctionalized trifluoromethyl-bearing cyclopentenes: asymmetric
[3+2] annulation of Morita-Baylis-Hillman carbonates withtrifluoroethylidenemalonates catalyzed by multifunctional thioureaphosphines[J]. 2012, 354(5): 783 -789.
[45] HU F, WEI Y, SHI M. Enantioselective synthesis of spirocyclic cyclopentenes:asymmetric
[3+2] annulation of 2 -arylideneindane-1,3-diones with MBHcarbonates derivatives catalyzed by multifunctional thiourea –phosphines[J].Tetrahedron, 2012, 68(38): 7911-7919.
[46] HU H, YU S, ZHU L, et al. Chiral bifunctional ferrocenylphosphine catalyzedhighly enantioselective
[3+2] cycloaddition reaction[J]. Organic &Biomolecular Chemistry, 2016, 14(2): 752 -760.
[47] PENG J, HUANG X, JIANG L, et al. Tertiary amine-catalyzedchemoselective and asymmetric
[3+2] annulation of Morita-Baylis-Hillmancarbonates of isatins with propargyl sulfones[J]. Organic Letters, 2011,13(17): 4584-4587.
[48] PENG J, RAN G-Y, DU W, et al. Tertiary-amine-catalyzed asymmetric
[3+2]annulations of Morita–Baylis–Hillman carbonates of isatins with nitroolefinsto construct spirooxindoles[J]. Synthesis, 2015, 47(17): 2538-2544.
[49] WANG K-K, DU W, ZHU J, et al. Construction of polycyclic spirooxindolesthrough
[3+2] annulations of Morita –Baylis–Hillman carbonates and 3-nitro-7-azaindoles[J]. Chinese Chemical Letters, 2017, 28(3): 512 -516.
[50] CHENG Y, HAN Y, LI P. Organocatalytic enantioselective
[1+4] annulationof Morita-Baylis-Hillman carbonates with electron-deficient olefins: accessto chiral 2,3-dihydrofuran derivatives[J]. Organic Letters, 2017, 19(18):4774-4777.
[51] WANG T, ZHANG P, LI W, et al. Phosphine-mediated enantioselective
[1+4]-annulation of Morita-Baylis-Hillman carbonates with 2-enoylpyridines[J].RSC Advances, 2018, 8(72): 41620 -41623.
[52] ZHANG P, GUO X, LIU C, et al. Enantioselective construction of pyridineN-Oxides featuring 2,3-dihydrofuran motifs via phosphine-catalyzed
[4+1]-annulation of 2-enoylpyridine N-Oxides with Morita-Baylis-HillmanCarbonates[J]. Organic Letters, 2019, 21(1): 152-155.
[53] CHENG Y, FANG Z, LI W, et al. Phosphine -mediated enantioselective
[4+1]annulations between ortho-quinone methides and Morita-Baylis-Hillmancarbonates[J]. Organic Chemistry Frontiers, 2018, 5(18): 2728 -2733.
[54] QIAN C, ZHANG P, LI W, et al. Phosphine-catalyzed enantioselective
[1+4]annulation of Morita-Baylis-Hillman carbonates with α,β-unsaturatedimines[J]. Asian Journal of Organic Chemistry, 2019, 8(2): 242 -245.
[55] GUO X, SHEN B, LIU C, et al. Rational design and organocatalyticenantioselective
[1+4]-annulations of MBH carbonates with modifiedenones[J]. Organic Chemistry Frontiers, 2023, 10(1): 150 -156.
[56] CHEN Z-C, CHEN Z, DU W, et al. Transformations of modified Morita-Baylis-Hillman adducts from isatins catalyzed by Lewis bases[J]. TheChemical Record, 2020, 20(6): 541 -555.
[57] MA J, YUAN Z-Z, KONG X-W, et al. Reagent-controlled tandem reactionsof vinyl epoxides: access to functionalized γ-Butenolides[J]. Organic Letters,2016, 18(6): 1450-1453.
[58] XIAO X, SHAO B, LI J, et al. Enantioselective synthesis of functionalized1,4-dihydropyrazolo-
[4′,3′:5,6]pyrano
[2,3-b]quinolines through ferrocenyl -phosphine-catalyzed annulation of modified MBH carbonates andpyrazolones[J]. Chemical Communications, 2021, 57(38): 4690 -4693.
[59] YANG Z-H, CHEN P, CHEN Z-C, et al. A double deprotonation strategy forcascade annulations of palladium–trimethylenemethanes and Morita -Baylis-Hillman carbonates to construct bicyclo
[3.1.0]hexane frameworks[J].Angewandte Chemie International Edition, 2021, 60(25): 13913-13917.
[60] LIAO J, XU J, WU Y, et al. 4 -(Dimethylamino)pyridine-Catalyzed (3+2)Annulation of Pyrazoledione-Derived Morita-Baylis-Hillman Carbonateswith 2-Arylideneindane-1,3-Diones: An Access to DispirocyclicCompounds[J]. Advanced Synthesis & Catalysis, 2022, 364(6): 1074 -1079.
[61] TIAN Z, JIANG J, YAN Z-H, et al. Catalytic asymmetric
[3+2] cycloadditionof pyrazolone-derived MBH carbonate: highly stereoselective construction ofthe bispiro-[pyrazolone-dihydropyrrole-oxindole] skeleton[J]. ChemicalCommunications, 2022, 58(35): 5363 -5366.
[62] WEI X, HUANG Y, KARIMI Z, et al. DMAP -catalyzed
[4+3] spiroannulationof pyrazolone-derived Morita-Baylis-Hillman carbonates with N-(ochloromethyl)aryl amides to forge spiro[pyrazolone-azepine] scaffolds[J].The Journal of Organic Chemistry, 2023, 88(14): 10190 -10198.
[63] WANG J, QI T, HE S, et al. Catalyst -controlled switchable (5+4)/(3+4)cycloadditions for the divergent synthesis of pyrazole-fused seven- and ninememberedheterocycles[J]. ACS Catalysis, 2023, 13(16): 10694 -10704.
[64] ZHANG F, DAI X, DAI L, et al. Phosphine -catalyzed enantioselective (3+2)annulation of vinylcyclopropanes with imines for the synthesis of chiralpyrrolidines[J]. Angewandte Chemie International Edition, 2022, 61(24):e202203212.
[65] DAI X, ZHANG F, DAI L, et al. Asymmetric dearomatization of electrondeficientheteroarenes by a phosphine-catalyzed
[3+2] annulation withvinylcyclopropanes[J]. CCS Chemistry, 2023, 5(9): 2023-2032.
[66] LIU M, LIAO J, DONG Y, et al. Acidic hydrogen-tethered allylic carbonatesfor phosphine-catalyzed (4+2) annulation of sulfamate-derived cyclicimines[J]. Advanced Synthesis & Catalysis, 2022, 364(13): 2146 -2151.
[67] LIU W, ZHANG L, LIU Y, et al. Chemoselective tandem SN2 ′/SN2′′/inter- orintramolecular Diels-Alder reaction of γ-vinyl MBH carbonates with phenolsand o-hydroxychalcones[J]. Chemical Communications, 2022, 58(70): 9794 -9797.
[68] ZHANG L, LIU Y, LI C-X, et al. Phosphine-promoted tandem intermolecularDiels-Alder reactions with pentadienyl 4-nitrobenzoate as a dieneprecursor[J]. Organic Letters, 2023, 25(35): 6506 -6510.附录68
[69] CAI W, HUANG Y. Metal free Dötz-Type aminobenzannulation reaction via1,1-dipoles cross-coupling[J]. Angewandte Chemie International Edition,2023, 62(41): e202310133.
[70] REN Y, SHI W, TANG Y, et al. Phosphine -catalyzed (3+2) annulation of γ-substituted cinnamic aldehyde-derived Morita-Baylis-Hillman carbonatesthrough remote activation[J]. Organic Letters, 2023, 25(40): 7374 -7379.
[71] BREUGST M, REISSIG H-U. The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition[J]. Angewandte Chemie International Edition, 2020,59(30): 12293-12307.
[72] HASHIMOTO T, MARUOKA K. Recent advances of catalytic asymmetric1,3-dipolar cycloadditions[J]. Chemical Reviews, 2015, 115(11): 5366 -5412.
[73] TIAN Y, DUAN M, LIU J, et al. Recent advances in metal-catalyzeddecarboxylative reactions of vinyl benzoxazinanones[J]. Advanced Synthesis& Catalysis, 2021, 363(19): 4461 -4474.
[74] WANG C, TUNGE J A. Asymmetric cycloadditions of palladium-polarizedaza-o-xylylenes[J]. Journal of the American Chemical Society, 2008, 130(26):8118-8119.
[75] LI T-R, TAN F, LU L-Q, et al. Asymmetric trapping of zwitterionicintermediates by sulphur ylides in a palladium-catalysed decarboxylationcycloaddition sequence[J]. Nature Communications, 2014, 5(1): 5500.
[76] XIONG W, JIANG X, ZHANG M-M, et al. A cooperative Pd/Co catalysissystem for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones withN-acylpyrazoles[J]. Chemical Communications, 2021, 57(99): 13566 -13569.
[77] WANG Q, QI X, LU L-Q, et al. Iron-catalyzed decarboxylative (4+1)cycloadditions: exploiting the reactivity of ambident iron-stabilizedintermediates[J]. Angewandte Chemie International Edition, 2016, 55(8):2840-2844.
[78] SONG J, ZHANG Z-J, GONG L-Z. Asymmetric
[4+2] annulation of C1ammonium enolates with copper-allenylidenes[J]. Angewandte ChemieInternational Edition, 2017, 56(19): 5212 -5216.
[79] ZHANG Z-J, ZHANG L, GENG R-L, et al. N-heterocyclic carbene/coppercooperative catalysis for the asymmetric synthesis of spirooxindoles[J].Angewandte Chemie International Edition, 2019, 58(35): 12190 -12194.
[80] LU S, ONG J-Y, POH S B, et al. Transition -metal-free decarboxylativepropargylic substitution/cyclization with either azolium enolates or acylanions[J]. Angewandte Chemie International Edition, 2018, 57(20): 5714 -5719.
[81] 吕博. 电喷雾串联质谱在制糖领域中的定性研究[D]. 黑龙江大学, 2022.
[82] KOBAYASHI Y, NAKANO Y, KIZAKI M, et al. Capsaicin -like anti-obeseactivities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptoragonist[J]. Planta Medica, 2001, 67(7): 628 -633.
[83] OLESEN J, DIENER H C, HUSSTEDT I W, et al. Calcitonin gene-relatedpeptide receptor antagonist BIBN 4096 BS for the acute treatment ofmigraine[J]. New England Journal of Medicine, 2004, 350(11): 1104 -1110.
[84] KING R W, KLABE R M, REID C D, et al. Potency of nonnucleoside reversetranscriptase inhibitors (NNRTIs) used in combination with other humanimmunodeficiency virus NNRTIs, NRTIs, or protease inhibitors[J].Antimicrobial Agents and Chemotherapy, 2002, 46(6 ): 1640-1646.
[85] JIANG B, DONG J J, SI Y G, et al. Highly enantioselective construction of aquaternary carbon center of dihydroquinazoline by asymmetric Mannichreaction and chiral recognition[J]. Advanced Synthesis & Catalysis, 2008,350(9): 1360-1366.
[86] XIE H, ZHANG Y, ZHANG S, et al. Bifunctional cinchona alkaloid thioureacatalyzed highly efficient, enantioselective aza-Henry reaction of cyclictrifluoromethyl ketimines: synthesis of anti-HIV drug DPC 083[J].Angewandte Chemie International Edition, 2011, 50(49): 11773-11776.
[87] LUO Y, XIE K-X, YUE D-F, et al. An organocatalytic asymmetric Mannichreaction of pyrazoleamides with cyclic trifluoromethyl ketimines:enantioselective access to dihydroquinazolinone skeletons[J]. Organic &Biomolecular Chemistry, 2018, 16(18): 3372 -3375.
[88] LI C, ZHANG S, LI S, et al. Ruthenium-catalyzed enantioselectivehydrogenation of quinoxalinones and quinazolinones[J]. Organic ChemistryFrontiers, 2022, 9(2): 400-406.
[89] WANG P-S, SHEN M-L, WANG T-C, et al. Access to chiral hydropyrimidinesthrough palladium-catalyzed asymmetric allylic C-H Amination[J].Angewandte Chemie International Edition, 2017, 56(50): 16032 -16036.
[90] LU Y-N, LAN J-P, MAO Y-J, et al. Catalytic asymmetric de novo constructionof dihydroquinazolinone scaffolds via enantioselective decarboxylative
[4+2]cycloadditions[J]. Chemical Communications, 2018, 54(96): 13527 -13530.
[91] WANG T, CHEN X, LI P. One-pot divergent synthesis of benzoxazines anddihydroquinolines from Morita-Baylis-Hillman alcohols[J]. EuropeanJournal of Organic Chemistry, 2022, 2022(30): e202200767.
[92] WILDE F, SPECKER E, NEUENSCHWANDER M, et al. Tractable synthesisof multipurpose screening compounds with under-represented molecularfeatures for an open access screening platform[J]. Molecular Diversity, 2014,18(3): 483-495.
[93] KUMAR V, KAUR K, GUPTA G K, et al. Pyrazole containing naturalproducts: Synthetic preview and biological significance[J]. European Journalof Medicinal Chemistry, 2013, 69: 735 -753.
[94] HUANG L-J, HOUR M-J, TENG C-M, et al. Synthesis and antiplateletactivities of N-arylmethyl-3,4-dimethylpyrano
[2,3-c]pyrazol-6-onederivatives[J]. CHEMICAL & PHARMACEUTICAL BULLETIN, 1992,40(9): 2547-2551.
[95] MANDHA S R, SILIVERI S, ALLA M, et al. Eco -friendly synthesis andbiological evaluation of substituted pyrano
[2,3-c]pyrazoles[J]. Bioorganic &Medicinal Chemistry Letters, 2012, 22(16): 5272-5278.
[96] KUO S C, HUANG L J, NAKAMURA H. Studies on heterocyclic compounds.6. synthesis and analgesic and antiinflammatory activities of 3,4 -dimethylpyrano
[2,3-c]pyrazol-6-one derivatives[J]. Journal of MedicinalChemistry, 1984, 27(4): 539-544.
[97] ZHANG Y, WU S, WANG S, et al. Divergent cascade construction ofskeletally diverse “privileged” pyrazole-derived molecular architectures[J].2015, 2015(9): 2030-2037.
[98] KUMARSWAMYREDDY N, KESAVAN V. Enantioselective synthesis ofdihydrospiro[indoline-3,4′-pyrano
[2,3-c]pyrazole] derivatives via Michael/Hemiketalization reaction[J]. Organic Letters, 2016, 18(6): 1354 -1357.
[99] NI C, TONG X. Amine-catalyzed asymmetric (3+3) annulations of β′-acetoxyallenoates: enantioselective synthesis of 4H-pyrans[J]. Journal of theAmerican Chemical Society, 2016, 138(25): 7872 -7875.
[100] CUI C-B, KAKEYA H, OSADA H. Spirotryprostatin B, a novel mammaliancell cycle inhibitor produced by Aspergillus fumigatus[J]. The Journal ofAntibiotics, 1996, 49(8): 832-835.
[101] YE Z, SHI L, SHAO X, et al. Pyrrole - and dihydropyrrole-fusedneonicotinoids: design, synthesis, and insecticidal evaluation[J]. Journal ofAgricultural and Food Chemistry, 2013, 61(2): 312 -319.
[102] MAGEDOV I V, LUCHETTI G, EVDOKIMOV N M, et al. Novel three -component synthesis and antiproliferative properties of diverselyfunctionalized pyrrolines[J]. Bioorganic & Medicinal Chemistry Letters,2008, 18(4): 1392-1396.
[103] FENG J-J, LIN T-Y, ZHU C-Z, et al. The divergent synthesis of nitrogenheterocycles by rhodium(I)-catalyzed intermolecular cycloadditions of vinylaziridines and alkynes[J]. Journal of the American Chemical Society, 2016,138(7): 2178-2181.
[104] MIURA T, TANAKA T, HIRAGA K, et al. Stereoselective synthesis of 2,3-dihydropyrroles from terminal alkynes, azides, and α,β-unsaturatedaldehydes via N-sulfonyl-1,2,3-triazoles[J]. Journal of the AmericanChemical Society, 2013, 135(37): 13652 -13655.
[105] TANG X, YANG M-C, YE C, et al. Catalyst-free
[3+2] cyclization of iminesand Morita-Baylis-Hillman carbonates: a general route to tetrahydropyrrolo
[2,1-a]isoquinolines and dihydropyrrolo
[2,1 -a]isoquinolines[J]. OrganicChemistry Frontiers, 2017, 4(11): 2128 -2133.
[106] TANG X, GAO Y-J, DENG H-Q, et al. Catalyst-free
[3+2] cyclization ofdihydroisoquinoline imines and isatin -derived Morita-Baylis-Hillmancarbonates via 1,5-electrocyclization: synthesis of tetrahydroisoquinoline -fused spirooxindoles[J]. Organic & Biomolecular Chemistry, 2018, 16(18):3362-3366.
[107] LIU D, SUN J, SUN Q, et al. Selective construction of spiro[indoline -3,5′-pyrrolo
[3,4-b]azepines] and spiro[indoline -3,3′-pyrroles] via a
[4+3]/
[3+2]cycloaddition reaction of α,β-unsaturated aldimines and MBH adducts ofisatins[J]. Organic Chemistry Frontiers, 2023, 10(2): 540 -547.

所在学位评定分委会
化学
国内图书分类号
O626.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765679
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
卢仲月. 苯并噁嗪型MBH加合物的环化反应[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132767-卢仲月-化学系.pdf(30655KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[卢仲月]的文章
百度学术
百度学术中相似的文章
[卢仲月]的文章
必应学术
必应学术中相似的文章
[卢仲月]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。