中文版 | English
题名

低功耗高性能智能化气体传感器系统及其应用研究

其他题名
RESEARCH ON LOW-POWER HIGH-PERFORMANCE INTELLIGENT GAS SENSOR SYSTEM AND ITS APPLICATION
姓名
姓名拼音
ZHUANG Yi
学号
12131139
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
汪飞
导师单位
深港微电子学院
论文答辩日期
2024-05-06
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

      气体传感器在新能源、医疗、电力等多个关键行业中扮演着重要角色,尤其在
环境监测、智能家居和健康监测等领域。随着对气体传感器性能要求的提升,市场
对低功耗、智能化和高性能传感器的需求日益增长。本文针对气体传感器在发展
中遇到的挑战,如如何实现低功耗气体传感、机器学习算法的理论指导缺乏、高
精度多任务检测难题以及边缘端设备算法部署限制,提出了一系列创新解决方案。
       首先,本文第二章介绍了一种基于多壁碳纳米管(MWCNTs)和聚苯胺(PANI)
的室温氨气传感器,这种传感器在PET 基底上通过柔性电子打印技术制备叉指电
极,随后涂覆敏感材料并进行干燥处理,形成具有粗糙表面和多孔结构的传感器,
实现了低功耗气体检测。但是室温检测的方法容易受到环境因素的干扰。因此,提
出了采用脉冲加热技术,更加高效的利用金属氧化物气体传感器的微加热板的加
热能力,将传统气体传感的功耗从几十毫瓦降低到十毫瓦以内,实现了一种低功
耗下的高温气体传感方式。
       在第三章中,提出了基于脉冲加热的测试方法,在低功耗的基础上,提高气体
传感器的信号稳定性和精确度。脉冲加热模式下的传感器响应具有良好的可重复
性和独立性,有助于减少测试过程中的干扰,提升数据集的准确性和可靠性。通
过表面态捕获模型解析脉冲加热下电导变化与微观物理参数的关系,提取与气体
浓度相关的参数速率𝛽,虽然直接通过𝛽 进行浓度回归的准确性有限,但其有助
于构建更准确的浓度回归模型。结合机器学习算法,特别是深度学习模型,可以
有效融合𝛽 参数和其他传感器数据,实现气体浓度的精确识别和预测。
      第四章在单脉冲气体浓度检测的基础下,进一步提出了基于多脉冲测试数据
的双损失函数模型和联合模型,针对传统算法在同时检测气体浓度和种类方面的
不足,双损失函数模型通过调整损失函数权重,优先提升分类精度,再提升回归精
度,以提高模型准确性。联合模型则通过将分类和回归任务分配给两个深度学习
模型,并采用级联或模型选择的方式整合,实现了更高效的气体检测。
      最后,基于前四章的研究基础,第五章介绍了基于脉冲方法的晶圆级气体传
感器质检系统和无线智能气体传感系统。晶圆级系统利用脉冲加热快速测试的特
性,通过高效的片上检测提升了生产效率并降低了成本。无线智能气体传感系统
则通过将先前学习得到的深度学习模型部署到云端,实现了低功耗、智能化、高
性能的气体传感,推动了气体传感器在低功耗和智能化方面的功能发展,满足了生产和生活中对气体传感器系统的更多需求。
       本文针对低功耗、高性能智能气体传感系统的研发,从材料选择、传感器制
备、测试方法优化到机器学习算法设计,开展了一系列深入研究和实践,成功开发
出具有良好性能和应用前景的柔性室温氨气传感器,并提出了基于金属氧化物气
体传感器的脉冲加热和多任务机器学习的先进测试策略,为推动气体传感技术的
智能化、低功耗化发展做出了积极贡献。这些研究成果不仅丰富了气体传感技术
理论,也为未来智能设备、环保监测、健康监测等领域的实际应用提供了有力的
技术支撑。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] PIJOLAT C, RIVIERE B, KAMIONKA M, et al. Tin Dioxide Gas Sensor as a Tool for Atmospheric Pollution Monitoring: Problems and Possibilities for Improvements[J]. CHEMICAL SENSORS, 2003, 38: 4333-4346.
[2] ROMAIN A, NICOLAS J. Long Term Stability of Metal Oxide-Based Gas Sensors for e-Nose Environmental Applications: An Overview[J]. Sensors and Actuators B: Chemical, 2010, 146 (2): 502-506.
[3] TARDY P, COULON J R, LUCAT C, et al. Dynamic Thermal Conductivity Sensor for Gas Detection[J]. Sensors and Actuators B: Chemical, 2004, 98(1): 63-68.
[4] KHAN M, RAO M, LI Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S[J]. Sensors, 2019, 19(4): 905.
[5] BAETZ W, KROLL A, BONOW G. Mobile Robots with Active IR-optical Sensing for Remote Gas Detection and Source Localization[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 2773-2778.
[6] DEY A. Semiconductor Metal Oxide Gas Sensors: A Review[J]. Materials Science and Engineering: B, 2018, 229: 206-217.
[7] SEIYAMA T, KATO A, FUJIISHI K, et al. A New Detector for Gaseous Components Using Semiconductive Thin Films.[J]. Analytical Chemistry, 1962, 34(11): 1502-1503.
[8] PINK H, TISCHER P. Gas-Detection by Metal-Oxide Semiconductors[J]. Siemens Forschungs- Und Entwicklungsberichte-Siemens Research and Development Reports, 1981, 10(2): 78-82.
[9] EICKER H, KARTENBERG HJ, JACOB H. A Study of New Measuring Techniques withMetal-Oxide Semiconductors Designed to Monitor Carbon Oxide Concentrations[J]. Technisches Messen, 1981, 48(12): 421-430.
[10] POTEAT T, LALEVIC B. Transition Metal-Gate MOS Gaseous Detectors[J]. IEEE Transactions on Electron Devices, 1982, 29(1): 123-129.
[11] NIU G, WANG F. A Review of MEMS-based Metal Oxide Semiconductors Gas Sensor in Mainland China[J]. Journal of Micromechanics and Microengineering, 2022, 32(5): 054003.
[12] KIM H J, LEE J H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview[J]. Sensors and Actuators B: Chemical, 2014, 192: 607-627.
[13] DAI T, MENG G, DENG Z, et al. Generic Approach to Boost the Sensitivity of Metal Oxide Sensors by Decoupling the Surface Charge Exchange and Resistance Reading Process[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37295-37304.
[14] LIU X, CHENG ST, LIU H, et al. A Survey on Gas Sensing Technology[J]. SENSORS, 2012, 12(7): 9635-9665.
[15] 炜盛GM-302B 酒精气体传感器数据手册[M]. http://style.winsensor.com/pro_pdf/GM302B.pdf.
[16] KOROTCENKOV G. Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice?[J]. Materials Science and Engineering: B, 2007, 139(1): 1-23.
[17] HUANG J. Gas Sensors Based on Semiconducting Metal Oxide[J]. Sensors, 2009, 9: 9903- 9924.
[18] KRISHNA K G, PARNE S, POTHUKANURI N, et al. Nanostructured Metal OxideSemiconductor-Based Gas Sensors: A Comprehensive Review[J]. Sensors and Actuators A: Physical, 2022, 341: 113578.
[19] JI H, ZENG W, LI Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review[J]. Nanoscale, 2019, 11(47): 22664-22684.
[20] GURLO A. Interplay between O2 and SnO2 : Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen[J]. ChemPhysChem, 2006, 7(10): 2041-2052.
[21] PAGNIER T, BOULOVA M, GALERIE A, et al. Reactivity of SnO2–CuO Nanocrystalline Materials with H2S: A Coupled Electrical and Raman Spectroscopic Study[J]. Sensors and Actuators B: Chemical, 2000, 71(1-2): 134-139.
[22] ZHU L, ZENG W. Room-Temperature Gas Sensing of ZnO-based Gas Sensor: A Review[J]. Sensors and Actuators A: Physical, 2017, 267: 242-261.
[23] HU K, WANG F, LIU H, et al. Enhanced Hydrogen Gas Sensing Properties of Pd-doped SnO2 Nanofibres by Ar Plasma Treatment[J]. Ceramics International, 2020, 46(2): 1609-1614.
[24] UDDIN A I, YAQOOB U, PHAN D T, et al. A Novel Flexible Acetylene Gas Sensor Based on PI/PTFE-supported Ag-loaded Vertical ZnO Nanorods Array[J]. Sensors and Actuators B:Chemical, 2016, 222: 536-543.
[25] YANG M, LU J, WANG X, et al. Acetone Sensors with High Stability to Humidity Changes Based on Ru-doped NiO Flower-like Microspheres[J]. Sensors and Actuators B: Chemical, 2020, 313: 127965.
[26] HA N H, THINH D D, HUONG N T, et al. Fast Response of Carbon Monoxide Gas Sensors Using a Highly Porous Network of ZnO Nanoparticles Decorated on 3D Reduced Graphene Oxide[J]. Applied Surface Science, 2018, 434: 1048-1054.
[27] MAIER K, HELWIG A, MÜLLER G, et al. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors[J]. Materials, 2015, 8(9): 6570-6588.
[28] MAHDAVI H, RAHBARPOUR S, GOLDOUST R, et al. Investigating Simultaneous Effects of Flow Rate and Chamber Structure on the Performance of Metal Oxide Gas Sensors[J]. IEEE Sensors Journal, 2021, 21(19): 21612-21621.
[29] LI Z, YAO Z, HAIDRY A A, et al. Resistive-Type Hydrogen Gas Sensor Based on TiO2: A Review[J]. International Journal of Hydrogen Energy, 2018, 43(45): 21114-21132.
[30] BHATI V S, HOJAMBERDIEV M, KUMAR M. Enhanced Sensing Performance of ZnO Nanostructures-Based Gas Sensors: A Review[J]. Energy Reports, 2020, 6: 46-62.
[31] Ochoa-Muñoz Y H, MEJÍA DE GUTIÉRREZ R, Rodríguez-Páez J E. Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review [J]. Molecules, 2023, 28(3): 1150.
[32] CHEN Y, XU P, XU T, et al. ZnO-nanowire Size Effect Induced Ultra-High Sensing Response to Ppb-Level H2S[J]. Sensors and Actuators B: Chemical, 2017, 240: 264-272.
[33] LI M, LUO W, YAN W. Low Concentration CO Gas Sensor Based on Pulsed-Heating and Wafer-Level Fabricated MEMS Hotplate[J]. IEEE Electron Device Letters, 2024: 1-1.
[34] CHEN Y, LI M, YAN W, et al. Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater[J]. ACS Omega, 2021, 6(2): 1216-1222.
[35] BURGUÉS J, MARCO S. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors[J]. Sensors, 2018, 18(2): 339.
[36] ARTURSSON T, EKLV T, LUNDSTRM I, et al. Drift Correction for Gas Sensors Using Multivariate Methods[J]. Journal of Chemometrics, 2000, 14(5-6): 711-723.
[37] LIU B, WU X, KAM K W L, et al. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds[J]. ACS Sensors, 2019, 4(11): 3051-3055.
[38] SONG H, MA L, PEI S, et al. Quantitative Detection of Formaldehyde and Ammonia Using a Yttrium-Doped ZnO Sensor Array Combined with a Back-Propagation Neural Network Model [J]. Sensors and Actuators A: Physical, 2021, 331: 112940.
[39] DAVIDE F, DI NATALE C, HOLMBERG M, et al. Frequency analysis of drift in chemical sensors[C]//Proceedings of the 1st Italian Conference on Sensors and Microsystems, Rome, Italy. 1996: 150-154.
[40] ROMAIN A C, NICOLAS J. Monitoring an Odour in the Environment with an Electronic Nose: Requirements for the Signal Processing[M]//KACPRZYK J, GUTIÉRREZ A, MARCOS. Biologically Inspired Signal Processing for Chemical Sensing: Vol. 188. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 121-135.
[41] SUEMATSU K, HARANO W, OYAMA T, et al. Pulse-Driven Semiconductor Gas Sensors Toward Ppt Level Toluene Detection[J]. Analytical Chemistry, 2018, 90(19): 11219-11223.
[42] YAN J, GUO X, DUAN S, et al. Electronic Nose Feature Extraction Methods: A Review[J]. Sensors, 2015, 15(11): 27804-27831.
[43] HUANG P, WANG Q, CHEN H, et al. Gas Sensor Array Fault Diagnosis Based on Multi- Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning[J]. Sensors, 2023, 23 (18): 7836.
[44] LI X, GUO J, XU W, et al. Optimization of the Mixed Gas Detection Method Based on Neural Network Algorithm[J]. ACS Sensors, 2023, 8(2): 822-828.
[45] WU X, ZHAO Z, WANG L. Deep Belief Network Based Coal Mine Methane Sensor Data Classification[J]. Journal of Physics: Conference Series, 2019, 1302(3): 032013.
[46] DENTONI L, CAPELLI L, SIRONI S, et al. Development of an Electronic Nose for Environmental Odour Monitoring[J]. Sensors, 2012, 12(11): 14363-14381.
[47] BAG A, LEE N E. Recent Advancements in Development of Wearable Gas Sensors[J]. Advanced Materials Technologies, 2021, 6(3): 2000883.
[48] SONG Z, YE W, CHEN Z, et al. Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes[J]. ACS Nano, 2021, 15(4): 7659-7667.
[49] IDREES Z, ZOU Z, ZHENG L. Edge Computing Based IoT Architecture for Low Cost Air Pollution Monitoring Systems: A Comprehensive System Analysis, Design Considerations & Development[J]. Sensors, 2018, 18(9): 3021.
[50] KIM K H, KIM H D. Deep Sleep Mode Based NodeMCU-Enabled Humidity Sensor Nodes Monitoring for Low-Power IoT[J]. Transactions on Electrical and Electronic Materials, 2020, 21(6): 617-620.
[51] RAHMAN S, ALWADIE A S, IRFAN M, et al. Wireless E-Nose Sensors to Detect Volatile Organic Gases through Multivariate Analysis[J]. Micromachines, 2020, 11(6): 597.
[52] CHIOU J C, WU C C. A Wearable and Wireless Gas-Sensing System Using Flexible Polymer/Multi-Walled Carbon Nanotube Composite Films[J]. Polymers, 2017, 9(12): 457.
[53] KUNT T A, MCAVOY T J, CAVICCHI R E, et al. Optimization of Temperature Programmed Sensing for Gas Identification Using Micro-Hotplate Sensors[J]. Sensors and Actuators B: Chemical, 1998, 53(1-2): 24-43.
[54] DING J, MCAVOY T J, CAVICCHI R E, et al. Surface State Trapping Models for SnO2-based Microhotplate Sensors[J]. Sensors and Actuators B: Chemical, 2001, 77(3): 597-613.
[55] SCHULTEALBERT C, BAUR T, SCHÜTZE A, et al. A Novel Approach towards Calibrated Measurement of Trace Gases Using Metal Oxide Semiconductor Sensors[J]. Sensors and Actuators B: Chemical, 2017, 239: 390-396.
[56] Schweizer-Berberich M, ZDRALEK M, WEIMAR U, et al. Pulsed Mode of Operation and Artificial Neural Network Evaluation for Improving the CO Selectivity of SnO2 Gas Sensors [J]. Sensors and Actuators B: Chemical, 2000, 65(1-3): 91-93.
[57] BAUR T, AMANN J, SCHULTEALBERT C, et al. Field Study of Metal Oxide Semiconductor Gas Sensors in Temperature Cycled Operation for Selective VOC Monitoring in Indoor Air[J]. Atmosphere, 2021, 12(5): 647.
[58] DU Y, HUANG Y, WAN G, et al. Deep Learning-Based Cyber–Physical Feature Fusion for Anomaly Detection in Industrial Control Systems[J]. Mathematics, 2022, 10(22): 4373.
[59] DU Y, SONG W, HE Q, et al. Deep Learning with Multi-Scale Feature Fusion in Remote Sensing for Automatic Oceanic Eddy Detection[J]. Information Fusion, 2019, 49: 89-99.
[60] DANG H V, Tran-Ngoc H, NGUYEN T V, et al. Data-Driven Structural Health Monitoring Using Feature Fusion and Hybrid Deep Learning[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(4): 2087-2103.
[61] LIU Z, HU Y, CARRANZA G E, et al. An Intelligent Gas Analysis System Consisting of Sensors and a Neural Network Implemented Using Thin-Film Transistors[C]//2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS). Munich, Germany: IEEE, 2023: 259-262.
[62] MIAO G Y, CHEN S S, WANG Y J, et al. SnO2 Nanostructures Exposed with Various Crystal Facets for Temperature-Modulated Sensing of Volatile Organic Compounds[J]. ACS Applied Nano Materials, 2022, 5(8): 10636-10644.
[63] MAGNO M, JELICIC V, CHIKKADI K, et al. Low-Power Gas Sensing Using Carbon Nanotubes in Wearable Devices[J]. IEEE Sensors Journal, 2016: 1-1.
[64] POTYRAILO R A, SURMAN C, NAGRAJ N, et al. Materials and Transducers Toward Selective Wireless Gas Sensing[J]. Chemical Reviews, 2011, 111(11): 7315-7354.
[65] SOMOV A, KARPOV E F, KARPOVA E, et al. Compact Low Power Wireless Gas Sensor Node With Thermo Compensation for Ubiquitous Deployment[J]. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1660-1670.
[66] SEO M H, KIM K H, JO M S, et al. Long-Term Reliable Wireless H2 Gas Sensor via Repeatable Thermal Refreshing of Palladium Nanowire[R]. In Review, 2024.
[67] ZHAO C, GONG H, NIU G, et al. Ultrasensitive SO2 Sensor for Sub-Ppm Detection Using Cudoped SnO2 Nanosheet Arrays Directly Grown on Chip[J]. Sensors and Actuators B: Chemical, 2020, 324: 128745.
[68] KE F, ZHANG Q, JI L, et al. Electrostatic Adhesion of Polyaniline on Carboxylated Polyacrylonitrile Fabric for High-Performance Wearable Ammonia Sensor[J]. Composites Communications, 2021, 27: 100817.
[69] LUO H, SHI J, LIU C, et al. Design of p–p Heterojunctions Based on CuO Decorated WS2 Nanosheets for Sensitive NH3 Gas Sensing at Room Temperature[J]. Nanotechnology, 2021, 32(44): 445502.
[70] ACHARY L S K, KUMAR A, BARIK B, et al. Reduced Graphene Oxide-CuFe2O4 Nanocomposite: A Highly Sensitive Room Temperature NH3 Gas Sensor[J]. Sensors and Actuators B: Chemical, 2018, 272: 100-109.
[71] WANG H, NIE S, LI H, et al. 3D Hollow Quasi-Graphite Capsules/Polyaniline Hybrid with a High Performance for Room-Temperature Ammonia Gas Sensors[J]. ACS Sensors, 2019, 4(9): 2343-2350.
[72] YEH Y M, CHANG S J, WANG P H, et al. A Room-Temperature TiO2 -Based Ammonia Gas Sensor with Three-Dimensional Through-Silicon-Via Structure[J]. ECS Journal of Solid State Science and Technology, 2022, 11(6): 067002.
[73] WANG T, SUN Z, HUANG D, et al. Studies on NH3 Gas Sensing by Zinc Oxide Nanowire- Reduced Graphene Oxide Nanocomposites[J]. Sensors and Actuators B: Chemical, 2017, 252: 284-294.
[74] WU M, HE M, HU Q, et al. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature[J]. ACS Sensors, 2019, 4(10): 2763-2770.
[75] LIU A, LV S, JIANG L, et al. The Gas Sensor Utilizing Polyaniline/ MoS2 Nanosheets/ SnO2 Nanotubes for the Room Temperature Detection of Ammonia[J]. Sensors and Actuators B: Chemical, 2021, 332: 129444.
[76] GAVGANI J N, HASANI A, NOURI M, et al. Highly Sensitive and Flexible Ammonia Sensor Based on S and N Co-Doped Graphene Quantum Dots/Polyaniline Hybrid at Room Temperature [J]. Sensors and Actuators B: Chemical, 2016, 229: 239-248.
[77] BALAMURUGAN C, LEE D W. A Selective NH3 Gas Sensor Based on Mesoporous P-Type NiV2O6 Semiconducting Nanorods Synthesized Using Solution Method[J]. Sensors and Actuators B: Chemical, 2014, 192: 414-422.
[78] INOUE S, KOKABU T, MATSUMURA Y. Effects of Physical and Chemical Adsorption on the Electric Conductance of Carbon Nanotube Films[J]. AIP Advances, 2018, 8(1): 015222.
[79] KOKABU T, TAKASHIMA K, INOUE S, et al. Transport Phenomena of Electrons at the Carbon Nanotube Interface with Molecular Adsorption[J]. Journal of Applied Physics, 2017, 122(1): 015308.
[80] KROES J M H, PIETRUCCI F, CHIKKADI K, et al. The Response of Single-Walled Carbon Nanotubes to NO2 and the Search for a Long-Living Adsorbed Species[J]. Applied Physics Letters, 2016, 108(3): 033111.
[81] PENG L M, ZHANG Z, WANG S. Carbon Nanotube Electronics: Recent Advances[J]. Materials Today, 2014, 17(9): 433-442.
[82] SCHROEDER V, SAVAGATRUP S, HE M, et al. Carbon Nanotube Chemical Sensors[J]. Chemical Reviews, 2019, 119(1): 599-663.
[83] VASQUEZ S, COSTA ANGELI M A, PETRELLI M, et al. Comparison of Printing Techniques for the Fabrication of Flexible Carbon Nanotube-Based Ammonia Chemiresistive Gas Sensors [J]. Flexible and Printed Electronics, 2023, 8(3): 035012.
[84] PARK J, RYU C, JANG I R, et al. A Study of Strain Effect on Stretchable Carbon Nanotube Gas Sensors[J]. Materials Today Communications, 2022, 33: 105007.
[85] ABDO A I, SHI D, LI J, et al. Ammonia Emission from Staple Crops in China as Response to Mitigation Strategies and Agronomic Conditions: Meta-analytic Study[J]. Journal of Cleaner Production, 2021, 279: 123835.
[86] KAR P, CHOUDHURY A. Carboxylic Acid Functionalized Multi-Walled Carbon Nanotube Doped Polyaniline for Chloroform Sensors[J]. Sensors and Actuators B: Chemical, 2013, 183: 25-33.
[87] KUMAR L, RAWAL I, KAUR A, et al. Flexible Room Temperature Ammonia Sensor Based on Polyaniline[J]. Sensors and Actuators B: Chemical, 2017, 240: 408-416.
[88] MA J, FAN H, LI Z, et al. Multi-Walled Carbon Nanotubes/Polyaniline on the Ethylenediamine Modified Polyethylene Terephthalate Fibers for a Flexible Room Temperature Ammonia Gas Sensor with High Responses[J]. Sensors and Actuators B: Chemical, 2021, 334: 129677.
[89] WU T, LV D, SHEN W, et al. Trace-Level Ammonia Detection at Room Temperature Based on Porous Flexible Polyaniline/Polyvinylidene Fluoride Sensing Film with Carbon Nanotube Additives[J]. Sensors and Actuators B: Chemical, 2020, 316: 128198.
[90] ZHU C, ZHOU T, XIA H, et al. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety[J]. Nanomaterials, 2023, 13(7): 1158.
[91] MA X, WANG P, HUANG L, et al. A Monolithically Integrated In-Textile Wristband for Wireless Epidermal Biosensing[J]. Science Advances, 2023, 9(45): eadj2763.
[92] XUE L, WANG W, GUO Y, et al. Flexible Polyaniline/Carbon Nanotube Nanocomposite Film- Based Electronic Gas Sensors[J]. Sensors and Actuators B: Chemical, 2017, 244: 47-53.
[93] PENG X, HAN Y, ZHANG Q, et al. Performance Improvement of MoS2 Gas Sensor at Room Temperature[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4644-4650.
[94] WANG C, YIN L, ZHANG L, et al. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors[J]. Sensors, 2010, 10(3): 2088-2106.
[95] SUN G, WANG H, JIANG Z, et al. Note: Response Characteristics of the Sensor Based on LaF2 Thin Film to Different Humidified Gases[J]. Review of Scientific Instruments, 2012, 83 (5): 056103.
[96] SASAHARA T, NISHIMURA M, ISHIHARA H, et al. Detection of Volatile Organic Compounds by a Catalytic Combustion Sensor under Pulse Heating Operation[J]. Electrochemistry, 2003, 71: 457-462.
[97] TRIANTAFYLLOPOULOU R, TSAMIS C. Detection of CO and NO Using Low Power Metal Oxide Sensors[J]. physica status solidi (a), 2008, 205(11): 2643-2646.
[98] PALACIO F, FONOLLOSA J, BURGUES J, et al. Pulsed-Temperature Metal Oxide Gas Sensors for Microwatt Power Consumption[J]. IEEE Access, 2020, 8: 70938-70946.
[99] CHAI H, ZHENG Z, LIU K, et al. Stability of Metal Oxide Semiconductor Gas Sensors: A Review[J]. IEEE Sensors Journal, 2022, 22(6): 5470-5481.
[100] DENNLER N, RASTOGI S, FONOLLOSA J, et al. Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks[J]. Sensors and Actuators B: Chemical, 2022, 361: 131668.
[101] XUE S, CAO S, HUANG Z, et al. Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review[J]. Materials, 2021, 14(15).
[102] SUEMATSU K, HIROYAMA Y, HARANO W, et al. Double-Step Modulation of the Pulse- Driven Mode for a High-Performance SnO2 Micro Gas Sensor: Designing the Particle Surface via a Rapid Preheating Process[J]. ACS Sensors, 2020, 5(11): 3449-3456.
[103] FORT A, MUGNAINI M, ROCCHI S, et al. Simplified Models for SnO2 Sensors during Chemical and Thermal Transients in Mixtures of Inert, Oxidizing and Reducing Gases[J]. Sensors and Actuators B: Chemical, 2007, 124(1): 245-259.
[104] FABRIS F, DE MAGALHES J P, FREITAS A A. A review of supervised machine learning applied to ageing research[J]. Biogerontology, 2017, 18(2): 171-188.
[105] ZHOU Z H. A brief introduction to weakly supervised learning[J]. National Science Review, 2018, 5(1): 44-53.
[106] HU Y, TIAN Y, ZHUANG Y, et al. Rapid Gas Sensing Based on Pulse Heating and Deep Learning[C]//2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). Gainesville, FL, USA: IEEE, 2021: 438-441.
[107] CHEN Y, ZHANG D. Integration of Knowledge and Data in Machine Learning:arXiv:2202.10337[M]. arXiv, 2022.
[108] WU Z, ZHANG H, JI H, et al. Novel Combined Waveform Temperature Modulation Method of NiO-In2O3 Based Gas Sensor for Measuring and Identifying VOC Gases[J]. Journal of Alloys and Compounds, 2022, 918: 165510.
[109] LIU Y, ZHAO C, LIN J, et al. Classification and Concentration Prediction of VOC Gases Based on Sensor Array with Machine Learning Algorithms[C]//2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). San Diego, CA, USA: IEEE, 2020: 295-300.
[110] LEE K, CHO I, KANG M, et al. Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning[J]. ACS Nano, 2023, 17(1): 539-551.
[111] JI H, YUAN Z, ZHU H, et al. Dynamic Temperature Modulation Measurement of VOC Gases Based on SnO2 Gas Sensor[J]. IEEE Sensors Journal, 2022, 22(15): 14708-14716.
[112] REN W, ZHAO C, NIU G, et al. Gas Sensor Array with Pattern Recognition Algorithms for Highly Sensitive and Selective Discrimination of Trimethylamine[J]. Advanced Intelligent Systems, 2022, 4(12): 2200169.
[113] MA D, GAO J, ZHANG Z, et al. Gas Recognition Method Based on the Deep Learning Model of Sensor Array Response Map[J]. Sensors and Actuators B: Chemical, 2021, 330: 129349.
[114] ACHARYYA S, NAG S, KIMBAHUNE S, et al. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor[J]. ACS Sensors, 2021, 6(6): 2218-2224.
[115] PONZONI A, BARATTO C, CATTABIANI N, et al. Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy)[J]. Sensors, 2017, 17(4): 714.
[116] GALSTYAN V, COMINI E, BARATTO C, et al. Large Surface Area Biphase Titania for Chemical Sensing[J]. Sensors and Actuators B: Chemical, 2015, 209: 1091-1096.
[117] KUMAR N, PRAJESH R. Selectivity Enhancement for Metal Oxide (MOX) Based Gas Sensor Using Thermally Modulated Datasets Coupled with Golden Section Optimization and Chemometric Techniques[J]. Review of Scientific Instruments, 2022, 93(6): 064702.
[118] MA D, GAO J, ZHANG Z, et al. Gas Recognition Method Based on the Deep Learning Model of Sensor Array Response Map[J]. Sensors and Actuators B: Chemical, 2021, 330: 129349.
[119] PFEIFFER M, PFEIL T. Deep Learning With Spiking Neurons: Opportunities and Challenges [J]. Frontiers in Neuroscience, 2018, 12: 774.
[120] LEE K, CHO I, PARK I. E-Nose System Based on Ultra-Low Power Single Micro-LED Gas Sensor and Deep Learning[C]//2023 IEEE SENSORS. Vienna, Austria: IEEE, 2023: 1-4.
[121] CHO I, LEE K, SIM Y C, et al. Deep-Learning-Based Gas Identification by Time-Variant Illumination of a Single Micro-LED-embedded Gas Sensor[J]. Light: Science & Applications, 2023, 12(1): 95.
[122] FORT A, ROCCHI S, Serrano-Santos M B, et al. Surface State Model for Conductance Responses During Thermal-Modulation of SnO2-Based Thick Film Sensors: Part IModel Derivation[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2102-2106.”

所在学位评定分委会
物理学
国内图书分类号
TP212.6
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765681
专题南方科技大学
南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
庄议. 低功耗高性能智能化气体传感器系统及其应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
下载.pdf(36971KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[庄议]的文章
百度学术
百度学术中相似的文章
[庄议]的文章
必应学术
必应学术中相似的文章
[庄议]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。