[1] ASIF M T, KANNAN S, DAUWELS J, et al., 2013. Data compression techniques for urban traffic data[C/OL]//2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS). 44-49. DOI: 10.1109/CIVTS.2013.6612288.
[2] ASIF M T, MITROVIC N, DAUWELS J, et al., 2016. Matrix and tensor based methods for missing data estimation in large traffic networks[J]. IEEE Transactions on intelligent transportation systems, 17(7): 1816-1825.
[3] CARROLL J D, CHANG J J, 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition[J]. Psychometrika, 35(3): 283-319.
[4] CHEN J, SHAO J, 2000. Nearest neighbor imputation for survey data[J]. Journal of officialstatistics, 16(2): 113.
[5] CHEN X, WEI Z, LI Z, et al., 2017. Ensemble correlation-based low-rank matrix completion with applications to traffic data imputation[J]. Knowledge-Based Systems, 132: 249-262.
[6] CHEN X, HE Z, WANG J, 2018. Spatial-temporal traffic speed patterns discovery and incomplete data recovery via svd-combined tensor decomposition[J]. Transportation research part C:emerging technologies, 86: 59-77.
[7] CHEN X, HE Z, CHEN Y, et al., 2019. Missing traffic data imputation and pattern discovery with a bayesian augmented tensor factorization model[J]. Transportation Research Part C:Emerging Technologies, 104: 66-77.
[8] CHEN X, HE Z, SUN L, 2019. A bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation research part C: emerging technologies, 98: 73-84.
[9] CHEN X, LEI M, SAUNIER N, et al., 2021. Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 23(8): 12301-12310.
[10] CHENG L, CHEN Z, SHI Q, et al., 2022. Towards flexible sparsity-aware modeling: Automatic tensor rank learning using the generalized hyperbolic prior[J]. IEEE Transactions on Signal Processing, 70: 1834-1849.
[11] CONVY I, HUGGINS W, LIAO H, et al., 2022. Mutual information scaling for tensor network machine learning[J]. Machine learning: science and technology, 3(1): 015017.
[12] DEMPSTER A P, LAIRD N M, RUBIN D B, 1977. Maximum likelihood from incomplete data via the em algorithm[J]. Journal of the royal statistical society: series B (methodological), 39(1): 1-22.
[13] DING C, 2013. Transport development, regional concentration and economic growth[J]. Urban Studies, 50(2): 312-328.
[14] DUAN Y, LV Y, LIU Y L, et al., 2016. An efficient realization of deep learning for traffic data imputation[J]. Transportation research part C: emerging technologies, 72: 168-181.
[15] GE Y, LI H, TUZHILIN A, 2019. Route recommendations for intelligent transportation services[J]. IEEE Transactions on Knowledge and Data Engineering, 33(3): 1169-1182.
[16] GECCHELE G, ROSSI R, GASTALDI M, et al., 2012. Advances in uncertainty treatment in fhwa procedure for estimating annual average daily traffic volume[J]. Transportation research record, 2308(1): 148-156.
[17] GOLD D L, TURNER S M, GAJEWSKI B J, et al., 2001. Imputing missing values in its data archives for intervals under 5 minutes[C]//Transportation Research Board 80th Annual Meeting.
[18] GOULART J D M, KIBANGOU A, FAVIER G, 2017. Traffic data imputation via tensor completion based on soft thresholding of tucker core[J]. Transportation Research Part C: Emerging Technologies, 85: 348-362.
[19] GUO Y, WANG X, WANG M, et al., 2018. An improved low rank matrix completion method for traffic data[C]//2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE: 255-260.
[20] HAN L, ZHENG K, ZHAO L, et al., 2020. Content-aware traffic data completion in its based on generative adversarial nets[J]. IEEE Transactions on Vehicular Technology, 69(10): 11950-11962.
[21] HAWKINS C, ZHANG Z, 2021. Bayesian tensorized neural networks with automatic rank selection[J]. Neurocomputing, 453: 172-180.
[22] HITCHCOCK F L, 1927. The expression of a tensor or a polyadic as a sum of products[J]. Journal of Mathematics and Physics, 6(1-4): 164-189.
[23] HITCHCOCK F L, 1928. Multiple invariants and generalized rank of a p-way matrix or tensor[J]. Journal of Mathematics and Physics, 7(1-4): 39-79.
[24] KOLDA T G, BADER B W, 2009. Tensor decompositions and applications[J]. SIAM review, 51(3): 455-500.
[25] KOTSIA I, PATRAS I, 2011. Support tucker machines[C]//CVPR 2011. IEEE: 633-640.
[26] KOTSIA I, GUO W, PATRAS I, 2012. Higher rank support tensor machines for visual recognition[J]. Pattern Recognition, 45(12): 4192-4203.
[27] LI L, LI Y, LI Z, 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence[J]. Transportation research part C: emerging technologies, 34: 108-120.
[28] LI W, WANG J, FAN R, et al., 2020. Short-term traffic state prediction from latent structures: Accuracy vs. efficiency[J]. Transportation Research Part C: Emerging Technologies, 111: 72-90.
[29] LIU J, MUSIALSKI P, WONKA P, et al., 2012. Tensor completion for estimating missing values in visual data[J]. IEEE transactions on pattern analysis and machine intelligence, 35(1):208-220.
[30] LIU J, ONG G P, CHEN X, 2020. Graphsage-based traffic speed forecasting for segment network with sparse data[J]. IEEE Transactions on Intelligent Transportation Systems, 23(3):1755-1766.
[31] MENG X, FU H, PENG L, et al., 2020. D-lstm: Short-term road traffic speed prediction model based on gps positioning data[J]. IEEE Transactions on Intelligent Transportation Systems, 23(3): 2021-2030.
[32] NI D, LEONARD J D, 2005. Markov chain monte carlo multiple imputation using bayesian networks for incomplete intelligent transportation systems data[J]. Transportation research record, 1935(1): 57-67.
[33] NIE X, PENG J, WU Y, et al., 2022. Real-time traffic speed estimation for smart cities with spatial temporal data: A gated graph attention network approach[J]. Big Data Research, 28: 100313.
[34] QI H, ZHAO X, YAO Y, et al., 2023. Bgcp-based traffic data imputation and accident detection applications for the national trunk highway[J]. Accident Analysis & Prevention, 186: 107051.
[35] QU L, ZHANG Y, HU J, et al., 2008. A bpca based missing value imputing method for traffic flow volume data[C]//2008 IEEE Intelligent Vehicles Symposium. IEEE: 985-990.
[36] QU L, LI L, ZHANG Y, et al., 2009. Ppca-based missing data imputation for traffic flow volume: A systematical approach[J]. IEEE Transactions on intelligent transportation systems, 10(3): 512-522.
[37] RAI P, WANG Y, GUO S, et al., 2014. Scalable bayesian low-rank decomposition of incomplete multiway tensors[C]//International Conference on Machine Learning. PMLR: 1800-1808.
[38] RAN B, TAN H, FENG J, et al., 2016. Estimating missing traffic volume using low multilinear rank tensor completion[J]. Journal of Intelligent Transportation Systems, 20(2): 152-161.
[39] RAN B, TAN H, WU Y, et al., 2016. Tensor based missing traffic data completion with spatial–temporal correlation[J]. Physica A: Statistical Mechanics and its Applications, 446: 54-63.
[40] SCHIFANELLA C, CANDAN K S, SAPINO M L, 2014. Multiresolution tensor decompositions with mode hierarchies[J]. ACM Transactions on Knowledge Discovery from Data(TKDD), 8(2): 1-38.
[41] SILVA-RAMÍREZ E L, PINO-MEJÍAS R, LÓPEZ-COELLO M, et al., 2011. Missing value imputation on missing completely at random data using multilayer perceptrons[J]. Neural Networks, 24(1): 121-129.
[42] SMITH B L, CONKLIN J H, 2002. Use of local lane distribution patterns to estimate missing data values from traffic monitoring systems[J]. Transportation research record, 1811(1): 50-56.
[43] SMITH B L, SCHERER W T, CONKLIN J H, 2003. Exploring imputation techniques for missing data in transportation management systems[J]. Transportation Research Record, 1836(1): 132-142.
[44] TAKAYAMA H, ZHAO Q, HONTANI H, et al., 2022. Bayesian tensor completion and decomposition with automatic cp rank determination using mgp shrinkage prior[J]. SN ComputerScience, 3(3): 225.
[45] TAN H, FENG G, FENG J, et al., 2013. A tensor-based method for missing traffic data completion[J]. Transportation Research Part C: Emerging Technologies, 28: 15-27.
[46] TAN H, WU Y, CHENG B, et al., 2014. Robust missing traffic flow imputation considering nonnegativity and road capacity[J]. Mathematical Problems in Engineering, 2014.
[47] TANG J, WANG Y, ZHANG S, et al., 2015. On missing traffic data imputation based on fuzzy c-means method by considering spatial–temporal correlation[J]. Transportation Research Record, 2528(1): 86-95.
[48] TAO D, LI X, HU W, et al., 2005. Supervised tensor learning[C]//Fifth IEEE International Conference on Data Mining (ICDM’05). IEEE: 8-pp.
[49] TUCKER L R, 1966. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 31(3): 279-311.
[50] WANG X, WU Y, ZHUANG D, et al., 2023. Low-rank hankel tensor completion for traffic speed estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 24(5): 4862-4871.
[51] WANG Y, ZHENG Y, XUE Y, 2014. Travel time estimation of a path using sparse trajectories[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 25-34.
[52] WU Y, TAN H, LI Y, et al., 2017. Robust tensor decomposition based on cauchy distribution and its applications[J]. Neurocomputing, 223: 107-117.
[53] XIE K, WANG L, WANG X, et al., 2016. Accurate recovery of internet traffic data: A tensor completion approach[C]//IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. IEEE: 1-9.
[54] XU J R, LI X Y, YI H J, 2010. Short-term traffic flow forecasting model under missing data[J]. Journal of Computer Applications, 30(4): 1117.
[55] XU Y, KONG Q J, KLETTE R, et al., 2014. Accurate and interpretable bayesian mars for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 15(6): 2457-2469.
[56] YE F, WU Z, JIA X, et al., 2023. Bayesian nonlocal patch tensor factorization for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing.
[57] YIN W, MURRAY-TUITE P, RAKHA H, 2012. Imputing erroneous data of single-station loop detectors for nonincident conditions: Comparison between temporal and spatial methods[J]. Journal of Intelligent Transportation Systems, 16(3): 159-176.
[58] ZHANG K, HAWKINS C, ZHANG Z, 2022. General-purpose bayesian tensor learning with automatic rank determination and uncertainty quantification[J]. Frontiers in Artificial Intelligence, 4: 668353.
[59] ZHANG L, WEI W, SHI Q, et al., 2017. Beyond low rank: A data-adaptive tensor completion method[A].
[60] ZHANG Y, LIU Y, 2009. Missing traffic flow data prediction using least squares support vector machines in urban arterial streets[C]//2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE: 76-83.
[61] ZHANG Z, HAWKINS C, 2018. Variational bayesian inference for robust streaming tensor factorization and completion[C]//2018 IEEE International Conference on Data Mining (ICDM). IEEE: 1446-1451.
[62] ZHANG Z, LI M, LIN X, et al., 2020. Network-wide traffic flow estimation with insufficient volume detection and crowdsourcing data[J]. Transportation Research Part C: Emerging Technologies, 121: 102870.
[63] ZHANG Z, LIN X, LI M, et al., 2021. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 132: 103372.
[64] ZHAO Q, ZHANG L, CICHOCKI A, 2015. Bayesian cp factorization of incomplete tensors with automatic rank determination[J]. IEEE transactions on pattern analysis and machine intelligence, 37(9): 1751-1763.
[65] ZHONG M, LINGRAS P, SHARMA S, 2004. Estimation of missing traffic counts using factor, genetic, neural, and regression techniques[J]. Transportation Research Part C: Emerging Technologies, 12(2): 139-166.
[66] ZHOU H, ZHANG D, XIE K, et al., 2015. Spatio-temporal tensor completion for imputing missing internet traffic data[C]//2015 ieee 34th international performance computing and communications conference (ipccc). IEEE: 1-7.
修改评论