[1] IKENO T, NAGANO T, HANAOKA K. Silicon-substituted Xanthene Dyes and Their Unique Photophysical Properties for Fluorescent Probes [J]. Chemistry – An Asian Journal, 2017, 12(13): 1435-1446.
[2] CHAN T H, WANG D. Chiral organosilicon compounds in asymmetric synthesis [J]. Chemical Reviews, 1992, 92(5): 995-1006.
[3] RAMESH R, REDDY D S. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds [J]. Journal of Medicinal Chemistry, 2018, 61(9): 3779-3798.
[4] ZHANG M, GAO S, TANG J, et al. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C–H activation and silylation [J]. Chemical Communications, 2021, 57(67): 8250-8263.
[5] 周公度. 碳和硅结构化学的比较 [J]. 大学化学, 2005, 20(4): 1-7.
[6] ZENG Y, YE F. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413.
[7] SHINTANI R, MORIYA K, HAYASHI T. Palladium-Catalyzed Enantioselective Desymmetrization of Silacyclobutanes: Construction of Silacycles Possessing a Tetraorganosilicon Stereocenter [J]. Journal of the American Chemical Society, 2011, 133(41): 16440-16443.
[8] CHEN H, CHEN Y, TANG X, et al. Rhodium-Catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes [J]. Angewandte Chemie International Edition, 2019, 58(14): 4695-4699.
[9] LIU S, ZHANG T, ZHU L, et al. Layered Chirality Relay Model in Rh(I)-Mediated Enantioselective C–Si Bond Activation: A Theoretical Study [J]. Organic Letters, 2020, 22(6): 2124-2128.
[10] CHEN H, PENG J, PANG Q, et al. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes [J]. Angewandte Chemie International Edition, 2022, 61(48): e202212889.
[11] CHEN H, ZHANG H, DU H, et al. Enantioselective Synthesis of 6/5-Spirosilafluorenes by Asymmetric Ring Expansion of 4/5-Spirosilafluorenes with Alkynes [J]. Organic Letters, 2023, 25(9): 1558-1563.
[12] WANG X, HUANG S S, ZHANG F J, et al. Multifunctional P-ligand-controlled “silicon-centered” selectivity in Rh/Cu-catalyzed Si–C bond cleavage of silacyclobutanes [J]. Organic Chemistry Frontiers, 2021, 8(23): 6577-6584.
[13] AN K, MA W, LIU L C, et al. Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H [J]. Nature Communications, 2022, 13(1): 847.
[14] FENG J, BI X, XUE X, et al. Catalytic asymmetric C–Si bond activation via torsional strain-promoted Rh-catalyzed aryl-Narasaka acylation [J]. Nature Communications, 2020, 11(1): 4449.
[15] UVAROV V M, DE VEKKI D A. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones [J]. Journal of Organometallic Chemistry, 2020, 923(1): 121415.
[16] LIPKE M C, LIBERMAN-MARTIN A L, TILLEY T D. Electrophilic Activation of Silicon–Hydrogen Bonds in Catalytic Hydrosilations [J]. Angewandte Chemie International Edition, 2017, 56(9): 2260-2294.
[17] CHALK A J, HARROD J F. Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1 [J]. Journal of the American Chemical Society, 1965, 87(1): 16-21.
[18] RANDOLPH C L, WRIGHTON M S. Photochemical reactions of (\eta5-pentamethylcyclopentadienyl)dicarbonyliron alkyl and silyl complexes: reversible ethylene insertion into an iron-silicon bond and implications for the mechanism of transition-metal-catalyzed hydrosilation of alkenes [J]. Journal of the American Chemical Society, 1986, 108(12): 3366-3374.
[19] SEITZ F, WRIGHTON M S. Photochemical Reaction of [(CO)4Co(SiEt3)] with Ethylene: Implications for Cobaltcarbonyl-Catalyzed Hydrosilation of Alkenes [J]. Angewandte Chemie International Edition, 1988, 27(2): 289-291.
[20] DUCKETT S B, PERUTZ R N. Mechanism of homogeneous hydrosilation of alkenes by (\eta5-cyclopentadienyl)rhodium [J]. Organometallics, 1992, 11(1): 90-98.
[21] CHANG X, MA P L, CHEN H C, et al. Asymmetric Synthesis and Application of Chiral Spirosilabiindanes [J]. Angewandte Chemie International Edition, 2020, 59(23): 8937-8940.
[22] HUANG Y H, WU Y, ZHU Z, et al. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation [J]. Angewandte Chemie International Edition, 2022, 61(1): e202113052.
[23] MU D, YUAN W, CHEN S, et al. Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation [J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.
[24] CHEN S, MU D, MAI P L, et al. Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles [J]. Nature Communications, 2021, 12(1): 1249.
[25] YANG B, YANG W, GUO Y, et al. Enantioselective Silylation of Aliphatic C−H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles [J]. Angewandte Chemie International Edition, 2020, 59(49): 22217-22222.
[26] ZENG Y, FANG X J, TANG R H, et al. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon-Stereogenic Center [J]. Angewandte Chemie International Edition, 2022, 61(51): e202214147.
[27] KUMAR R, HOSHIMOTO Y, YABUKI H, et al. Nickel(0)-Catalyzed Enantio- and Diastereoselective Synthesis of Benzoxasiloles: Ligand-Controlled Switching from Inter- to Intramolecular Aryl-Transfer Process [J]. Journal of the American Chemical Society, 2015, 137(36): 11838-11845.
[28] ZHANG J, YAN N, JU C W, et al. Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles [J]. Angewandte Chemie International Edition, 2021, 60(49): 25723-25728.
[29] WANG X C, LI B, JU C W, et al. Nickel(0)-catalyzed divergent reactions of silacyclobutanes with internal alkynes [J]. Nature Communications, 2022, 13(1): 3392.
[30] QI L, PAN Q Q, WEI X X, et al. Nickel-Catalyzed Reductive
[4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes [J]. Journal of the American Chemical Society, 2023, 145(24): 13008-13014.
[31] WANG Q, YE F, CAO J, et al. Copper-catalyzed enantioselective desymmetrization of prochiral tetrasubstituted siladiols: Access toward optically active silicon-stereogenic silylmethanols [J]. Catalysis Communications, 2020, 138(1): 105950.
[32] ZHANG G, LI Y, WANG Y, et al. Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes [J]. Angewandte Chemie International Edition, 2020, 59(29): 11927-11931.
[33] GAO J, MAI P L, GE Y, et al. Copper-Catalyzed Desymmetrization of Prochiral Silanediols to Silicon-Stereogenic Silanols [J]. ACS Catalysis, 2022, 12(14): 8476-8483.
[34] YANG W, LIU L, GUO J, et al. Enantioselective Hydroxylation of Dihydrosilanes to Si-Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species [J]. Angewandte Chemie International Edition, 2022, 61(32): e202205743.
[35] JIN C, HE X, CHEN S, et al. Axial chirality reversal and enantioselective access to Si-stereogenic silylallene [J]. Chem, 2023, 9(10): 2956-2970.
[36] KURIHARA Y, NISHIKAWA M, YAMANOI Y, et al. Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes [J]. Chemical Communications, 2012, 48(94): 11564-11566.
[37] SHINTANI R, OTOMO H, OTA K, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles via Enantioselective C–H Bond Functionalization [J]. Journal of the American Chemical Society, 2012, 134(17): 7305-7308.
[38] SATO Y, TAKAGI C, SHINTANI R, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic 5,10-Dihydrophenazasilines via Enantioselective 1,5-Palladium Migration [J]. Angewandte Chemie International Edition, 2017, 56(31): 9211-9216.
[39] ZHOU X H, FANG X J, LING F Y, et al. Catalytic C(sp)–Si cross-coupling silylation of alkynyl bromides with hydrosilanes by palladium catalysis [J]. Organic Chemistry Frontiers, 2022, 9(21): 5891-5898.
[40] LING F Y, YE F, FANG X J, et al. An unusual autocatalysis with an air-stable Pd complex to promote enantioselective synthesis of Si-stereogenic enynes [J]. Chemical Science, 2023, 14(5): 1123-1131.
[41] TAKEYAMA Y, NOZAKI K, MATSUMOTO K, et al. Palladium Catalyzed Reaction of Silacyclobutanes with Acetylenes [J]. Bulletin of the Chemical Society of Japan, 1991, 64(5): 1461-1466.
[42] MURATA R, MATSUMOTO A, ASANO K, et al. Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification [J]. Chemical Communications, 2020, 56(82): 12335-12338.
[43] ZHANG X X, GAO Y, ZHANG Y X, et al. Highly Enantioselective Construction of Multifunctional Silicon-Stereogenic Silacycles by Asymmetric Enamine Catalysis [J]. Angewandte Chemie International Edition, 2023, 62(9): e202217724.
[44] ZHOU M, LIU J, DENG R, et al. Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene-Catalyzed Desymmetrization [J]. ACS Catalysis, 2022, 12(13): 7781-7788.
[45] LIU H, HE P, LIAO X, et al. Stereoselective Access to Silicon-Stereogenic Silacycles via the Carbene-Catalyzed Desymmetric Benzoin Reaction of Siladials [J]. ACS Catalysis, 2022, 12(16): 9864-9871.
[46] LIU H, ZHOU H, CHEN X, et al. N-Heterocyclic Carbene-Catalyzed Desymmetrization of Siladials To Access Silicon-Stereogenic Organosilanes [J]. The Journal of Organic Chemistry, 2022, 87(23): 16127-16137.
[47] ZHOU H, BAE H Y, LEUTZSCH M, et al. The Silicon–Hydrogen Exchange Reaction: A Catalytic σ-Bond Metathesis Approach to the Enantioselective Synthesis of Enol Silanes [J]. Journal of the American Chemical Society, 2020, 142(32): 13695-13700.
[48] ZHOU H, HAN J T, NöTHLING N, et al. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silyl Ethers [J]. Journal of the American Chemical Society, 2022, 144(23): 10156-10161.
[49] ZHOU H, PROPERZI R, LEUTZSCH M, et al. Organocatalytic DYKAT of Si-Stereogenic Silanes [J]. Journal of the American Chemical Society, 2023, 145(9): 4994-5000.
[50] ZHU M, OESTREICH M. Generation of Silicon-Centered Stereogenicity by Chiral Counteranion-Directed Desymmetrization of Silanediols [J]. ACS Catalysis, 2023, 13(15): 10244-10247.
[51] WU M, CHEN Y W, LU Q, et al. Organocatalytic Si–CAryl Bond Functionalization-Enabled Atroposelective Synthesis of Axially Chiral Biaryl Siloxanes [J]. Journal of the American Chemical Society, 2023, 145(37): 20646-20654.
[52] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B871.
[53] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A1138.
[54] BECKE A D. Density functional calculations of molecular bond energies [J]. The Journal of Chemical Physics, 1986, 84(8): 4524-4529.
[55] BECKE A D. Correlation energy of an inhomogeneous electron gas: A coordinate‐space model [J]. The Journal of Chemical Physics, 1988, 88(2): 1053-1062.
[56] BECKE A D. Density‐functional thermochemistry. III. The role of exact exchange [J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[57] PECHUKAS P. Transition State Theory [J]. Annual Review of Physical Chemistry, 1981, 32(1): 159-177.
[58] TRUHLAR D G, GARRETT B C. Variational Transition State Theory [J]. Annual Review of Physical Chemistry, 1984, 35(1): 159-189.
[59] TRUHLAR D G, GARRETT B C, KLIPPENSTEIN S J. Current Status of Transition-State Theory [J]. The Journal of Physical Chemistry, 1996, 100(31): 12771-12800.
[60] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. C.01 [Z]. Wallingford, CT. 2016.
[61] BANNWARTH C, CALDEWEYHER E, EHLERT S, et al. Extended tight-binding quantum chemistry methods [J]. WIREs Computational Molecular Science, 2021, 11(2): e1493.
[62] GRIMME S. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations [J]. Journal of Chemical Theory and Computation, 2019, 15(5): 2847-2862.
[63] PRACHT P, BOHLE F, GRIMME S. Automated exploration of the low-energy chemical space with fast quantum chemical methods [J]. Physical Chemistry Chemical Physics, 2020, 22(14): 7169-7192.
[64] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[65] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37(2): 785-789.
[66] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields [J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
[67] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[68] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory [J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[69] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions [J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[70] MARDIROSSIAN N, HEAD-GORDON M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy [J]. Physical Chemistry Chemical Physics, 2014, 16(21): 9904-9924.
[71] LU T, CHEN Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems [J]. Journal of Computational Chemistry, 2022, 43(8): 539-555.
[72] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[73] LEGAULT C. CYLview20 [CP/DK]. Université de Sherbrooke, 2020
[2024-03-22]. http://www.cylview.org.
修改评论