[1] PIJOLAT C, RIVIERE B, KAMIONKA M, et al. Tin Dioxide Gas Sensor as a Tool for Atmospheric Pollution Monitoring: Problems and Possibilities for Improvements[J]. CHEMICAL SENSORS, 2003, 38: 4333-4346.
[2] ROMAIN A, NICOLAS J. Long Term Stability of Metal Oxide-Based Gas Sensors for e-Nose Environmental Applications: An Overview[J]. Sensors and Actuators B: Chemical, 2010, 146 (2): 502-506.
[3] TARDY P, COULON J R, LUCAT C, et al. Dynamic Thermal Conductivity Sensor for Gas Detection[J]. Sensors and Actuators B: Chemical, 2004, 98(1): 63-68.
[4] KHAN M, RAO M, LI Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S[J]. Sensors, 2019, 19(4): 905.
[5] BAETZ W, KROLL A, BONOW G. Mobile Robots with Active IR-optical Sensing for Remote Gas Detection and Source Localization[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 2773-2778.
[6] DEY A. Semiconductor Metal Oxide Gas Sensors: A Review[J]. Materials Science and Engineering: B, 2018, 229: 206-217.
[7] SEIYAMA T, KATO A, FUJIISHI K, et al. A New Detector for Gaseous Components Using Semiconductive Thin Films.[J]. Analytical Chemistry, 1962, 34(11): 1502-1503.
[8] PINK H, TISCHER P. Gas-Detection by Metal-Oxide Semiconductors[J]. Siemens Forschungs- Und Entwicklungsberichte-Siemens Research and Development Reports, 1981, 10(2): 78-82.
[9] EICKER H, KARTENBERG HJ, JACOB H. A Study of New Measuring Techniques withMetal-Oxide Semiconductors Designed to Monitor Carbon Oxide Concentrations[J]. Technisches Messen, 1981, 48(12): 421-430.
[10] POTEAT T, LALEVIC B. Transition Metal-Gate MOS Gaseous Detectors[J]. IEEE Transactions on Electron Devices, 1982, 29(1): 123-129.
[11] NIU G, WANG F. A Review of MEMS-based Metal Oxide Semiconductors Gas Sensor in Mainland China[J]. Journal of Micromechanics and Microengineering, 2022, 32(5): 054003.
[12] KIM H J, LEE J H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview[J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627.
[13] DAI T, MENG G, DENG Z, et al. Generic Approach to Boost the Sensitivity of Metal Oxide Sensors by Decoupling the Surface Charge Exchange and Resistance Reading Process[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37295-37304.
[14] LIU X, CHENG ST, LIU H, et al. A Survey on Gas Sensing Technology[J]. SENSORS, 2012, 12(7): 9635-9665.
[15] 炜盛GM-302B 酒精气体传感器数据手册[M]. http://style.winsensor.com/pro_pdf/GM302B.pdf.
[16] KOROTCENKOV G. Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice?[J]. Materials Science and Engineering: B, 2007, 139(1): 1-23.
[17] HUANG J. Gas Sensors Based on Semiconducting Metal Oxide[J]. Sensors, 2009, 9: 9903- 9924.
[18] KRISHNA K G, PARNE S, POTHUKANURI N, et al. Nanostructured Metal OxideSemiconductor-Based Gas Sensors: A Comprehensive Review[J]. Sensors and Actuators A: Physical, 2022, 341: 113578.
[19] JI H, ZENG W, LI Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review[J]. Nanoscale, 2019, 11(47): 22664-22684.
[20] GURLO A. Interplay between O2 and SnO2 : Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen[J]. ChemPhysChem, 2006, 7(10): 2041-2052.
[21] PAGNIER T, BOULOVA M, GALERIE A, et al. Reactivity of SnO2–CuO Nanocrystalline Materials with H2S: A Coupled Electrical and Raman Spectroscopic Study[J]. Sensors and Actuators B: Chemical, 2000, 71(1-2): 134-139.
[22] ZHU L, ZENG W. Room-Temperature Gas Sensing of ZnO-based Gas Sensor: A Review[J]. Sensors and Actuators A: Physical, 2017, 267: 242-261.
[23] HU K, WANG F, LIU H, et al. Enhanced Hydrogen Gas Sensing Properties of Pd-doped SnO2 Nanofibres by Ar Plasma Treatment[J]. Ceramics International, 2020, 46(2): 1609-1614.
[24] UDDIN A I, YAQOOB U, PHAN D T, et al. A Novel Flexible Acetylene Gas Sensor Based on PI/PTFE-supported Ag-loaded Vertical ZnO Nanorods Array[J]. Sensors and Actuators B:Chemical, 2016, 222: 536-543.
[25] YANG M, LU J, WANG X, et al. Acetone Sensors with High Stability to Humidity Changes Based on Ru-doped NiO Flower-like Microspheres[J]. Sensors and Actuators B: Chemical, 2020, 313: 127965.
[26] HA N H, THINH D D, HUONG N T, et al. Fast Response of Carbon Monoxide Gas Sensors Using a Highly Porous Network of ZnO Nanoparticles Decorated on 3D Reduced Graphene Oxide[J]. Applied Surface Science, 2018, 434: 1048-1054.
[27] MAIER K, HELWIG A, MÜLLER G, et al. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors[J]. Materials, 2015, 8(9): 6570-6588.
[28] MAHDAVI H, RAHBARPOUR S, GOLDOUST R, et al. Investigating Simultaneous Effects of Flow Rate and Chamber Structure on the Performance of Metal Oxide Gas Sensors[J]. IEEE Sensors Journal, 2021, 21(19): 21612-21621.
[29] LI Z, YAO Z, HAIDRY A A, et al. Resistive-Type Hydrogen Gas Sensor Based on TiO2: A Review[J]. International Journal of Hydrogen Energy, 2018, 43(45): 21114-21132.
[30] BHATI V S, HOJAMBERDIEV M, KUMAR M. Enhanced Sensing Performance of ZnO Nanostructures-Based Gas Sensors: A Review[J]. Energy Reports, 2020, 6: 46-62.
[31] Ochoa-Muñoz Y H, MEJÍA DE GUTIÉRREZ R, Rodríguez-Páez J E. Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review [J]. Molecules, 2023, 28(3): 1150.
[32] CHEN Y, XU P, XU T, et al. ZnO-nanowire Size Effect Induced Ultra-High Sensing Response to Ppb-Level H2S[J]. Sensors and Actuators B: Chemical, 2017, 240: 264-272.
[33] LI M, LUO W, YAN W. Low Concentration CO Gas Sensor Based on Pulsed-Heating and Wafer-Level Fabricated MEMS Hotplate[J]. IEEE Electron Device Letters, 2024: 1-1.
[34] CHEN Y, LI M, YAN W, et al. Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater[J]. ACS Omega, 2021, 6(2): 1216-1222.
[35] BURGUÉS J, MARCO S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors[J]. Sensors, 2018, 18(2): 339.
[36] ARTURSSON T, EKLV T, LUNDSTRM I, et al. Drift Correction for Gas Sensors Using Multivariate Methods[J]. Journal of Chemometrics, 2000, 14(5-6): 711-723.
[37] LIU B, WU X, KAM K W L, et al. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds[J]. ACS Sensors, 2019, 4(11): 3051-3055.
[38] SONG H, MA L, PEI S, et al. Quantitative Detection of Formaldehyde and Ammonia Using a Yttrium-Doped ZnO Sensor Array Combined with a Back-Propagation Neural Network Model [J]. Sensors and Actuators A: Physical, 2021, 331: 112940.
[39] DAVIDE F, DI NATALE C, HOLMBERG M, et al. Frequency analysis of drift in chemical sensors[C]//Proceedings of the 1st Italian Conference on Sensors and Microsystems, Rome, Italy. 1996: 150-154.
[40] ROMAIN A C, NICOLAS J. Monitoring an Odour in the Environment with an Electronic Nose: Requirements for the Signal Processing[M]//KACPRZYK J, GUTIÉRREZ A, MARCOS. Biologically Inspired Signal Processing for Chemical Sensing: Vol. 188. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 121-135.
[41] SUEMATSU K, HARANO W, OYAMA T, et al. Pulse-Driven Semiconductor Gas Sensors Toward Ppt Level Toluene Detection[J]. Analytical Chemistry, 2018, 90(19): 11219-11223.
[42] YAN J, GUO X, DUAN S, et al. Electronic Nose Feature Extraction Methods: A Review[J]. Sensors, 2015, 15(11): 27804-27831.
[43] HUANG P, WANG Q, CHEN H, et al. Gas Sensor Array Fault Diagnosis Based on Multi- Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning[J]. Sensors, 2023, 23 (18): 7836.
[44] LI X, GUO J, XU W, et al. Optimization of the Mixed Gas Detection Method Based on Neural Network Algorithm[J]. ACS Sensors, 2023, 8(2): 822-828.
[45] WU X, ZHAO Z, WANG L. Deep Belief Network Based Coal Mine Methane Sensor Data Classification[J]. Journal of Physics: Conference Series, 2019, 1302(3): 032013.
[46] DENTONI L, CAPELLI L, SIRONI S, et al. Development of an Electronic Nose for Environmental Odour Monitoring[J]. Sensors, 2012, 12(11): 14363-14381.
[47] BAG A, LEE N E. Recent Advancements in Development of Wearable Gas Sensors[J]. Advanced Materials Technologies, 2021, 6(3): 2000883.
[48] SONG Z, YE W, CHEN Z, et al. Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes[J]. ACS Nano, 2021, 15(4): 7659-7667.
[49] IDREES Z, ZOU Z, ZHENG L. Edge Computing Based IoT Architecture for Low Cost Air Pollution Monitoring Systems: A Comprehensive System Analysis, Design Considerations & Development[J]. Sensors, 2018, 18(9): 3021.
[50] KIM K H, KIM H D. Deep Sleep Mode Based NodeMCU-Enabled Humidity Sensor Nodes Monitoring for Low-Power IoT[J]. Transactions on Electrical and Electronic Materials, 2020, 21(6): 617-620.
[51] RAHMAN S, ALWADIE A S, IRFAN M, et al. Wireless E-Nose Sensors to Detect Volatile Organic Gases through Multivariate Analysis[J]. Micromachines, 2020, 11(6): 597.
[52] CHIOU J C, WU C C. A Wearable and Wireless Gas-Sensing System Using Flexible Polymer/Multi-Walled Carbon Nanotube Composite Films[J]. Polymers, 2017, 9(12): 457.
[53] KUNT T A, MCAVOY T J, CAVICCHI R E, et al. Optimization of Temperature Programmed Sensing for Gas Identification Using Micro-Hotplate Sensors[J]. Sensors and Actuators B: Chemical, 1998, 53(1-2): 24-43.
[54] DING J, MCAVOY T J, CAVICCHI R E, et al. Surface State Trapping Models for SnO2-based Microhotplate Sensors[J]. Sensors and Actuators B: Chemical, 2001, 77(3): 597-613.
[55] SCHULTEALBERT C, BAUR T, SCHÜTZE A, et al. A Novel Approach towards Calibrated Measurement of Trace Gases Using Metal Oxide Semiconductor Sensors[J]. Sensors and Actuators B: Chemical, 2017, 239: 390-396.
[56] Schweizer-Berberich M, ZDRALEK M, WEIMAR U, et al. Pulsed Mode of Operation and Artificial Neural Network Evaluation for Improving the CO Selectivity of SnO2 Gas Sensors [J]. Sensors and Actuators B: Chemical, 2000, 65(1-3): 91-93.
[57] BAUR T, AMANN J, SCHULTEALBERT C, et al. Field Study of Metal Oxide Semiconductor Gas Sensors in Temperature Cycled Operation for Selective VOC Monitoring in Indoor Air[J]. Atmosphere, 2021, 12(5): 647.
[58] DU Y, HUANG Y, WAN G, et al. Deep Learning-Based Cyber–Physical Feature Fusion for Anomaly Detection in Industrial Control Systems[J]. Mathematics, 2022, 10(22): 4373.
[59] DU Y, SONG W, HE Q, et al. Deep Learning with Multi-Scale Feature Fusion in Remote Sensing for Automatic Oceanic Eddy Detection[J]. Information Fusion, 2019, 49: 89-99.
[60] DANG H V, Tran-Ngoc H, NGUYEN T V, et al. Data-Driven Structural Health Monitoring Using Feature Fusion and Hybrid Deep Learning[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 2087-2103.
[61] LIU Z, HU Y, CARRANZA G E, et al. An Intelligent Gas Analysis System Consisting of Sensors and a Neural Network Implemented Using Thin-Film Transistors[C]//2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). Munich, Germany: IEEE, 2023: 259-262.
[62] MIAO G Y, CHEN S S, WANG Y J, et al. SnO2 Nanostructures Exposed with Various Crystal Facets for Temperature-Modulated Sensing of Volatile Organic Compounds[J]. ACS Applied Nano Materials, 2022, 5(8): 10636-10644.
[63] MAGNO M, JELICIC V, CHIKKADI K, et al. Low-Power Gas Sensing Using Carbon Nanotubes in Wearable Devices[J]. IEEE Sensors Journal, 2016: 1-1.
[64] POTYRAILO R A, SURMAN C, NAGRAJ N, et al. Materials and Transducers Toward Selective Wireless Gas Sensing[J]. Chemical Reviews, 2011, 111(11): 7315-7354.
[65] SOMOV A, KARPOV E F, KARPOVA E, et al. Compact Low Power Wireless Gas Sensor Node With Thermo Compensation for Ubiquitous Deployment[J]. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1660-1670.
[66] SEO M H, KIM K H, JO M S, et al. Long-Term Reliable Wireless H2 Gas Sensor via Repeatable Thermal Refreshing of Palladium Nanowire[R]. In Review, 2024.
[67] ZHAO C, GONG H, NIU G, et al. Ultrasensitive SO2 Sensor for Sub-Ppm Detection Using Cudoped SnO2 Nanosheet Arrays Directly Grown on Chip[J]. Sensors and Actuators B: Chemical, 2020, 324: 128745.
[68] KE F, ZHANG Q, JI L, et al. Electrostatic Adhesion of Polyaniline on Carboxylated Polyacrylonitrile Fabric for High-Performance Wearable Ammonia Sensor[J]. Composites Communications, 2021, 27: 100817.
[69] LUO H, SHI J, LIU C, et al. Design of p–p Heterojunctions Based on CuO Decorated WS2 Nanosheets for Sensitive NH3 Gas Sensing at Room Temperature[J]. Nanotechnology, 2021, 32(44): 445502.
[70] ACHARY L S K, KUMAR A, BARIK B, et al. Reduced Graphene Oxide-CuFe2O4 Nanocomposite: A Highly Sensitive Room Temperature NH3 Gas Sensor[J]. Sensors and Actuators B: Chemical, 2018, 272: 100-109.
[71] WANG H, NIE S, LI H, et al. 3D Hollow Quasi-Graphite Capsules/Polyaniline Hybrid with a High Performance for Room-Temperature Ammonia Gas Sensors[J]. ACS Sensors, 2019, 4(9): 2343-2350.
[72] YEH Y M, CHANG S J, WANG P H, et al. A Room-Temperature TiO2 -Based Ammonia Gas Sensor with Three-Dimensional Through-Silicon-Via Structure[J]. ECS Journal of Solid State Science and Technology, 2022, 11(6): 067002.
[73] WANG T, SUN Z, HUANG D, et al. Studies on NH3 Gas Sensing by Zinc Oxide Nanowire- Reduced Graphene Oxide Nanocomposites[J]. Sensors and Actuators B: Chemical, 2017, 252: 284-294.
[74] WU M, HE M, HU Q, et al. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature[J]. ACS Sensors, 2019, 4(10): 2763-2770.
[75] LIU A, LV S, JIANG L, et al. The Gas Sensor Utilizing Polyaniline/ MoS2 Nanosheets/ SnO2 Nanotubes for the Room Temperature Detection of Ammonia[J]. Sensors and Actuators B: Chemical, 2021, 332: 129444.
[76] GAVGANI J N, HASANI A, NOURI M, et al. Highly Sensitive and Flexible Ammonia Sensor Based on S and N Co-Doped Graphene Quantum Dots/Polyaniline Hybrid at Room Temperature [J]. Sensors and Actuators B: Chemical, 2016, 229: 239-248.
[77] BALAMURUGAN C, LEE D W. A Selective NH3 Gas Sensor Based on Mesoporous P-Type NiV2O6 Semiconducting Nanorods Synthesized Using Solution Method[J]. Sensors and Actuators B: Chemical, 2014, 192: 414-422.
[78] INOUE S, KOKABU T, MATSUMURA Y. Effects of Physical and Chemical Adsorption on the Electric Conductance of Carbon Nanotube Films[J]. AIP Advances, 2018, 8(1): 015222.
[79] KOKABU T, TAKASHIMA K, INOUE S, et al. Transport Phenomena of Electrons at the Carbon Nanotube Interface with Molecular Adsorption[J]. Journal of Applied Physics, 2017, 122(1): 015308.
[80] KROES J M H, PIETRUCCI F, CHIKKADI K, et al. The Response of Single-Walled Carbon Nanotubes to NO2 and the Search for a Long-Living Adsorbed Species[J]. Applied Physics Letters, 2016, 108(3): 033111.
[81] PENG L M, ZHANG Z, WANG S. Carbon Nanotube Electronics: Recent Advances[J]. Materials Today, 2014, 17(9): 433-442.
[82] SCHROEDER V, SAVAGATRUP S, HE M, et al. Carbon Nanotube Chemical Sensors[J]. Chemical Reviews, 2019, 119(1): 599-663.
[83] VASQUEZ S, COSTA ANGELI M A, PETRELLI M, et al. Comparison of Printing Techniques for the Fabrication of Flexible Carbon Nanotube-Based Ammonia Chemiresistive Gas Sensors [J]. Flexible and Printed Electronics, 2023, 8(3): 035012.
[84] PARK J, RYU C, JANG I R, et al. A Study of Strain Effect on Stretchable Carbon Nanotube Gas Sensors[J]. Materials Today Communications, 2022, 33: 105007.
[85] ABDO A I, SHI D, LI J, et al. Ammonia Emission from Staple Crops in China as Response to Mitigation Strategies and Agronomic Conditions: Meta-analytic Study[J]. Journal of Cleaner Production, 2021, 279: 123835.
[86] KAR P, CHOUDHURY A. Carboxylic Acid Functionalized Multi-Walled Carbon Nanotube Doped Polyaniline for Chloroform Sensors[J]. Sensors and Actuators B: Chemical, 2013, 183: 25-33.
[87] KUMAR L, RAWAL I, KAUR A, et al. Flexible Room Temperature Ammonia Sensor Based on Polyaniline[J]. Sensors and Actuators B: Chemical, 2017, 240: 408-416.
[88] MA J, FAN H, LI Z, et al. Multi-Walled Carbon Nanotubes/Polyaniline on the Ethylenediamine Modified Polyethylene Terephthalate Fibers for a Flexible Room Temperature Ammonia Gas Sensor with High Responses[J]. Sensors and Actuators B: Chemical, 2021, 334: 129677.
[89] WU T, LV D, SHEN W, et al. Trace-Level Ammonia Detection at Room Temperature Based on Porous Flexible Polyaniline/Polyvinylidene Fluoride Sensing Film with Carbon Nanotube Additives[J]. Sensors and Actuators B: Chemical, 2020, 316: 128198.
[90] ZHU C, ZHOU T, XIA H, et al. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety[J]. Nanomaterials, 2023, 13(7): 1158.
[91] MA X, WANG P, HUANG L, et al. A Monolithically Integrated In-Textile Wristband for Wireless Epidermal Biosensing[J]. Science Advances, 2023, 9(45): eadj2763.
[92] XUE L, WANG W, GUO Y, et al. Flexible Polyaniline/Carbon Nanotube Nanocomposite Film- Based Electronic Gas Sensors[J]. Sensors and Actuators B: Chemical, 2017, 244: 47-53.
[93] PENG X, HAN Y, ZHANG Q, et al. Performance Improvement of MoS2 Gas Sensor at Room Temperature[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4644-4650.
[94] WANG C, YIN L, ZHANG L, et al. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors[J]. Sensors, 2010, 10(3): 2088-2106.
[95] SUN G, WANG H, JIANG Z, et al. Note: Response Characteristics of the Sensor Based on LaF2 Thin Film to Different Humidified Gases[J]. Review of Scientific Instruments, 2012, 83 (5): 056103.
[96] SASAHARA T, NISHIMURA M, ISHIHARA H, et al. Detection of Volatile Organic Compounds by a Catalytic Combustion Sensor under Pulse Heating Operation[J]. Electrochemistry, 2003, 71: 457-462.
[97] TRIANTAFYLLOPOULOU R, TSAMIS C. Detection of CO and NO Using Low Power Metal Oxide Sensors[J]. physica status solidi (a), 2008, 205(11): 2643-2646.
[98] PALACIO F, FONOLLOSA J, BURGUES J, et al. Pulsed-Temperature Metal Oxide Gas Sensors for Microwatt Power Consumption[J]. IEEE Access, 2020, 8: 70938-70946.
[99] CHAI H, ZHENG Z, LIU K, et al. Stability of Metal Oxide Semiconductor Gas Sensors: A Review[J]. IEEE Sensors Journal, 2022, 22(6): 5470-5481.
[100] DENNLER N, RASTOGI S, FONOLLOSA J, et al. Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks[J]. Sensors and Actuators B: Chemical, 2022, 361: 131668.
[101] XUE S, CAO S, HUANG Z, et al. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review[J]. Materials, 2021, 14(15).
[102] SUEMATSU K, HIROYAMA Y, HARANO W, et al. Double-Step Modulation of the Pulse- Driven Mode for a High-Performance SnO2 Micro Gas Sensor: Designing the Particle Surface via a Rapid Preheating Process[J]. ACS Sensors, 2020, 5(11): 3449-3456.
[103] FORT A, MUGNAINI M, ROCCHI S, et al. Simplified Models for SnO2 Sensors during Chemical and Thermal Transients in Mixtures of Inert, Oxidizing and Reducing Gases[J]. Sensors and Actuators B: Chemical, 2007, 124(1): 245-259.
[104] FABRIS F, DE MAGALHES J P, FREITAS A A. A review of supervised machine learning applied to ageing research[J]. Biogerontology, 2017, 18(2): 171-188.
[105] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1): 44-53.
[106] HU Y, TIAN Y, ZHUANG Y, et al. Rapid Gas Sensing Based on Pulse Heating and Deep Learning[C]//2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). Gainesville, FL, USA: IEEE, 2021: 438-441.
[107] CHEN Y, ZHANG D. Integration of Knowledge and Data in Machine Learning:arXiv:2202.10337[M]. arXiv, 2022.
[108] WU Z, ZHANG H, JI H, et al. Novel Combined Waveform Temperature Modulation Method of NiO-In2O3 Based Gas Sensor for Measuring and Identifying VOC Gases[J]. Journal of Alloys and Compounds, 2022, 918: 165510.
[109] LIU Y, ZHAO C, LIN J, et al. Classification and Concentration Prediction of VOC Gases Based on Sensor Array with Machine Learning Algorithms[C]//2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). San Diego, CA, USA: IEEE, 2020: 295-300.
[110] LEE K, CHO I, KANG M, et al. Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning[J]. ACS Nano, 2023, 17(1): 539-551.
[111] JI H, YUAN Z, ZHU H, et al. Dynamic Temperature Modulation Measurement of VOC Gases Based on SnO2 Gas Sensor[J]. IEEE Sensors Journal, 2022, 22(15): 14708-14716.
[112] REN W, ZHAO C, NIU G, et al. Gas Sensor Array with Pattern Recognition Algorithms for Highly Sensitive and Selective Discrimination of Trimethylamine[J]. Advanced Intelligent Systems, 2022, 4(12): 2200169.
[113] MA D, GAO J, ZHANG Z, et al. Gas Recognition Method Based on the Deep Learning Model of Sensor Array Response Map[J]. Sensors and Actuators B: Chemical, 2021, 330: 129349.
[114] ACHARYYA S, NAG S, KIMBAHUNE S, et al. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor[J]. ACS Sensors, 2021, 6(6): 2218-2224.
[115] PONZONI A, BARATTO C, CATTABIANI N, et al. Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy)[J]. Sensors, 2017, 17(4): 714.
[116] GALSTYAN V, COMINI E, BARATTO C, et al. Large Surface Area Biphase Titania for Chemical Sensing[J]. Sensors and Actuators B: Chemical, 2015, 209: 1091-1096.
[117] KUMAR N, PRAJESH R. Selectivity Enhancement for Metal Oxide (MOX) Based Gas Sensor Using Thermally Modulated Datasets Coupled with Golden Section Optimization and Chemometric Techniques[J]. Review of Scientific Instruments, 2022, 93(6): 064702.
[118] MA D, GAO J, ZHANG Z, et al. Gas Recognition Method Based on the Deep Learning Model of Sensor Array Response Map[J]. Sensors and Actuators B: Chemical, 2021, 330: 129349.
[119] PFEIFFER M, PFEIL T. Deep Learning With Spiking Neurons: Opportunities and Challenges [J]. Frontiers in Neuroscience, 2018, 12: 774.
[120] LEE K, CHO I, PARK I. E-Nose System Based on Ultra-Low Power Single Micro-LED Gas Sensor and Deep Learning[C]//2023 IEEE SENSORS. Vienna, Austria: IEEE, 2023: 1-4.
[121] CHO I, LEE K, SIM Y C, et al. Deep-Learning-Based Gas Identification by Time-Variant Illumination of a Single Micro-LED-embedded Gas Sensor[J]. Light: Science & Applications, 2023, 12(1): 95.
[122] FORT A, ROCCHI S, Serrano-Santos M B, et al. Surface State Model for Conductance Responses During Thermal-Modulation of SnO2-Based Thick Film Sensors: Part IModel Derivation[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2102-2106.”
修改评论