中文版 | English
题名

手性磷酸催化的不对称合成有机硅烷反应机理的理论研究

其他题名
THEORETICAL STUDY ON THE MECHANISM OF CHIRAL PHOSPHORIC ACID-CATALYZED ASYMMETRIC SYNTHESIS OF ORGANOSILANES
姓名
姓名拼音
CHEN Yiwei
学号
12132727
学位类型
硕士
学位专业
070304 物理化学
学科门类/专业学位类别
07 理学
导师
谭斌
导师单位
化学系
论文答辩日期
2024-05-19
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近年来,手性有机硅烷因其在官能团化以及衍生化方面的显著反应活性,在功能材料、化学合成和生物活性药物分子开发等领域变得愈发重要。因此,如何通过绿色高效的合成策略获得以硅为手性中心或含硅官能团的对映体纯化合物成为被关注的热点问题。而对新合成策略的开发离不开对反应机理的深入认识。由于含硅的活性中间体在实验中难以捕获及表征,基于量子化学的理论计算研究更为探究手性有机硅烷合成反应机理提供可行性。

本论文系统对比分析了两例以N-三氟甲磺酰基磷酰胺结构为核心的手性Brønsted酸催化体系下手性有机硅烷合成反应的机理路径。一例是谭斌课题组报道的通过手性N-三氟甲磺酰基磷酰胺来活化Si−Caryl键,进而立体选择性地构建联芳基硅氧烷阻旋异构体;另一例反应体系是由List团队利用亚氨基二磷酸酯催化实现的外消旋烯丙基硅烷的动态动力学不对称转化。两例反应体系都有可能经历两条不同的反应路径,其关键是探究底物被质子化后是倾向于先同催化剂的亲核位点反应生成催化剂-硅活性物种键连中间体,还是在催化剂阴离子形式协助下同亲核试剂发生直接的亲核取代。在对两例反应的机理路径进行深入计算研究后,本文发现两例反应体系都倾向于质子化后直接与亲核试剂醇或酚发生亲核取代。在提出与实验组不同机理猜想的同时,本研究也探讨了手性磷酰胺以分子内异构体磷酰氢形式的新质子化路径的理论可能。本论文详细研究了边臂基团对称性对产物对映选择性的影响,并阐明了联芳基硅氧烷阻旋异构体对映选择性主要来源于催化剂边臂基团与底物之间的CH-π弱相互作用。

本研究深化了对N-三氟甲磺酰基磷酰胺类手性Brønsted酸催化剂活性位点的理解,为此类有机催化手性有机硅烷的化学合成机理做出理论补充,切实为其制备方法的开发与改进提供了理论依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] IKENO T, NAGANO T, HANAOKA K. Silicon-substituted Xanthene Dyes and Their Unique Photophysical Properties for Fluorescent Probes [J]. Chemistry – An Asian Journal, 2017, 12(13): 1435-1446.
[2] CHAN T H, WANG D. Chiral organosilicon compounds in asymmetric synthesis [J]. Chemical Reviews, 1992, 92(5): 995-1006.
[3] RAMESH R, REDDY D S. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds [J]. Journal of Medicinal Chemistry, 2018, 61(9): 3779-3798.
[4] ZHANG M, GAO S, TANG J, et al. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C–H activation and silylation [J]. Chemical Communications, 2021, 57(67): 8250-8263.
[5] 周公度. 碳和硅结构化学的比较 [J]. 大学化学, 2005, 20(4): 1-7.
[6] ZENG Y, YE F. Research Progress on New Catalytic Reaction Systems for Asymmetric Synthesis of Silicon-Stereogenic Center Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3388-3413.
[7] SHINTANI R, MORIYA K, HAYASHI T. Palladium-Catalyzed Enantioselective Desymmetrization of Silacyclobutanes: Construction of Silacycles Possessing a Tetraorganosilicon Stereocenter [J]. Journal of the American Chemical Society, 2011, 133(41): 16440-16443.
[8] CHEN H, CHEN Y, TANG X, et al. Rhodium-Catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes [J]. Angewandte Chemie International Edition, 2019, 58(14): 4695-4699.
[9] LIU S, ZHANG T, ZHU L, et al. Layered Chirality Relay Model in Rh(I)-Mediated Enantioselective C–Si Bond Activation: A Theoretical Study [J]. Organic Letters, 2020, 22(6): 2124-2128.
[10] CHEN H, PENG J, PANG Q, et al. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes [J]. Angewandte Chemie International Edition, 2022, 61(48): e202212889.
[11] CHEN H, ZHANG H, DU H, et al. Enantioselective Synthesis of 6/5-Spirosilafluorenes by Asymmetric Ring Expansion of 4/5-Spirosilafluorenes with Alkynes [J]. Organic Letters, 2023, 25(9): 1558-1563.
[12] WANG X, HUANG S S, ZHANG F J, et al. Multifunctional P-ligand-controlled “silicon-centered” selectivity in Rh/Cu-catalyzed Si–C bond cleavage of silacyclobutanes [J]. Organic Chemistry Frontiers, 2021, 8(23): 6577-6584.
[13] AN K, MA W, LIU L C, et al. Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H [J]. Nature Communications, 2022, 13(1): 847.
[14] FENG J, BI X, XUE X, et al. Catalytic asymmetric C–Si bond activation via torsional strain-promoted Rh-catalyzed aryl-Narasaka acylation [J]. Nature Communications, 2020, 11(1): 4449.
[15] UVAROV V M, DE VEKKI D A. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones [J]. Journal of Organometallic Chemistry, 2020, 923(1): 121415.
[16] LIPKE M C, LIBERMAN-MARTIN A L, TILLEY T D. Electrophilic Activation of Silicon–Hydrogen Bonds in Catalytic Hydrosilations [J]. Angewandte Chemie International Edition, 2017, 56(9): 2260-2294.
[17] CHALK A J, HARROD J F. Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1 [J]. Journal of the American Chemical Society, 1965, 87(1): 16-21.
[18] RANDOLPH C L, WRIGHTON M S. Photochemical reactions of (\eta5-pentamethylcyclopentadienyl)dicarbonyliron alkyl and silyl complexes: reversible ethylene insertion into an iron-silicon bond and implications for the mechanism of transition-metal-catalyzed hydrosilation of alkenes [J]. Journal of the American Chemical Society, 1986, 108(12): 3366-3374.
[19] SEITZ F, WRIGHTON M S. Photochemical Reaction of [(CO)4Co(SiEt3)] with Ethylene: Implications for Cobaltcarbonyl-Catalyzed Hydrosilation of Alkenes [J]. Angewandte Chemie International Edition, 1988, 27(2): 289-291.
[20] DUCKETT S B, PERUTZ R N. Mechanism of homogeneous hydrosilation of alkenes by (\eta5-cyclopentadienyl)rhodium [J]. Organometallics, 1992, 11(1): 90-98.
[21] CHANG X, MA P L, CHEN H C, et al. Asymmetric Synthesis and Application of Chiral Spirosilabiindanes [J]. Angewandte Chemie International Edition, 2020, 59(23): 8937-8940.
[22] HUANG Y H, WU Y, ZHU Z, et al. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation [J]. Angewandte Chemie International Edition, 2022, 61(1): e202113052.
[23] MU D, YUAN W, CHEN S, et al. Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation [J]. Journal of the American Chemical Society, 2020, 142(31): 13459-13468.
[24] CHEN S, MU D, MAI P L, et al. Enantioselective construction of six- and seven-membered triorgano-substituted silicon-stereogenic heterocycles [J]. Nature Communications, 2021, 12(1): 1249.
[25] YANG B, YANG W, GUO Y, et al. Enantioselective Silylation of Aliphatic C−H Bonds for the Synthesis of Silicon-Stereogenic Dihydrobenzosiloles [J]. Angewandte Chemie International Edition, 2020, 59(49): 22217-22222.
[26] ZENG Y, FANG X J, TANG R H, et al. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon-Stereogenic Center [J]. Angewandte Chemie International Edition, 2022, 61(51): e202214147.
[27] KUMAR R, HOSHIMOTO Y, YABUKI H, et al. Nickel(0)-Catalyzed Enantio- and Diastereoselective Synthesis of Benzoxasiloles: Ligand-Controlled Switching from Inter- to Intramolecular Aryl-Transfer Process [J]. Journal of the American Chemical Society, 2015, 137(36): 11838-11845.
[28] ZHANG J, YAN N, JU C W, et al. Nickel(0)-Catalyzed Asymmetric Ring Expansion Toward Enantioenriched Silicon-Stereogenic Benzosiloles [J]. Angewandte Chemie International Edition, 2021, 60(49): 25723-25728.
[29] WANG X C, LI B, JU C W, et al. Nickel(0)-catalyzed divergent reactions of silacyclobutanes with internal alkynes [J]. Nature Communications, 2022, 13(1): 3392.
[30] QI L, PAN Q Q, WEI X X, et al. Nickel-Catalyzed Reductive
[4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes [J]. Journal of the American Chemical Society, 2023, 145(24): 13008-13014.
[31] WANG Q, YE F, CAO J, et al. Copper-catalyzed enantioselective desymmetrization of prochiral tetrasubstituted siladiols: Access toward optically active silicon-stereogenic silylmethanols [J]. Catalysis Communications, 2020, 138(1): 105950.
[32] ZHANG G, LI Y, WANG Y, et al. Asymmetric Synthesis of Silicon-Stereogenic Silanes by Copper-Catalyzed Desymmetrizing Protoboration of Vinylsilanes [J]. Angewandte Chemie International Edition, 2020, 59(29): 11927-11931.
[33] GAO J, MAI P L, GE Y, et al. Copper-Catalyzed Desymmetrization of Prochiral Silanediols to Silicon-Stereogenic Silanols [J]. ACS Catalysis, 2022, 12(14): 8476-8483.
[34] YANG W, LIU L, GUO J, et al. Enantioselective Hydroxylation of Dihydrosilanes to Si-Chiral Silanols Catalyzed by In Situ Generated Copper(II) Species [J]. Angewandte Chemie International Edition, 2022, 61(32): e202205743.
[35] JIN C, HE X, CHEN S, et al. Axial chirality reversal and enantioselective access to Si-stereogenic silylallene [J]. Chem, 2023, 9(10): 2956-2970.
[36] KURIHARA Y, NISHIKAWA M, YAMANOI Y, et al. Synthesis of optically active tertiary silanes via Pd-catalyzed enantioselective arylation of secondary silanes [J]. Chemical Communications, 2012, 48(94): 11564-11566.
[37] SHINTANI R, OTOMO H, OTA K, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Dibenzosiloles via Enantioselective C–H Bond Functionalization [J]. Journal of the American Chemical Society, 2012, 134(17): 7305-7308.
[38] SATO Y, TAKAGI C, SHINTANI R, et al. Palladium-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic 5,10-Dihydrophenazasilines via Enantioselective 1,5-Palladium Migration [J]. Angewandte Chemie International Edition, 2017, 56(31): 9211-9216.
[39] ZHOU X H, FANG X J, LING F Y, et al. Catalytic C(sp)–Si cross-coupling silylation of alkynyl bromides with hydrosilanes by palladium catalysis [J]. Organic Chemistry Frontiers, 2022, 9(21): 5891-5898.
[40] LING F Y, YE F, FANG X J, et al. An unusual autocatalysis with an air-stable Pd complex to promote enantioselective synthesis of Si-stereogenic enynes [J]. Chemical Science, 2023, 14(5): 1123-1131.
[41] TAKEYAMA Y, NOZAKI K, MATSUMOTO K, et al. Palladium Catalyzed Reaction of Silacyclobutanes with Acetylenes [J]. Bulletin of the Chemical Society of Japan, 1991, 64(5): 1461-1466.
[42] MURATA R, MATSUMOTO A, ASANO K, et al. Desymmetrization of gem-diols via water-assisted organocatalytic enantio- and diastereoselective cycloetherification [J]. Chemical Communications, 2020, 56(82): 12335-12338.
[43] ZHANG X X, GAO Y, ZHANG Y X, et al. Highly Enantioselective Construction of Multifunctional Silicon-Stereogenic Silacycles by Asymmetric Enamine Catalysis [J]. Angewandte Chemie International Edition, 2023, 62(9): e202217724.
[44] ZHOU M, LIU J, DENG R, et al. Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene-Catalyzed Desymmetrization [J]. ACS Catalysis, 2022, 12(13): 7781-7788.
[45] LIU H, HE P, LIAO X, et al. Stereoselective Access to Silicon-Stereogenic Silacycles via the Carbene-Catalyzed Desymmetric Benzoin Reaction of Siladials [J]. ACS Catalysis, 2022, 12(16): 9864-9871.
[46] LIU H, ZHOU H, CHEN X, et al. N-Heterocyclic Carbene-Catalyzed Desymmetrization of Siladials To Access Silicon-Stereogenic Organosilanes [J]. The Journal of Organic Chemistry, 2022, 87(23): 16127-16137.
[47] ZHOU H, BAE H Y, LEUTZSCH M, et al. The Silicon–Hydrogen Exchange Reaction: A Catalytic σ-Bond Metathesis Approach to the Enantioselective Synthesis of Enol Silanes [J]. Journal of the American Chemical Society, 2020, 142(32): 13695-13700.
[48] ZHOU H, HAN J T, NöTHLING N, et al. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silyl Ethers [J]. Journal of the American Chemical Society, 2022, 144(23): 10156-10161.
[49] ZHOU H, PROPERZI R, LEUTZSCH M, et al. Organocatalytic DYKAT of Si-Stereogenic Silanes [J]. Journal of the American Chemical Society, 2023, 145(9): 4994-5000.
[50] ZHU M, OESTREICH M. Generation of Silicon-Centered Stereogenicity by Chiral Counteranion-Directed Desymmetrization of Silanediols [J]. ACS Catalysis, 2023, 13(15): 10244-10247.
[51] WU M, CHEN Y W, LU Q, et al. Organocatalytic Si–CAryl Bond Functionalization-Enabled Atroposelective Synthesis of Axially Chiral Biaryl Siloxanes [J]. Journal of the American Chemical Society, 2023, 145(37): 20646-20654.
[52] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B): B864-B871.
[53] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Physical Review, 1965, 140(4A): A1133-A1138.
[54] BECKE A D. Density functional calculations of molecular bond energies [J]. The Journal of Chemical Physics, 1986, 84(8): 4524-4529.
[55] BECKE A D. Correlation energy of an inhomogeneous electron gas: A coordinate‐space model [J]. The Journal of Chemical Physics, 1988, 88(2): 1053-1062.
[56] BECKE A D. Density‐functional thermochemistry. III. The role of exact exchange [J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
[57] PECHUKAS P. Transition State Theory [J]. Annual Review of Physical Chemistry, 1981, 32(1): 159-177.
[58] TRUHLAR D G, GARRETT B C. Variational Transition State Theory [J]. Annual Review of Physical Chemistry, 1984, 35(1): 159-189.
[59] TRUHLAR D G, GARRETT B C, KLIPPENSTEIN S J. Current Status of Transition-State Theory [J]. The Journal of Physical Chemistry, 1996, 100(31): 12771-12800.
[60] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. C.01 [Z]. Wallingford, CT. 2016.
[61] BANNWARTH C, CALDEWEYHER E, EHLERT S, et al. Extended tight-binding quantum chemistry methods [J]. WIREs Computational Molecular Science, 2021, 11(2): e1493.
[62] GRIMME S. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations [J]. Journal of Chemical Theory and Computation, 2019, 15(5): 2847-2862.
[63] PRACHT P, BOHLE F, GRIMME S. Automated exploration of the low-energy chemical space with fast quantum chemical methods [J]. Physical Chemistry Chemical Physics, 2020, 22(14): 7169-7192.
[64] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[65] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B, 1988, 37(2): 785-789.
[66] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields [J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627.
[67] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[68] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory [J]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.
[69] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions [J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[70] MARDIROSSIAN N, HEAD-GORDON M. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy [J]. Physical Chemistry Chemical Physics, 2014, 16(21): 9904-9924.
[71] LU T, CHEN Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems [J]. Journal of Computational Chemistry, 2022, 43(8): 539-555.
[72] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics [J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
[73] LEGAULT C. CYLview20 [CP/DK]. Université de Sherbrooke, 2020
[2024-03-22]. http://www.cylview.org.

所在学位评定分委会
化学
国内图书分类号
O643.31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765682
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
陈一苇. 手性磷酸催化的不对称合成有机硅烷反应机理的理论研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132727-陈一苇-化学系.pdf(9123KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈一苇]的文章
百度学术
百度学术中相似的文章
[陈一苇]的文章
必应学术
必应学术中相似的文章
[陈一苇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。