中文版 | English
题名

功能化炔丙醇的设计及其应用

其他题名
DESIGN AND APPLICATION OF FUNCTIONALIZED PROPARGYLIC ALCOHOLS
姓名
姓名拼音
HUANG Tingting
学号
12132742
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
李鹏飞
导师单位
化学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

炔丙醇作为有机合成领域中一种通用多变的合成砌块,已被成功应 用于一系列反应中合成高附加值的产物 。特别地,有机催化 α-官能团化 炔丙醇的不对称反应为构筑复杂手性分子提供了新策略。然而功能化炔丙 醇局限于 α-( 4 -羟基苯基)炔丙醇、α -( 4 -氨基苯基)炔丙醇和 α -吲哚基 炔丙醇,亟需开发新型炔丙醇,为构筑复杂手性分子提供新思路 。 最近,本课题组成功开发了 α-(3-异吲哚啉酮基)炔丙醇作为新型 α-官 能团化炔丙醇,并实现了手性磷酸催化其与不同吲哚的多样化立体选择性 反应。为了进一步拓展 α-(3-异吲哚啉酮基)炔丙醇在有机合成中的应用, 本论文将围绕该类 α-官能团化炔丙醇展开深入研究。 α-(3-异吲哚啉酮基)炔丙醇在手性 Brønsted 酸催化下原位生成炔丙基 N-酰基亚胺中间体:1)与 2,3-二取代吲哚发生不对称共轭加成反应,在温 和的反应条件下,以高产率、高对映选择性及非对映选择性构筑了四取 代 轴手性联烯骨架;2)分别与 1-甲基-2-萘酚、2-芳基喹啉脱水/共轭加成/ 分子内环化/开环一系列串联反应实现 Csp 2 -O 键的胺化,以良好的产率合成 了 Csp 2 -N 阻转异构体,为直接构筑Csp 2 -N 阻转异构体提供了新思路。 此外,本论文成功实现了 N-芳基-2-萘胺、1,2-二羰基化合物和吲哚之 间的三组分反应:在手性 Brønsted 酸催化下,通过加成/氧化/环化/取代反 应,“一锅法”构建含有相邻轴手性和中心手性的复杂手性分子。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-07
参考文献列表

[1] QIAN H, HUANG D Y, BI Y C, et al. 2 - propargylic alcohols in organic synthesis[J]. Advanced Synthesis & Catalysis, 2019, 361(14): 3240 -3280.
[2] KUMAR G R, RAJESH M, LIN S, et al. Propargylic alcohols as coupling partners in transition-metal-catalyzed arene C-H activation[J]. Advanced Synthesis & Catalysis, 2020, 362(23): 5238 -5256.
[3] LIU X Y, LIU Y L, CHEN L. Tandem annulations of propargylic alcohols to indole derivatives[J]. Advanced Synthesis & Catalysis, 2020, 362(23): 5170 -5195.
[4] ZHAN Z P, YU J L, LIU H J, et al. A general and efficient FeCl 3 -catalyzed nucleophilic substitution of propargylic alcohols[J]. Journal of organic chemistry, 2006, 71(21), 8298-8301.
[5] TERADA M, OTA Y, LI F, et al. Enantioconvergent nucleophilic substitution reaction of racemic alkyne –dicobalt complex (nicholas reaction) catalyzed by chiral Brønsted acid[J]. Journal of the American Chemical Society, 2016, 138(34): 11038-11043.
[6] ROY R, SAHA S. Scope and advances in the catalytic propargylic substitution reaction[J]. RSC Advances, 2018, 8(54): 31129 -31193.
[7] SHINTANI R, TAKATSU K, KATOH T, et al. Rhodium-catalyzed rearrangement of aryl bis(alkynyl) carbinols to 3 -alkynyl-1-indanones[J]. Angewandte Chemie International Edition, 2008, 47(8): 1447 -1449.
[8] ZHU Y X, SUN L, LU P, et al. Recent advances on the lewis acid -catalyzed cascade rearrangements of propargylic alcohols and their derivatives[J]. ACS Catalysis, 2014, 4(6): 1911 -1925.
[9] MISHRA S, NAIR S R, BAIRE B. Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic alcohols[J]. Organic & Biomolecular Chemistry, 2022, 20(31), 6037 -6056.
[10] CADIERNO V, CROCHET P, GIMENO J. Ruthenium-catalyzed isomerizations of sllylic and propargylic alcohols in aqueous and organic media: applications in synthesis[J]. Synlett, 2008, 2008(8): 1105 -1124.
[11] SONG X R, YANG R C, XIAO Q. Recent advances in the synthesis of heterocyclics via cascade cyclization of propargylic alcohols[J]. Advanced Synthesis & Catalysis, 2020, 363(4): 852 -876.
[12] KHAN T, YARAGORLA S. Iodocyclization of propargylic alcohols: highly facile approach to hetero/carbocyclic iodides[J]. European Journal of Organic Chemistry, 2019, 2019(25): 3989 -4012.
[13] 赵 晓 正 , 凌 琴 琴 , 曹 桂 妍 , 等 . 炔 丙 醇 类 化 合 物 参 与 的 环 化 反 应 研 究 进 展 [J]. Chinese Journal of Organic Chemistry, 2022, 42(9), 2605 -2639.
[14] TSUJI H, KAWATSURA M. Transition -metalc-catalyzed propargylic substitution of propargylic alcohol derivatives bearing an internal alkyne group[J]. Asian Journal of Organic Chemistry, 2020, 9(12): 1924 -1941.
[15] NISHIBAYASHI Y. Development of asymmetric propargylic substitution reactions using transition metal catalysts[J]. Chemistry Letters, 2021, 50(6): 1282-1288.
[16] ZHENG Z, MA X, CHENG X P, et al. Homogeneous gold -catalyzed oxidation reactions[J]. Chemical Reviews, 2021, 121(14): 8979 -9038.
[17] YE L W, ZHU X Q, SAHANI R L, et al. Nitrene transfer and carbene transfer in gold catalysis[J]. Chemical Reviews, 2020, 121(14): 9039 -9112.
[18] DORAGHI F, MAHDAVIAN A M, KARIMIAN S, et al. Recent progress in application of propargylic alcohols in organic syntheses[J]. Advanced Synthesis & Catalysis, 2023, 365(18): 2991 -3019.
[19] MÜLLER A. The straight chain - and the many membered CH2 ringmolecule[J].Nature, 1935, 135, 994.
[20] NGUYEN T T. Organocatalytic synthesis of axially chiral tetrasubstituted allenes[J]. Organic & Biomolecular Chemistry, 2023, 21(2): 252 -272.
[21] QIAN D Y, WU L L, LIN Z Y, et al. Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols[J]. Nature Communications, 2017, 8, 567.
[22] ZHANG L L, HAN Y Z, HUANG A Q, et al. Organocatalytic remote stereocontrolled 1,8-additions of thiazolones to propargylic aza -p-quinone methides[J]. Organic Letters, 2019, 21(18): 7415 -7419.
[23] CHEN M, QIAN D Y, SUN J W. Organocatalytic enantioconvergent synthesis of tetrasubstituted allenes via asymmetric 1,8 -addition to aza-paraquinone methides[J]. Organic Letters, 2019, 21(19): 8127 -8131.
[24] PAN H P, ZHU Z Q, QIU Z W, et al. Dearomatization of 2,3 -disubstituted indoles via 1,8-addition of propargylic (aza)-para-quinone methides[J]. The Journal of Organic Chemistry, 2021, 86(23): 16518 -16534.
[25] BAI J F, ZHAO L L, WANG F, et al. Organocatalytic formal (3+2) cycloaddition toward chiral pyrrolo
[1,2-a]indoles via dynamic kinetic resolution of allene intermediates[J]. Organic Letters, 2020, 22(14): 5439 -5445.
[26] ZHANG X Z, QIU Z W, WEN G H, et al. Synthesis of pyrrolo
[1,2-a]indoles via
[3+2]-annulations of (aza)-para-quinone methides with indoles[J]. Synthesis, 2020, 52(23): 3640 -3649.
[27] ZHANG X Z, LI B Q, QIU Z W, et al. Synthesis of naphthopyrans via formal (3+3)-annulation of propargylic (aza)-para-quinone methides with naphthols[J]. The Journal of Organic Chemistry, 2020, 85(20): 13306 -13316.
[28] QIU Z W, XU X T, PAN H P, et al. Brønsted acid-catalyzed formal (3+3)-annulation of propargylic (aza)-para-quinone methides with 4-hydroxycoumarins and 1,3-dicarbonyl compounds[J]. The Journal of Organic Chemistry, 2021, 86(9): 6075 -6089.
[29] QIU Z W, LI B Q, LIU H F, et al. Formal (3+4)-annulation of propargylic pquinonemethides with 2-indolylmethanols: synthesis of polysubstituted indole-fused oxepines[J]. The Journal of Organic Chemistry, 2021, 86(11): 7490-7499.
[30] LIU X H, ZHANG J Y, BAI L T, et al. Catalytic asymmetric multiple dearomatizations of phenols enabled by a cascade 1,8 -addition and diels–alder reaction[J]. Chemical Science, 2020, 11(3): 671 -676.
[31] LI X G, SUN J W. Organocatalytic enantioselective synthesis of chiral allenes: remote asymmetric 1,8-addition of indole imine methides[J]. Angewandte Chemie International Edition, 2020, 59(39): 17049 -17054.
[32] ZHU W R, SU Q, DIAO H J, et al. Enantioselective dehydrative γ -arylation of α-indolyl propargylic alcohols with phenols: access to chiral tetrasubstituted allenes and naphthopyrans[J]. Organic Letters, 2020, 22(17): 6873-6878.
[33] RUI K H, GU H R, WOLDEGIORGIS A G, et al. Organocatalytic tandem synthesis of chiral hexacyclic bisindoles from propargylic 3 -methyleneindoles with 2-indolylmethanols[J]. Organic Letters, 2023, 25(36): 6654-6658.
[34] WANG Y C, JIANG L, LI L, et al. An arylation strategy to propargylamines: catalytic asymmetric friedel-crafts-type arylation reactions of C-alkynyl imines[J]. Angewandte Chemie International Edition, 201 6, 55(48): 15142-15146.
[35] YANG J X, WANG Z, HE Z, et al. Organocatalytic enantioselective synthesis of tetrasubstituted α-amino allenoates by dearomative γ -Addition of 2,3-disubstituted indoles to β,γ-alkynyl-α-imino esters[J]. Angewandte Chemie International Edition, 2020, 59(2): 642-647.
[36] WOLDEGIORGIS A G, HAN Z, LIN X F. Organocatalytic asymmetric dearomatization reaction for the synthesis of axial chiral allene -derived naphthalenones bearing quaternary stereocenters[J]. Organic Letters, 2021, 23(17): 6606-6611.
[37] WANG Y C, ZHOU X, SHAN W Y, et al. Construction of axially chiral indoles by cycloaddition-isomerization via atroposelective phosphoric acid and silver sequential catalysis[J]. ACS Catalysis, 2022, 12(13): 8094 -8103.
[38] XIAO W, WU J. Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes[J]. Organic Chemistry Frontiers, 2022, 9(18): 5053-5073.
[39] ZHANG P, HUANG Q H, CHENG Y Y, et al. Remote stereocontrolled construction of vicinal axially chiral tetrasubstituted allenes and heteroatom-functionalized quaternary carbon stereocenters[J]. Organic Letters, 2019, 21(2): 503-507.
[40] WANG Z Y, LIN X, CHEN X L, et al. Organocatalytic stereoselective 1,6 -addition of thiolacetic acids to alkynyl indole imine methides: access to axially chiral sulfur-containing tetrasubstituted allenes[J]. Organic Chemistry Frontiers, 2021, 8(13): 3469 -3474.
[41] WU Y, YUE Z B, QIAN C X, et al. Organocatalytic enantioselective construction of axially chiral tetrasubstituted allenes via 1,6 -addition of alkynyl indole imine methides with 2-substituted indoles[J]. Asian Journal of Organic Chemistry, 2022, 11, e202100724.
[42] LIN X, SHEN B M, WANG Z Y, et al. Organocatalytic enantioselective 1,10-addition of alkynyl indole imine methides with thiazolones: an access to axially chiral tetrasubstituted allenes[J]. Organic Letters, 2022, 24(27): 4914-4918.
[43] WANG Z Y, CHENG Y Y, YUE Z B, et al. Organocatalytic asymmetric 3 -allenylation of indoles via remote stereocontrolled 1,10 -additions of alkynyl indole imine methides[J]. Asian Journal of Organic Chemistry, 2022, 11 , e202200399.
[44] YUE Z B, WANG Z Y, ZHANG Y F, et al. Organocatalytic formal
[3+3] cyclization of α-(6-indolyl) propargylic alcohols[J]. Organic & Biomolecular Chemistry, 2022, 20(32): 6334-6338.
[45] YUE Z B, SHEN B M, CAO J, et al. Organocatalytic enantioselective reaction of tertiary α-(7-indolyl)methanols with tryptamines[J]. Organic Chemistry Frontiers, 2023, 10(14): 3662 -3668.
[46] LI F S, LIANG S, LUAN Y P, et al. Organocatalytic regio -, diastereo- and enantioselective γ -additions of isoxazol-5(4H)-ones to β,γ-alkynyl-α-imino esters for the synthesis of axially chiral tetrasubstituted α -amino allenoates[J]. Organic Chemistry Frontiers, 2021, 8(6): 1243 -1248.
[47] TOPOLOVČAN N, GREDIČAK M. Synthesis and stereoselective catalytic transformations of 3-hydroxyisoindolinones[J]. Organic & Biomolecular Chemistry, 2021, 19(21): 4637-4651.
[48] QIAN C X, LIU M W, SUN J W, et al. Chiral phosphoric acid -catalyzed regio- and enantioselective reactions of functionalized propargylic alcohols[J]. Organic Chemistry Frontiers, 2022, 9(5): 1234 -1240.
[49] KHAJURIA C, SADHU M M, UNHALE R A, et al. Chiral phosphoric acid -catalyzed reaction between C-alkynyl imine precursor and thiol: access to highly enantioenriched alkynyl isoindolinones with N,S -ketal framework[J]. Tetrahedron Letters, 2022, 112, 154230.
[50] UNHALE R A, SADHU M M, SINGH V K. Chiral Brønsted acid catalyzed enantioselective synthesis of spiro -isoindolinone-indolines via formal
[3+2] cycloaddition[J]. Organic Letters, 2022, 24(18): 3319 -3324.
[51] WANG H Q, WU S F, YANG J R, et al. Design and organocatalytic asymmetric synthesis of indolyl-pyrroloindoles bearing both axial and central chirality[J]. The Journal of Organic Chemistry, 2022, 88(12): 7684 -7702.
[52] XIA Y, LIU M W, QIAN C X, et al. Asymmetric organocatalytic (3+2) annulation of propargylic alcohols with indolylnaphthalenols: synergistic construction of axial and central chirality[J]. Organic Chemistry Frontiers, 2023, 10(1): 30-34.
[53] DU S, ZHOU A X, YANG R C, et al. Recent advances in the direct transformation of propargylic alcohols to allenes[J]. Organic Chemistry Frontiers, 2021, 8(23): 6760-6782.
[54] UCHIKURA T, KATO S, MAKINO Y, et al. Chiral phosphoric acid -palladium(II) complex catalyzed asymmetric desymmetrization of biaryl compounds by C(sp3)-H activation[J]. Journal of the American Chemical Society, 2023, 145(29): 15906-15911.
[55] DA B C, WANG Y B, CHENG J K, et al. Organocatalytic atroposelective cross-coupling of 1-azonaphthalenes and 2-naphthols[J]. Angewandte Chemie International Edition, 2023, 62 , e202303128.
[56] LIU Y W, CHEN Y H, CHENG J K, et al. Enantioselective synthesis of 3-arylindole atropisomers via organocatalytic indolization of iminoquinones[J]. Chemical Synthesis, 2023, 3(2): 3-8.
[57] CHENG J K, TAN B. Chiral phosphoric acid -catalyzed enantioselective synthesis of axially chiral compounds involving indole derivatives[J]. Chemical Record, 2023, 23, e202300147 .
[58] CHADHA N, SILAKARI O. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view[J]. European Journal of Medicinal Chemistry, 2017, 134: 159-184.
[59] KUMARI A, SINGH R K. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives[J]. Bioorganic Chemistry, 2019, 89 , 103021.
[60] SANZ R, GOHAIN M, MIGUEL D, et al. Synthesis of 3 -allenylindoles and 3-dienylindoles by Brønsted acid catalyzed allenylation of 2 -arylindoleswith tertiary propargylic alcohols[J]. Synlett, 2009, 12: 1985-1989.
[61] BRINGMANN G, PRICE MORTIMER A J, KELLER P A, et al. Atroposelective synthesis of axially chiral biaryl compounds[J]. Angewandte Chemie International Edition, 2005, 44(34): 5384 -5427.
[62] WENCEL-DELORD J, PANOSSIAN A, LEROUX F R, et al. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls[J]. Chemical Society Reviews, 2015, 44(11): 3418 -3430.
[63] LAPUH M I, MAZEH S, BESSET T. Chiral transient directing groups in transition-metal-catalyzed enantioselective C-H bond functionalization[J]. ACS Catalysis, 2020, 10(21): 12898 -12919.
[64] JIN L, YAO Q J, XIE P P, et al. Atroposelective synthesis of axially chiral styrenes via an asymmetric C-H functionalization strategy[J]. Chem, 2020, 6(2): 497-511.
[65] MA C, SHENG F T, WANG H Q, et al. Atroposelective access to oxindole -based axially chiral styrenes via the strategy of catalytic kinetic resolution[J]. Journal of the merican Chemical Society, 2020, 142(37): 15686-15696.
[66] ZHENG S C, WU S, ZHOU Q H, et al. Organocatalytic atroposelective synthesis of axially chiral styrenes[J]. Nature Communications, 2017, 8 , 15238.
[67] WANG Y B, YU P Y, ZHOU Z P, et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs[J]. Nature Catalysis, 2019, 2(6): 504-513.
[68] JIANG H L, LUO X H, WANG X Z, et al. New isocoumarins and alkaloid from chinese insect medicine, eupolyphaga sinensis walker[J]. Fitoterapia, 2012, 83(7), 1275-1280.
[69] CHESTERS G, SIMSIMAN G V, LEVY J, er al. Environmental fate of alachlor and metolachlor[J]. Springer, New York, NY, 1989, 110: 1-74.
[70] WANG Y B, ZHENG S C, HU Y M, et al. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones[J]. Nature Communications, 2017, 8, 15489.
[71] WU Y J, LIAO G, SHI B F. Stereoselective construction of atropisomers featuring a C-N chiral axis[J]. Green Synthesis and Catalysis, 2022, 3(2): 117-136.
[72] CHOPPIN S, WENCEL-DELORD J. Sulfoxide -directed or 3d-metal catalyzed C-H activation and hypervalent iodines as tools for atroposelective synthesis [J]. Accounts Of Chemical Research, 2023(56), 189 -202.
[73] KITAGAWA O, YOSHIKAWA M, TANABE H, et al. Highly enantioselective synthesis of atropisomeric anilide derivatives through catalytic asymmetric N-arylation: conformational analysis and application to asymmetric enolate chemistry[J]. Journal of the American Chemical Society, 2006, 128(39): 12923-12931.
[74] SHIRAKAWA S, LIU K, MARUOKA K. Catalytic asymmetric synthesis of axially chiral o-iodoanilides by phase -transfer catalyzed alkylations[J]. Journal of the American Chemical Society, 2011, 134(2): 916 -919.
[75] ZHANG J W, XU J H, CHENG D J, et al. Discovery and enantiocontrol of axially chiral urazoles via organocatalytic tyrosine click reaction[J]. Nature Communications, 2016, 7, 10677.
[76] LIU H J, FENG W, KEE C W, et al. Brønsted base-catalyzed tandem isomerization-michael reactions of alkynes: aynthesis of oxacycles and azacycles[J]. Advanced Synthesis & Catalysis, 2010, 352(18): 3373 -3379.
[77] AN Q J, XIA W, DING W Y, et al. Nitrosobenzene -enabled chiral phosphoric acid catalyzed enantioselective construction of atropisomeric N -arylbenzimidazoles[J]. Angewandte Chemie International Edition, 2021, 60(47): 24888-24893.
[78] XIA W, AN Q J, XIANG S H, et al. Chiral phosphoric acid catalyzed atroposelective C-H amination of arenes[J]. Angewandte Chemie International Edition, 2020, 59(17): 6775 -6779.
[79] QIN J Y, ZHOU T, ZHOU T P, et al. Catalytic atroposelective electrophilic amination of indoles[J]. Angewandte Chemie International Edition, 2022, 134, e202205159.
[80] FREY J, MALEKAFZALI A, DELSO I, et al. Enantioselective synthesis of N-C axially chiral compounds by Cu -catalyzed atroposelective aryl amination[J]. Angewandte Chemie International Edition, 2020, 59(23): 8844 -8848.
[81] REN Q, CAO T T, HE C N, et al. Highly atroposelective rhodium(II)-catalyzed N-H bond insertion: access to axially chiral Narylindolocarbazoles[J].ACS Catalysis, 2021, 11(10): 6135 -6140.
[82] NIU C, ZHOU Y, CHEN Q, et al. Atroposelective synthesis of N -arylindoles via enantioselective N-H bond insertion[J]. Organic Letters, 2022, 24(40): 7428-7433.
[83] BRANDES S, BELLA M, KJæRSGAARD A, et al. Chirally aminated 2 -naphthols-organocatalytic synthesis of non -biaryl atropisomers by asymmetric friedel-crafts amination[J]. Angewandte Chemie International Edition, 2006, 45(7): 1147-1151.
[84] BAI H Y, TAN F X, LIU T Q, et al. Highly atroposelective synthesis of nonbiaryl naphthalene -1,2-diamine N-C atropisomers through direct enantioselective C-H amination[J]. Nature Communications, 2019, 10, 3063 .
[85] SUN C, QI X T, MIN X L, et al. Asymmetric allylic substitution -isomerization to axially chiral enamides via hydrogen -bonding assisted central-to-axial chirality transfer[J]. Chemical Science, 2020, 11(37): 10119-10126.
[86] CORTI V, THøGERSEN M K, ENEMæRKE V J, et al. Construction of C-N atropisomers by aminocatalytic enantioselective addition of indole -2-carboxaldehydes o-quinone derivatives[J]. Chemistry -A European Journal, 2022, 28, e202202395.
[87] ZHANG S Q, HONG X. Mechanism and selectivity control in Ni- and Pdcatalyzedcross-couplings involving carbon -oxygen bond activation[J]. Accounts of Chemical Research, 2021, 54(9): 2158-2171.
[88] QIU Z H, LI C J. Transformations of less-activated phenols and phenol derivatives via C-O cleavage[J]. Chemical Reviews, 2020, 120(18): 10454 -10515.
[89] CHANG X H, ZHANG Q L, GUO C. Switchable smiles rearrangement for enantioselective O-aryl amination[J]. Organic Letters, 2019, 21(12): 4915 -4918.
[90] CHO S H, KIM J Y, KWAK J, et al. Recent advances in the transition metal -catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation[J]. Chemical Society Reviews, 2011, 40(10), 5068-5083.
[91] PARK Y, KIM Y, CHANG S. Transition metal-catalyzed C-H amination: scope, mechanism, and applications[J]. Chemical Reviews, 2017, 117(13): 9247-9301.
[92] DOREL R, GRUGEL C P, HAYDL A M. The Buchwald-hartwig amination after 25 years[J]. Angewandte Chemie International Edition, 2019, 58(48): 17118-17129.
[93] SáNCHEZ-ROSELLó M, ACEñA J L, SIMóN-FUENTES A, et al. A general overview of the organocatalytic intramolecular aza -michael reaction[J]. Chemical Society Reviews, 2014, 43(21): 7430 -7453.
[94] KITAGAWA O. Chiral Pd-catalyzed enantioselective syntheses of various N -C axially chiral compounds and their synthetic applications[J]. Accounts of Chemical Research, 2021, 54(3): 719 -730.
[95] LU C J, XU Q, FENG J, et al. The asymmetric Buchwald-hartwig amination reaction[J]. Angewandte Chemie International Edition, 2023, 135, e202216863.
[96] FENG J, LU C J, LIU R R. Catalytic asymmetric synthesis of atropisomers featuring an aza axis[J]. Accounts of Chemical Research, 2023, 56(18): 2537-2554.
[97] NAKAMURA S, KOZUKA M, BASTOW K F, et al. Cancer preventive agents, Part 2: Synthesis and evaluation of 2 -phenyl-4-quinolone and 9-oxo-9,10-dihydroacridine derivatives as novel antitumor promoters[J]. Bioorganic & Medicinal Chemistry, 2005, 13(14): 4396 -4401.
[98] HUANG L J, HSIEH M C, TENG C M, et al. Synthesis and antiplatelet activity of phenyl quinolones[J]. Bioorganic & Medicinal Chemistry, 1998, 6(10), 1657-1662.
[99] ATWELL G L, BOS C D, BAGULEY B C, et al. Potential antitumor agents. 56. Minimal DNA-intercalating ligands as antitumor drugs: phenylquinoline -8-carboxamides[J]. Journal of Medicinal Chemistry, 1988, 31(5), 1048 -1052.
[100]STREKOWSKI L, SAY M, HENARY M, et al. Synthesis and activity of substituted 2-phenylquinolin-4-amines, antagonists of immunostimulatory CpG-oligodeoxynucleotides[J]. Journal of Medicinal Chemistry, 2003, 46(7), 1242-1249.
[101]KAKADIYA R, DONG H J, KUMAR A, et al. Potent DNA -directed alkylating agents: synthesis and biological activity of phenyl N -mustard–quinoline conjugates having a urea or hydrazinecarboxamide linker[J]. Bioorganic & Medicinal Chemistry, 2010, 18(6): 2285 -2299.
[102]HUTCHISON A J, KISHI Y. Stereospecific total synthesis of dl-austamide[J]. Journal of the American Chemical Society, 1979, 101(22): 6786 -6788.
[103]WILLIAMS R M, GLINKA T, COFFMAN H, et al. Asymmetric, stereocontrolled total synthesis of (-)-brevianamide B[J]. Journal of the American Chemical Society, 1990, 112(2), 808 -821.
[104]STOERMER D, HEATHCOCK C H. Total synthesis of (-)-alloaristoteline, (-)-serratoline, and (+)-aristotelone[J]. Journal of Organic Chemistry, 1993, 58(3), 564-568.
[105]FUKUDA Y, NAKATANI K, ITO Y, et al. First total synthesis of dlduocarmycin A[J]. Tetrahedron Letters, 1990, 31(46): 6699 -6702.
[106]LIU Y H, MCWHORTER W W. Synthesis of 8-desbromohinckdentine A[J]. Journal of the American Chemical Society, 2003, 125(14), 4240 -4252.
[107]HIGUCHI K, SATO Y, KOJIMA S, et al. Preparation of 2,2 -disubstituted 1,2-dihydro-3H-indol-3-ones via oxidation of 2-substituted indoles and mannich-type reaction[J]. Tetrahedron, 2010, 66(6): 1236 -1243.
[108]YANG Y, BAI Y, SUN S Y, et al. Biosynthetically inspired divergent approach to monoterpene indole alkaloids: total synthesis of mersicarpine, leuconodines B and D, leuconoxine, melodinine E, leuconolam, and rhazinilam[J]. Organic Letters, 2014, 16(23): 6216 -6219.
[109]GRONBACH L M, VOSS A, FRAHM M, et al. Lewis acid -catalyzed carbofunctionalization of uncommon C,N-diacyliminium ions: controlling regio- and enantioselectivity[J]. Organic Letters, 2021, 23(20): 7834 -7838.
[110]WANG L, ZHONG J L, LIN X F. Atroposelective phosphoric acid catalyzed three-component cascade reaction: enantioselective synthesis of axially chiral N-arylindoles[J]. Angewandte Chemie International Edition, 2019, 58(44): 15824-15828.
[111]CHEN Z H, LI T Z, WANG N Y, et al. Organocatalytic enantioselective synthesis of axially chiral N,N′-bisindoles[J]. Angewandte Chemie International Edition, 2023, 135, e202300419.
[112]WANG L Y, MIAO J P, ZHAO Y, et al. Chiral acid -catalyzed atroposelective indolization enables access to 1,1′-indole-pyrroles and bisindoles bearing a chiral N-N axis[J]. Organic Letters, 2023, 25(9): 1553 -1557.
[113]CHEN Y H, QI L W, FANG F, et al. Organocatalytic atroposelective arylation of 2-naphthylamines as a practical approach to axially chiral biaryl amino alcohols[J]. Angewandte Chemie International Edition, 2017, 56(51): 16308-16312.
[114]YANG B M, NG X Q, ZHAO Y. Enantioselective synthesis of indoles through catalytic indolization[J]. Chem Catalysis, 2022, 2(11): 3048 -3076.
[115]CAI W Y, DING Q N, ZHOU L, et al. Asymmetric synthesis of axially chiral molecules via organocatalytic cycloaddition and cyclization reactions[J]. Molecules, 2023, 28, 4306.
[116]ZHANG H H, LI T Z, LIU S J, et al. Catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements: an emerging field[J]. Angewandte Chemie International Edition, 2024, 63, e202311053.
[117]LIAO G, ZHOU T, YAO Q J, et al. Recent advances in the synthesis of axially chiral biarylsviatransition metal-catalysed asymmetric C-H functionalization[J]. Chemical Communications, 2019, 55(59): 8514 -8523.
[118]CHENG J K, XIANG S H, LI S, et al. Recent advances in catalytic asymmetric construction of atropisomers[J]. Chemical Reviews, 2021, 121(8): 4805-4902.
[119]CARMONA J A, RODRíGUEZ-FRANCO C, FERNáNDEZ R, et al. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies[J]. Chemical Society Reviews, 2021, 50(5): 2968-2983.
[120]WANG J Y, GAO C H, MA C, et al. Design and catalytic asymmetric synthesis of furan-indole compounds bearing both axial and central chirality[J]. Angewandte Chemie International Edition, 2024, 63, e202316454.

所在学位评定分委会
化学
国内图书分类号
O626.42
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765685
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
黄婷婷. 功能化炔丙醇的设计及其应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132742-黄婷婷-化学系.pdf(43907KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄婷婷]的文章
百度学术
百度学术中相似的文章
[黄婷婷]的文章
必应学术
必应学术中相似的文章
[黄婷婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。