[1] ZHOU Y, WANG Q. Advanced polymer dielectrics for high temperature capacitive energy storage[J]. Journal of Applied Physics, 2020, 127(24): 240902.
[2] SUN L, SHI Z C, HE B L, et al. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors[J]. Advanced Functional Materials, 2021, 31(35): 2100280.
[3] FENG Q K, ZHONG S L, PEI J Y, et al. Recent rogress and future prospects on all-organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2022, 122(3): 3820-3878.
[4] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-579.
[5] LI H, ZHOU Y, LIU Y, et al. Dielectric polymers for high-temperature capacitive energy storage[J]. Chemical Society Reviews, 2021, 50(11): 6369-6400.
[6] LI H, YANG T N, ZHOU Y, et al. Enabling high-energy-density high-efficiency ferroelectric polymer nanocomposites with rationally designed nanofillers[J]. Advanced Functional Materials, 2021, 31(1): 2006739.
[7] HAN Z, WANG Q. Recent progress on dielectric polymers and composites for capacitive energy storage[J]. iEnergy, 2022, 1(1): 50-71.
[8] SUN L, SHI Z C, WANG H L, et al. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites[J]. Journal of Materials Chemistry A, 2020;8:5750-5757.
[9] DONG J F, HU R C, XU X W, et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance[J]. Advanced Functional Materials, 2021, 31(32): 2102644.
[10] PAN Z Z, LI L, WANG L N, et al. Tailoring poly(styrene-co-maleic anhydride) networks for all-polymer dielectrics exhibiting ultrahigh energy density and charge-discharge efficiency at elevated temperatures[J]. Advanced Materials, 2023, 35(1): 2207580.
[11] DONG J F, LI L, QIU P Q, et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage[J]. Advanced Materials, 2023, 35(20): 2211487.
[12] BARSHAW E J, WHITE J, CHAIT M J, et al. High energy density (HED) biaxially-oriented poly-propylene (BOPP) capacitors for pulse power applications[J]. IEEE Transactions on Magnetics, 2007, 43(1): 223-225.
[13] PAN Z Z, Pan Y P, Li L, et al. High energy density and superior charge/discharge efficiency polymer dielectrics enabled by rationally designed dipolar polarization[J]. Journal of Materiomics, 2023, 9(3): 601-608.
[14] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives[J]. Chemical Reviews, 2021, 121(10): 6124-6172.
[15] LI H, GADINSKI M R, HUANG Y Q, et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency[J]. Energy & Environmental Science, 2020, 13(4): 1279-1286.
[16] CHENG R, WANG Y F, MEN R J, et al. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage[J]. iScience, 2022, 25(8): 104837.
[17] WU C, DESHMUKH A A, LI Z Z, et al. Flexible temperature-invariant polymer dielectrics with large bandgap[J]. Advanced Materials, 2020, 32(21): 2000499.
[18] TAN D, ZHANG L L, CHEN Q, et al. High-temperature capacitor polymer films[J]. Journal of Electronic Materials, 2014, 43(12): 4569-4575.
[19] FAN M, HU P, DAN Z, et al. Significantly increased energy density and discharge efficiency at high temperature in polyetherimide nanocomposites by a small amount of Al2O3 nanoparticles[J]. Journal of Materials Chemistry A, 2020, 8(46): 24536-24542.
[20] ZHOU Y, LI Q, DANG B, et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Advanced Materials, 2018, 30(49): 1805672.
[21] WU X D, CHEN X, ZHANG Q M, et al. Advanced dielectric polymers for energy storage[J]. Energy Storage Materials, 2022, 44: 29-47.
[22] FAN B H, ZHOU M Y, ZHANG C, et al. Polymer-based materials for achieving high energy density film capacitors[J]. Progress in Polymer Science, 2019, 97: 101143.
[23] NAN C W, SHEN Y, MA J. Physical properties of composites near percolation[J]. Annual Review of Materials Research, 2010, 40(1): 131-151.
[24] RAMESH S, SHUTZBERG B A, HUANG C, et al. Dielectric nanocomposites for integral thin film capacitors: materials design, fabrication and integration issues[J]. IEEE Transactions on Advanced Packaging, 2003, 26(1): 17-24.
[25] KASAP S. Principles of electronic materials and devices[M]. United States: McGraw-Hill, Inc., 2005: 768.
[26] Dissado, Leonard Alexander and John C. Fothergill. Electrical degradation and breakdown in polymers[C]. 1992.
[27] ZHU L. Exploring strategies for high dielectric constant and low loss polymer dielectrics[J]. Journal of Physical Chemistry Letters, 2014, 5(21): 3677-3687.
[28] XU D, XU W H, SEERY T, et al. Rational design of soluble polyaramid for high-efficiency energy storage dielectric materials at elevated temperatures[J]. Macromolecular Materials and Engineering, 2020, 305(3): 1900820.
[29] PARK S, KIM C H, LEE W J, et al. Sol-gel metal oxide dielectrics for all-solution-processed electronics[J]. Materials Science and Engineering: R: Reports, 2017, 114: 1-22.
[30] THAKUR Y, LIN M R, WU S, et al. Tailoring the dipole properties in dielectric polymers to realize high energy density with high breakdown strength and low dielectric loss[J]. Journal of Applied Physics, 2015, 117(11): 114104.
[31] LI Z Z, TREICH G M, TEFFERI M, et al. High energy density and high efficiency all-organic polymers with enhanced dipolar polarization[J]. Journal of Materials Chemistry A, 2019, 7(25): 15026-15030.
[32] LUO H, WANG F, GUO R, et al. Progress on polymer dielectrics for electrostatic capacitors application[J]. Advanced Science, 2022, 9(29): 2202438.
[33] TONG H, AHMAD A, FU J, et al. Revealing the correlation between molecular structure and dielectric properties of carbonyl‐containing polyimide dielectrics[J]. Journal of Applied Polymer Science, 2019, 136(34): 47883.
[34] TREUFELD I, WANG D H, KURISH B A, et al. Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain[J]. Journal of Materials Chemistry A, 2014, 2(48): 20683-20696.
[35] WANG D H, KURISH B A, TREUFELD I, et al. Synthesis and characterization of high nitrile content polyimides as dielectric films for electrical energy storage[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(3): 422-436.
[36] TONG H, FU J, AHMAD A, et al. Sulfonyl-containing polyimide dielectrics with advanced heat resistance and dielectric properties for high-temperature capacitor applications[J]. Macromolecular Materials and Engineering, 2019, 304(4): 1800709.
[37] QIAN G T, HU M J, ZHANG S Y, et al. Synthesis of superheat-resistant polyimides with enhanced dielectric constant by introduction of Cu(ΙΙ)-coordination[J]. Polymers, 2020, 12(2): 442.
[38] LIU T Q, ZHENG F, MA X R, et al. High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications[J]. Polymer, 2020, 209: 122963.
[39] PENG X W, WU Q, JIANG S H, et al. High dielectric constant polyimide derived from 5,5’-bis[(4-amino) phenoxy]-2,2’-bipyrimidine[J]. Journal of Applied Polymer Science, 2014, 131(24).
[40] FENG Q K, ZHANG Y X, LIU D F, et al. Dielectric and energy storage properties of all-organic sandwich-structured films used for high-temperature film capacitors[J]. Materials Today Energy, 2022, 29: 101132.
[41] BALDWIN A F, MA R, WANG C C, et al. Structure-property relationship of polyimides based on pyromellitic dianhydride and short-chain aliphatic diamines for dielectric material applications[J]. Journal of Applied Polymer Science, 2013, 130(2): 1276-1280.
[42] PENG X W, WU Q, JIANG S H, et al. High performance polyimide-Yb complex with high dielectric constant and low dielectric loss[J]. Materials Letters, 2014, 133: 240-242.
[43] DAI Z Z, BAO Z W, DING S, et al. Scalable polyimide-poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage[J]. Advanced Materials, 2022, 34(5): 2101976.
[44] BENDLER J T, EDMONDSON C A, WINTERSGILL M C, et al. Electrical properties of a novel fluorinated polycarbonate[J]. European Polymer Journal, 2012, 48(4): 830-840.
[45] SHEIMA Y, YUTS Y, FRAUENRATH H, et al. Polysiloxanes modified with different types and contents of polar groups: synthesis, structure, thermal and dielectric properties[J]. Macromolecules, 2021, 54(12): 5737-5749.
[46] WEN F, ZHANG L, WANG P, et al. A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group [J]. Journal of Materials Chemistry A, 2020, 8(30): 15122-15129.
[47] LIU J J, LI M, ZHAO Y F, et al. Manipulating H-bonds in glassy dipolar polymers as a new strategy for high energy storage capacitors with high pulse discharge efficiency[J]. Journal of Materials Chemistry A, 2019, 7(33): 19407-19414.
[48] GUAN F X, YANG L Y, WANG J, et al. Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications[J]. Advanced Functional Materials, 2011, 21(16): 3176-3188.
[49] GUAN F X, WANG J, YANG L, et al. Confinement-induced high-field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer [J]. Macromolecules, 2011, 44(7): 2190-2199.
[50] VAN D B O, WüBBENHORST M, PICKEN S J, et al. Characteristic size of molecular dynamics in polymers probed by dielectric probes of variable length[J]. Journal of Non-Crystalline Solids, 2005, 351(33): 2694-2702.
[51] HAINS P J, WILLIAMS G. Molecular motion in polystyrene-plasticizer systems as studied by dielectric relaxation[J]. Polymer, 1975, 16(10): 725-729.
[52] ZHANG Z B, WANG D H, LITT M H, et al. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Angewandte Chemie International Edition, 2018, 57(6): 1528-1531.
[53] CHEN J, ZHOU Y, HUANG X Y, et al. Ladderphane copolymers for high-temperature capacitive energy storage[J]. Nature, 2023, 615(7950): 62-66.
[54] CHEN C, XING J W, CUI Y, et al. Designing of ferroelectric/linear dielectric bilayer films: An effective way to improve the energy storage performances of polymer-based capacitors[J]. The Journal of Physical Chemistry C, 2020, 124(11): 5920-5927.
[55] ZHOU C Y, XU W H, ZHANG Y H, et al. Hydrogen bonding of aramid boosts high-temperature capacitive properties of polyetherimide blends [J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8471-8479.
[56] ZHANG Q Y, CHEN X, ZHANG T, et al. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds[J]. Nano Energy, 2019, 64: 103916.
[57] AHMAD A, TONG H, FAN T, et al. All-organic polymer blend dielectrics of poly (arylene ether urea) and polyimide: Toward high energy density and high temperature applications[J]. Journal of Polymer Science, 2021, 59(13): 1414-1423.
[58] ZHANG Y, FENG R, CHEN Z, et al. Significantly enhancing energy storage performances of flexible dielectric film by introducing poly(1,4-anthraquinone)[J]. European Polymer Journal, 2021, 152: 110486.
[59] LIU J Y, QIN Z S, GAO H K, et al. Vertical organic field-effect transistors[J]. Advanced Functional Materials, 2019, 29(17): 1808453.
[60] SIRRINGHAUS H. 25th Anniversary article: Organic field-effect transistors: The path beyond amorphous silicon[J]. Advanced Materials, 2014, 26(9): 1319-1335.
[61] HOU J H, INGANäS O, FRIEND R H, et al. Organic solar cells based on non-fullerene acceptors[J]. Nature Materials, 2018, 17(2): 119-128.
[62] THOMPSON B C, FRéCHET J M J. Polymer–fullerene composite solar cells[J]. Angewandte Chemie International Edition, 2008, 47(1): 58-77.
[63] ZHA J W, XIAO M Y, WAN B Q et al. Polymer dielectrics for high-temperature energy storage: Constructing carrier traps[J]. Progress in Materials Science, 2023, 140: 101208.
[64] DANG B, HU J, ZHOU Y, et al. Remarkably improved electrical insulating performances of lightweight polypropylene nanocomposites with fullerene[J]. Journal of Physics D: Applied Physics, 2017, 50(45): 455303.
[65] ZHA J W, LIU Q, DANG Z M, et al. Tailored wide-frequency dielectric behavior of polyimide composite films with BaxSr1-xTiO3 perovskites ceramic particles [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 113-120.
[66] YUAN C, ZHOU Y, ZHU Y J, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage[J]. Nature Communications, 2020, 11(1): 3919.
[67] ZHANG B, CHEN X M, PAN Z, et al. Superior high-temperature energy density in molecular semiconductor/polymer all-organic composites[J]. Advanced Functional Materials, 2023, 33(5): 2210050.
[68] ZHANG L J, LIU J, LUO L B, et al. All-organic polyimide/Cl-HBC composite film with high breakdown strength and ultra-low dielectric loss[J]. Polymer, 2022, 245: 124702.
[69] ZHOU Y, ZHU Y J, XU W H, et al. Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C[J]. Advanced Energy Materials, 2023, 13(11): 2203961.
[70] REN W B, YANG M Z, ZHOU L, et al. Scalable ultrathin all-organic polymer dielectric films for high-temperature capacitive energy storage [J]. Advanced Materials, 2022, 34(47): 2207421.
[71] FENG M J, FENG Y, ZHANG C H, et al. Enhanced high-temperature energy storage performance of all-organic composite dielectric via constructing fiber-reinforced structure[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2022: e12571.
[72] FENG M J, FENG Y, ZHANG C H, et al. Ultrahigh energy storage performance of all-organic dielectrics at high-temperature by tuning the density and location of traps[J]. Materials Horizons, 2022, 9(12): 3002-3012.
[73] YANG M Z, ZHOU L, LI X, et al. Polyimides physically crosslinked by aromatic molecules exhibit ultrahigh energy density at 200 °C[J]. Advanced Materials, 2023, 35(35): 2302392.
[74] DING S, BAO Z W, WANG Y W, et al. Excellent high-temperature dielectric energy storage of flexible all-organic polyetherimide/poly(arylene ether urea) polymer blend films[J]. Journal of Power Sources, 2023, 570: 233053.
[75] XIONG J, FAN X, LONG D J, et al. Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer[J]. Journal of Materials Chemistry A, 2022, 10(46): 24611-24619.
[76] MAO X, WU B, ZHANG F F, et al. Synthesis and characterization of polyimide/liquid acrylonitrile-butadiene rubber composite films[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(17): 16080-16086.
[77] LI P, YU J J, JIANG S H, et al. Dielectric, mechanical and thermal properties of all-organic PI/PSF composite films by in situ polymerization[J]. e-Polymers, 2020, 20(1): 226-232.
[78] SUN B Z, HU P H, JI X M, et al. Excellent Stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature[J]. Small, 2022, 18(28): 2202421.
[79] REN L L, YANG L J, ZHANG S Y, et al. Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors[J]. Composites Science and Technology, 2021, 201: 108528.
[80] YAN J J, WANG J, ZENG J Y, et al. Modulating the charge trapping characteristics of PEI/BNNPs dilute nanocomposite for improved high-temperature energy storage performance[J]. Journal of Materials Chemistry C, 2022, 10(36): 13157-13166.
[81] ZHANG T, CHEN X, THAKUR Y, et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature[J]. Science Advances, 2020, 6(4): eaax6622.
[82] FENG Q K, LIU D F, ZHANG Y X, et al. Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges[J]. Nano Energy, 2022, 99: 107410.
[83] LIU X J, ZHENG M S, CHI Q G, et al. High-temperature energy storage performances of “isomer-like” polyimide and its thermoplastic polyurethane blending system[J]. Journal of Materials Chemistry C, 2022, 10(45): 17326-17335.
[84] ZHANG Q Y, CHEN X, ZHANG B, et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends[J]. Matter, 2021, 4(7): 2448-2459.
[85] WANG Y F, CUI J, WANG L X, et al. Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites[J]. Journal of Materials Chemistry A, 2017, 5(9): 4710-4718.
[86] HU P C, WANG J J, SHEN Y, et al. Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites[J]. Journal of Materials Chemistry A, 2013, 1(39): 12321-12326.
[87] HAN C C, ZHANG X H, CHEN D, et al. Enhanced dielectric properties of sandwich-structured biaxially oriented polypropylene by grafting hyper-branched aromatic polyamide as surface layers[J]. Journal of Applied Polymer Science, 2020, 137(34): 48990.
[88] ZHOU Y J, LIU Q X, CHEN F J, et al. Improving breakdown strength and energy storage efficiency of poly(vinylidene fluoride-co-chlorotrifluoroethylene) and polyurea blend films by double layer structure design[J]. Polymer Testing, 2020, 81: 106261.
[89] WANG L, LUO H, ZHOU X F, et al. Sandwich-structured all-organic composites with high breakdown strength and high dielectric constant for film capacitor[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 369-376.
[90] WEI W T, HUANG C, ZHANG L Y, et al. Design on polarization distribution in all-organic polymer hybrids for high density energy storage[J]. Chemical Engineering Journal, 2020, 394: 125052.
[91] CHEN J, WANG Y F, DONG J F, et al. Ultrahigh energy storage density at low operating field strength achieved in multicomponent polymer dielectrics with hierarchical structure[J]. Composites Science and Technology, 2021, 201: 108557.
[92] SUN S B, SHI Z C, SUN L, et al. Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer[J]. ACS Applied Materials & Interfaces, 2021, 13(23): 27522-27532.
[93] WEI J J, ZHU L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage[J]. Progress in Polymer Science, 2020, 106: 101254.
[94] YIN K Z, ZHANG J W, LI Z P, et al. Polymer multilayer films for high temperature capacitor application[J]. Journal of Applied Polymer Science, 2019, 136(20): 47535.
[95] LI Z P, CHEN X Y, ZHANG C, et al. High dielectric constant polycarbonate/nylon multilayer films capacitors with self-healing capability[J]. ACS Applied Polymer Materials, 2019, 1(4): 867-875.
[96] ZHANG T, DAN Z K, SHEN Z H, et al. An alternating multilayer architecture boosts ultrahigh energy density and high discharge efficiency in polymer composites[J]. RSC Advances, 2020, 10(10): 5886-5893.
[97] NIU Y J, DONG J F, HE Y F, et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface[J]. Nano Energy, 2022, 97: 107215.
[98] DANG Z M, ZHOU T, YAO S H, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity[J]. Advanced Materials, 2009, 21(20): 2077-2082.
[99] DANG Z M, YUAN J K, ZHA J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science, 2012, 57(4): 660-723.
[100] ROSCOW J I, BOWEN C R, ALMOND D P. Breakdown in the case for materials with piant Permittivity?[J]. ACS Energy Letters, 2017, 2(10): 2264-2269.
[101] LIU Q Q, LIN Q H, QI X D, et al. Significantly enhanced energy storage performances of PEI-based composites utilizing surface functionalized ZrO2 nanoparticles for high-temperature application[J]. Chinese Journal of Polymer Science, 2024, 42: 322-332.
[102] MA J C, AZHAR U, ZONG C Y, et al. Core-shell structured PVDF@BT nanoparticles for dielectric materials: A novel composite to prove the dependence of dielectric properties on ferroelectric shell[J]. Materials & Design, 2019, 164: 107556.
[103] REN L L, LI H, XIE Z L, et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers[J]. Advanced Energy Materials, 2021, 11(28): 2101297.
[104] TCHOUL M, FILLERY S P, KOERNER H, et al. Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications[J]. Chemistry of Materials, 2010, 22: 1749-1759.
[105] XU J W, WONG C P. Low-loss percolative dielectric composite[J]. Applied Physics Letters, 2005, 87(8): 082907.
[106] PANIAGUA S A, KIM Y S, HENRY K, et al. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3477-3482.
[107] YANG K, HUANG X Y , HUANG HY, et al. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application[J]. Chemistry of Materials, 2013, 25(11): 2327-2338.
[108] FREDIN L A, LI Z, RATNER M A, et al. Enhanced energy storage and suppressed dielectric loss in oxide core-shell-polyolefin nanocomposites by moderating internal surface area and increasing shell thickness[J]. Advanced Materials, 2012, 24(44): 5946-5953.
[109] THAKUR Y, ZHANG T, IACOB C, et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers[J]. Nanoscale, 2017, 9(31): 10992-10997.
[110] ZHANG T, CHEN X, ZHANG Q Y, et al. Dielectric enhancement over a broad temperature by nanofiller at ultra-low volume content in poly(ether methyl ether urea)[J]. Applied Physics Letters, 2020, 117(7): 072905.
[111] LIANG W B, WIED P, CARRARO F, et al. Metal-organic framework-based enzyme biocomposites[J]. Chemical Reviews, 2021, 121(3): 1077-1129.
[112] MENG Z Y, QIU Z M, SHI Y X, et al. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications[J]. eScience, 2023, 3(2): 100092.
[113] WANG F, CAI J M, YANG C C, et al. Improved capacitive energy storage nanocomposites at high temperature utilizing ultralow loading of bimetallic MOF[J]. Small, 2023, 19(26): 2300510.
[114] LI L T , DONG F J, HU R C, et al. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures[J]. Chemical Engineering Journal, 2022, 435: 135059.
[115] LI S T, XIE D R, QU G H, et al. Tailoring interfacial compatibility and electrical breakdown properties in polypropylene based composites by surface functionalized POSS[J]. Applied Surface Science, 2019, 478: 451-458.
[116] YANG M C, WANG S J, FU J, et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites[J]. Advanced Materials, 2023, 35(30): 2301936.
[117] YANG M Z, YUAN F, SHI W X, et al. Sub-nanowires boost superior capacitive energy storage performance of polymer composites at high temperatures[J]. Advanced Functional Materials, 2023, 33(12): 2214100.
[118] ZHOU Y, YUAN C, WANG S J, et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage[J]. Energy Storage Materials, 2020, 28: 255-263.
[119] DING X P, PAN Z B, CHENG Y, et al. Modulating electron traps of PEI-based nanocomposites for superb capacitive performance over a broad temperature range[J]. Chemical Engineering Journal, 2023, 453: 139917.
[120] LIU J, JI L Y, YU J Y, et al. Enhanced breakdown strength and electrostatic energy density of polymer nanocomposite films realized by heterostructure ZnO-ZnS nanoparticles[J]. Chemical Engineering Journal, 2023, 456: 140950.
[121] LI L T, DONG J F, HU R C, et al. Wide-bandgap fluorides/polyimide composites with enhanced energy storage properties at high temperatures[J]. Chemical Engineering Journal, 2022, 439: 135059.
[122] LI L, CHENG J S, CHENG Y Y, et al. Significantly enhancing the dielectric constant and breakdown strength of linear dielectric polymers by utilizing ultralow loadings of nanofillers[J]. Journal of Materials Chemistry A, 2021, 9: 23028-23036.
[123] CHEN X, ZHANG Q Y, LIU Z Y, et al. High dielectric response in dilute nanocomposites via hierarchical tailored polymer nanostructures[J]. Applied Physics Letters, 2022, 120: 162902.
[124] LIU Y, YANG T N, ZHANG B, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites[J]. Advanced Materials, 2020, 32(49): 2005431.
[125] AI D, LI H, ZHOU Y, et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage[J]. Advanced Energy Materials, 2020, 10(16): 1903881.
[126] STARK K H, GARTON C G. Electric strength of irradiated polythene[J]. Nature, 1955, 176(4495): 1225-1226.
[127] LIU Z, WANG T Z, ZHU L X, et al. In-situ crosslinked polyetherimide/BNNS composites with ultrahigh charged-discharged efficiency at high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2023, 175: 107829.
[128] LI L, CHENG J, CHENG Y, et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers[J]. Advanced Materials, 2021, 33(35): 2102392.
[129] 罗进, 刘云飞, 吕忆农. 用TEM分析材料在实验教学中的实践[J]. 实验室科学, 2023, 26(04): 144-147.
[130] CHRISTODOULIDES C. Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarisation currents[J]. Journal of Physics D: Applied Physics, 1985, 18(8): 1501.
[131] FU J, YANG M C, WANG R, et al. Improvement of high-temperature energy storage performance in polymer dielectrics by nanofillers with defect spinel structure[J]. Materials Today Energy, 2022, 29: 101101.
[132] YAMADA T, UEDA T, KITAYAMA T. Piezoelectricity of a high‐content lead zirconate titanate/polymer composite[J]. Journal of Applied Physics, 1982, 53(6): 4328-4332.
[133] TUNCER E, GUBAŃSKI S M, NETTELBLAD B. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas[J]. Journal of Applied Physics, 2001, 89(12): 8092-8100.
[134] TAN D Q. Review of Polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Advanced Functional Materials, 2020, 30(18): 1808567.
[135] VAN DE WALLE C G, NEUGEBAUER J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions[J]. Nature, 2003, 423(6940): 626-628.
[136] CHIU F C. A review on conduction mechanisms in dielectric films[J]. Advances in Materials Science and Engineering, 2014, 2014: 578168.
[137] JIANG J Y, SHEN Z H, QIAN J F, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage[J]. Nano Energy, 2019, 62: 220-229.
[138] AN N, WANG X, LI Y, et al. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes[J]. Advanced Materials, 2019, 31(41): 1904882.
[139] CHAITANYA PITIKE K, HONG W. Phase-field model for dielectric breakdown in solids[J]. Journal of Applied Physics, 2014, 115(4): 044101.
修改评论