中文版 | English
题名

基于铂基电催化剂/电解液模型的燃料电池电催化反应动力学研究

其他题名
ELECTROCATALYTIC REACTION KINETICS OF FUEL CELLS BASED ON PLATINUM DERIVATIVES ELECTROCATALYST/ ELECTROLYTE MODEL
姓名
姓名拼音
LIU Haijun
学号
12049014
学位类型
博士
学位专业
0855 机械
学科门类/专业学位类别
08 工学
导师
王海江
导师单位
机械与能源工程系
论文答辩日期
2024-04-19
论文提交日期
2024-06-19
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

燃料电池在改变能源结构方面具有巨大应用前景,但其性能受到电催化反应缓慢动力学的限制,而目前应用中普遍采用的是贵金属铂基催化剂,从而阻碍了燃料电池的商业化。目前大量的研究工作聚焦于寻找替代贵金属的非贵金属电催化剂,但收效甚微,这源自于实验研究中的盲目试错和理论研究中的简化反应热力学模拟。原位表征技术发展的滞后性导致电催化反应动力学信息匮乏,从而延缓了电催化剂的发展进程。有鉴于此,本文基于铂基电催化剂/电解液模型,通过对碱性氢氧化反应(Hydrogen oxidation reaction, HOR)、酸性氧还原反应(Oxygen reduction reaction, ORR)和酸性甲醇氧化反应(Methanol oxidation reaction, MOR)进行系统地反应动力学研究和实验测试验证,旨在阐明中间体吸附、速率控制步骤(Rate-determining step, RDS)、电化学双电层和电位对电催化反应动力学的影响机制。
进行碱性HOR动力学研究可以解决关于亲氧性还是电子性质对活性影响的争议,并实现从反应动力学模拟到电化学实验测试的有效统一。研究表明,基于铂基电催化剂/碱性电解液模型,Pt3M(M = Cr、Co、Pd和Ir)电催化剂碱性HOR动力学过程为Tafel-(Volmer-OH-)反应机理,并且RDS为(Volmer-OH-)反应,这表明亲氧性对碱性HOR活性影响甚微。为了进一步验证其影响,通过微动力学模拟发现,电催化剂表面很少有吸附的氢氧根离子,并且电催化剂表面被吸附氢中间体占据。从模拟碱性HOR极化曲线中获得的交换电流密度与电化学实验测试结果一致,这不仅证明了反应动力学模拟研究的可靠性,还揭示了电子性质通过调节氢中间体的吸附强度来调控碱性HOR动力学活性。
具有更多反应中间种类的酸性ORR动力学过程更加复杂,其中包括二电子机理、四电子机理和过氧化氢降解机理,确定RDS在酸性ORR动力学中的作用机制对酸性ORR动力学活性调控尤为重要。为此,通过以铂的三个低指数晶面和三种比例的铂镍合金为研究体系,并基于铂基电催化剂/酸性电解液模型进行酸性ORR动力学研究发现,酸性ORR动力学过程以四电子机理为主,并且RDS为R8(O* + H+ + e- → OH*)反应,以及氢通过Eley-Rideal机理参与反应动力学过程。再结合微动力学模拟、基于R8反应的电化学动力学方程以及电化学测试验证发现,R8反应是影响酸性ORR动力学活性的主要因素,并且从基于R8反应模拟的酸性ORR极化曲线中获得的半波电位与实验测试结果具有良好的一致性,从而证明了R8反应可以作为酸性ORR动力学模拟和实验活性测试结果直接匹配的桥梁。
为了进一步探究酸性ORR动力学活性的调控机制,通过合金工程调控策略选取六种铂基合金(Pt3M,M = Cr、Co、Cu、Pd、Sn和Ir)电催化剂作为研究体系,并且经过结构表征、反应动力学模拟和实验测试验证发现,铂基合金与铂的晶格常数差异在3.5%以内,并且它们的酸性ORR活性得到了有效调控。合金工程对酸性ORR动力学具有双重调控机制,电子效应通过调节价电子能级结构来调控中间体的吸附强度,而电化学双电层通过调节静电场强度来调控水合质子的溶剂化传输效率。与电子效应相比,电化学双电层与酸性ORR动力学活性具有更高的相关度,表明通过调节电化学双电层可以更有效地调控酸性ORR动力学活性。
鉴于更加复杂的酸性MOR实验测试电位区间(0.05 ~ 1.25 V vs. RHE)远离平衡电位(0.046 V vs. RHE),电位变化可以显著影响酸性MOR动力学。为此,基于铂基电催化剂/酸性电解液模型,通过利用电位相关酸性MOR动力学研究发现,Pt(111)和PtRu(101)电催化剂酸性MOR动力学中的RDS随着电位的升高而改变。进一步通过电位相关微动力学模拟和速率控制度研究发现,不同电位区间内的RDS是影响酸性MOR动力学活性的主要因素。通过将电位相关反应动力学模拟和电化学动力学原理相结合,获得的模拟酸性MOR极化曲线得到了实验测试极化曲线的验证,并且Pt(111)和PtRu(101)电催化剂酸性MOR极化曲线中最大电流密度误差分别为0.020和0.023 mA cm-2,以及在酸性MOR中主要存在从CHO*中间体脱氢到CO*中间体与OH*中间体结合脱氢的RDS转换机制。

关键词
语种
中文
培养类别
联合培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] Das V, Padmanaban S, Venkitusamy K, et al. Recent Advances and Challenges of Fuel Cell Based Power System Architectures and Control – a Review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 10-18.
[2] Turiel A. The Energy Crisis in the World Today: Analysis of the World Energy Outlook 2021[M]. Paris: International Energy Agency, 2022: 1-21.
[3] Cook B. Introduction to Fuel Cells and Hydrogen Technology[J]. Engineering Science & Education Journal, 2002, 11(6): 205-216.
[4] Kirubakaran A, Jain S, Nema R K. A Review on Fuel Cell Technologies and Power Electronic Interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430-2440.
[5] Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4270.
[6] Varga Á. Introduction to Fuel Cell Technology[M]. Boston: Springer, 2007: 1-32.
[7] Mekhilef S, Saidur R, Safari A. Comparative Study of Different Fuel Cell Technologies[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 981-989.
[8] 孙世刚, 陈声培. 电化学催化中的表面微观结构与特殊反应性能[J]. 厦门大学学报: 自然科学版, 2001, 40(2): 398-406.
[9] 毕道治. 中国燃料电池的发展[J]. 电源技术, 2000, 24(2): 103-107.
[10] Ferriday T B, Middleton P H. Alkaline Fuel Cell Technology - a Review[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18489-18510.
[11] Tomantschger K, McClusky F, Oporto L, et al. Development of Low Cost Alkaline Fuel Cells[J]. Journal of Power Sources, 1986, 18(4): 317-335.
[12] Gouérec P, Poletto L, Denizot J, et al. The Evolution of the Performance of Alkaline Fuel Cells with Circulating Electrolyte[J]. Journal of Power Sources, 2004, 129(2): 193-204.
[13] Kiros Y, Schwartz S. Pyrolyzed Macrocycles on High Surface Area Carbons for the Reduction of Oxygen in Alkaline Fuel Cells[J]. Journal of Power Sources, 1991, 36(4): 547-555.
[14] Tomantschger K, Kordesch K V. Structural Analysis of Alkaline Fuel Cell Electrodes and Electrode Materials[J]. Journal of Power Sources, 1989, 25(3): 195-214.
[15] Li D, Zhang L, Kuang L, et al. Carbothermal Shock Synthesis of CoO/N/C Nanoparticles with Superior Durability for Oxygen Reduction Reaction[J]. Journal of Power Sources, 2023, 587: 233699.
[16] Yuan R, Xu W, Pan L, et al. Ni-Doped La0.6Sr0.4CoO3 Perovskite as an Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline Media[J]. Catalysts, 2023, 13(10): 1366.
[17] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[18] Davydova E S, Mukerjee S, Jaouen F, et al. Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes[J]. ACS Catalysis, 2018, 8(7): 6665-6690.
[19] 郝明晟, 李印实, 何雅玲. 质子交换膜燃料电池催化层模型研究进展与展望[J]. 科学通报, 2022, 67(19): 2192-2211.
[20] Laribi S, Mammar K, Sahli Y, et al. Air Supply Temperature Impact on the PEMFC Impedance[J]. Journal of Energy Storage, 2018, 17: 327-335.
[21] De Oliveira M C L, Ett G, Antunes R A. Materials Selection for Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells Using the Ashby Approach[J]. Journal of Power Sources, 2012, 206: 3-13.
[22] Haghighat Ghahfarokhi H, Saatchi A, Monirvaghefi S M. Corrosion Investigation of Chromium Nitride and Chromium Carbide Coatings for PEM Fuel Cell Bipolar Plates in Simulated Cathode Condition[J]. Fuel Cells, 2016, 16(3): 356-364.
[23] Gerteisen D, Heilmann T, Ziegler C. Enhancing Liquid Water Transport by Laser Perforation of a GDL in a PEM Fuel Cell[J]. Journal of Power Sources, 2008, 177(2): 348-354.
[24] Okonkwo P C, Otor C. A Review of Gas Diffusion Layer Properties and Water Management in Proton Exchange Membrane Fuel Cell System[J]. International Journal of Energy Research, 2020, 45(3): 3780-3800.
[25] Nagy K A, Tóth I Y, Ballai G, et al. Wetting and Evaporation on a Carbon Cloth Type Gas Diffusion Layer for Passive Direct Alcohol Fuel Cells[J]. Journal of Molecular Liquids, 2020, 304: 112698.
[26] Lee P H, Hwang S S. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels[J]. Sensors, 2009, 9(11): 9104-9121.
[27] 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学, 2023, 29(9): 2207061.
[28] Nabae Y, Nagata S, Hayakawa T, et al. Pt-Free Carbon-Based Fuel Cell Catalyst Prepared from Spherical Polyimide for Enhanced Oxygen Diffusion[J]. Scientific Reports, 2016, 6: 23276.
[29] He Y, Liu S, Priest C, et al. Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Fuel Cells: Advances in Catalyst Design, Electrode Performance, and Durability Improvement[J]. Chemical Society Reviews, 2020, 49(11): 3484-3524.
[30] Thompson S T, Papageorgopoulos D. Platinum Group Metal-Free Catalysts Boost Cost Competitiveness of Fuel Cell Vehicles[J]. Nature Catalysis, 2019, 2(7): 558-561.
[31] Okonkwo P C, Ige O O, Uzoma P C, et al. Platinum Degradation Mechanisms in Proton Exchange Membrane Fuel Cell (PEMFC) System: A Review[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15850-15865.
[32] Holewinski A, Idrobo J C, Linic S. High-Performance Ag-Co Alloy Catalysts for Electrochemical Oxygen Reduction[J]. Nature Chemistry, 2014, 6(9): 828-834.
[33] Miller E L, Thompson S T, Randolph K, et al. US Department of Energy Hydrogen and Fuel Cell Technologies Perspectives[J]. MRS Bulletin, 2020, 45(1): 57-64.
[34] Ong B C, Kamarudin S K, Basri S. Direct Liquid Fuel Cells: A Review[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10142-10157.
[35] Ding C, Dong F, Tang Z. Research Progress on Catalysts for the Electrocatalytic Oxidation of Methanol[J]. ChemistrySelect, 2020, 5(42): 13318-13340.
[36] 张曼, 杨铭溶. 直接甲醇燃料电池铂基催化剂核壳结构及掺杂元素的研究进展[J]. 化工新型材料, 2021, 49(9): 47-50.
[37] Aricò A S, Srinivasan S, Antonucci V. DMFCs: From Fundamental Aspects to Technology Development[J]. Fuel Cells, 2001, 1(2): 133-161.
[38] 郭仕权, 孙亚昕, 李从举. 直接甲醇燃料电池(DMFC)阳极过渡金属基催化剂的研究进展[J]. 工程科学学报, 2022, 44(4): 625-640.
[39] Eshghi A, kheirmand M, Sabzehmeidani M M. Platinum–Iron Nanoparticles Supported on Reduced Graphene Oxide as an Improved Catalyst for Methanol Electro Oxidation[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6107-6116.
[40] Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the Exchange Current for Hydrogen Evolution[J]. Journal of the Electrochemical Society, 2005, 152(3): J23.
[41] Haynes W M. Crc Handbook of Chemistry and Physics[M]. New York: CRC press, 2014: 935-964.
[42] Mu X, Liu S, Chen L, et al. Alkaline Hydrogen Oxidation Reaction Catalysts: Insight into Catalytic Mechanisms, Classification, Activity Regulation and Challenges[J]. Small Structures, 2023, 4(4): 2200281.
[43] Yang Y, Peltier C R, Zeng R, et al. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies[J]. Chemical Reviews, 2022, 122(6): 6117-6321.
[44] Cong Y, Yi B, Song Y. Hydrogen Oxidation Reaction in Alkaline Media: From Mechanism to Recent Electrocatalysts[J]. Nano Energy, 2018, 44: 288-303.
[45] Liu H, Zhao L, Liu Y, et al. Enhancing Hydrogen Evolution Activity by Doping and Tuning the Curvature of Manganese-Embedded Carbon Nanotubes[J]. Catalysis Science & Technology, 2019, 9(19): 5301-5314.
[46] Neyerlin K, Gu W, Jorne J, et al. Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions[J]. Journal of the Electrochemical Society, 2007, 154(7): B631.
[47] Ooka H, Huang J, Exner K S. The Sabatier Principle in Electrocatalysis: Basics, Limitations, and Extensions[J]. Frontiers in Energy Research, 2021, 9: 654460.
[48] Zheng J, Sheng W, Zhuang Z, et al. Universal Dependence of Hydrogen Oxidation and Evolution Reaction Activity of Platinum-Group Metals on pH and Hydrogen Binding Energy[J]. Science Advances, 2016, 2(3): e1501602.
[49] Sheng W, Zhuang Z, Gao M, et al. Correlating Hydrogen Oxidation and Evolution Activity on Platinum at Different pH with Measured Hydrogen Binding Energy[J]. Nature Communications, 2015, 6: 5848.
[50] Yang X, Nash J, Oliveira N, et al. Understanding the pH Dependence of Underpotential Deposited Hydrogen on Platinum[J]. Angewandte Chemie International Edition, 2019, 58(49): 17718-17723.
[51] Lu S, Zhuang Z. Investigating the Influences of the Adsorbed Species on Catalytic Activity for Hydrogen Oxidation Reaction in Alkaline Electrolyte[J]. Journal of the American Chemical Society, 2017, 139(14): 5156-5163.
[52] Wang Y, Wang G, Li G, et al. Pt–Ru Catalyzed Hydrogen Oxidation in Alkaline Media: Oxophilic Effect or Electronic Effect?[J]. Energy & Environmental Science, 2015, 8(1): 177-181.
[53] Strmcnik D, Uchimura M, Wang C, et al. Improving the Hydrogen Oxidation Reaction Rate by Promotion of Hydroxyl Adsorption[J]. Nature Chemistry, 2013, 5(4): 300-306.
[54] Shen L-f, Lu B-a, Qu X-m, et al. Does the Oxophilic Effect Serve the Same Role for Hydrogen Evolution/Oxidation Reaction in Alkaline Media?[J]. Nano Energy, 2019, 62: 601-609.
[55] Zhu S, Qin X, Xiao F, et al. The Role of Ruthenium in Improving the Kinetics of Hydrogen Oxidation and Evolution Reactions of Platinum[J]. Nature Catalysis, 2021, 4(8): 711-718.
[56] Durst J, Siebel A, Simon C, et al. New Insights into the Electrochemical Hydrogen Oxidation and Evolution Reaction Mechanism[J]. Energy & Environmental Science, 2014, 7(7): 2255-2260.
[57] Yang X, Ouyang B, Shen P, et al. Ru Colloidosome Catalysts for the Hydrogen Oxidation Reaction in Alkaline Media[J]. Journal of the American Chemical Society, 2022, 144(25): 11138-11147.
[58] Ramaswamy N, Ghoshal S, Bates M K, et al. Hydrogen Oxidation Reaction in Alkaline Media: Relationship between Electrocatalysis and Electrochemical Double-Layer Structure[J]. Nano Energy, 2017, 41: 765-771.
[59] Zhang Z, Liu H, Ni L, et al. Scalable Synthesis of hcp Ruthenium-Molybdenum Nanoalloy as a Robust Bifunctional Electrocatalyst for Hydrogen Evolution/Oxidation[J]. Journal of Energy Chemistry, 2022, 72: 176-185.
[60] Setzler B P, Zhuang Z, Wittkopf J A, et al. Activity Targets for Nanostructured Platinum-Group-Metal-Free Catalysts in Hydroxide Exchange Membrane Fuel Cells[J]. Nature Nanotechnology, 2016, 11(12): 1020-1025.
[61] Li J, Ghoshal S, Bates M K, et al. Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media[J]. Angewandte Chemie International Edition, 2017, 56(49): 15594-15598.
[62] Stühmeier B M, Selve S, Patel M U M, et al. Highly Selective Pt/Tiox Catalysts for the Hydrogen Oxidation Reaction[J]. ACS Applied Energy Materials, 2019, 2(8): 5534-5539.
[63] Ramaswamy N, Mukerjee S. Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer[J]. Chemical Reviews, 2019, 119(23): 11945-11979.
[64] Wang X, Zheng Y, Sheng W, et al. Strategies for Design of Electrocatalysts for Hydrogen Evolution under Alkaline Conditions[J]. Materials Today, 2020, 36: 125-138.
[65] Wang X, Xu C, Jaroniec M, et al. Anomalous Hydrogen Evolution Behavior in High-pH Environment Induced by Locally Generated Hydronium Ions[J]. Nature Communications, 2019, 10(1): 4876.
[66] Dong J-C, Zhang X-G, Briega-Martos V, et al. In Situ Raman Spectroscopic Evidence for Oxygen Reduction Reaction Intermediates at Platinum Single-Crystal Surfaces[J]. Nature Energy, 2018, 4(1): 60-67.
[67] Li J F, Huang Y F, Ding Y, et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
[68] Wang Y H, Wang X T, Ze H, et al. Spectroscopic Verification of Adsorbed Hydroxy Intermediates in the Bifunctional Mechanism of the Hydrogen Oxidation Reaction[J]. Angewandte Chemie International Edition, 2021, 60(11): 5708-5711.
[69] Lin X M, Wang X T, Deng Y L, et al. In Situ Probe of the Hydrogen Oxidation Reaction Intermediates on PtRu a Bimetallic Catalyst Surface by Core-Shell Nanoparticle-Enhanced Raman Spectroscopy[J]. Nano Letters, 2022, 22(13): 5544-5552.
[70] Feng Z, Li L, Zheng X, et al. Role of Hydroxyl Species in Hydrogen Oxidation Reaction: A DFT Study[J]. The Journal of Physical Chemistry C, 2019, 123(39): 23931-23939.
[71] Deng Z, Zheng X, Deng M, et al. Catalytic Activity of V2CO2 MXene Supported Transition Metal Single Atoms for Oxygen Reduction and Hydrogen Oxidation Reactions: A Density Functional Theory Calculation Study[J]. Chinese Journal of Catalysis, 2021, 42(10): 1659-1666.
[72] Shishkin M, Ziegler T. Hydrogen Oxidation at the Ni/Yttria-Stabilized Zirconia Interface: A Study Based on Density Functional Theory[J]. The Journal of Physical Chemistry C, 2010, 114(25): 11209-11214.
[73] Tang Q, Jiang D-e. Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles[J]. ACS Catalysis, 2016, 6(8): 4953-4961.
[74] Zhao L, Guo S, Liu H, et al. Density Functional Study of Hydrogen Evolution on Cobalt-Embedded Carbon Nanotubes: Effects of Doping and Surface Curvature[J]. ACS Applied Nano Materials, 2018, 1(11): 6258-6268.
[75] Kulkarni A, Siahrostami S, Patel A, et al. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312.
[76] Nørskov J K, Rossmeisl J, Logadottir A, et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[77] Lu S, Huynh H L, Lou F, et al. Single Transition Metal Atom Embedded Antimonene Monolayers as Efficient Trifunctional Electrocatalysts for the HER, OER and ORR: A Density Functional Theory Study[J]. Nanoscale, 2021, 13(30): 12885-12895.
[78] Qi W, Huang W, Niu J, et al. The Role of S in the Co-NSC Catalysis System Towards the ORR for Proton Exchange Membrane Fuel Cells[J]. Applied Surface Science, 2021, 540: 148325.
[79] Ying Y, Fan K, Luo X, et al. Unravelling the Origin of Bifunctional OER/ORR Activity for Single-Atom Catalysts Supported on C2N by DFT and Machine Learning[J]. Journal of Materials Chemistry A, 2021, 9(31): 16860-16867.
[80] Yang Y, Xiong Y, Zeng R, et al. Operando Methods in Electrocatalysis[J]. ACS Catalysis, 2021, 11(3): 1136-1178.
[81] Cheng W, Su H, Liu Q. Tracking the Oxygen Dynamics of Solid-Liquid Electrochemical Interfaces by Correlative in Situ Synchrotron Spectroscopies[J]. Accounts of Chemical Research, 2022, 55(14): 1949-1959.
[82] Chang C-J, Zhu Y, Wang J, et al. In Situ X-Ray Diffraction and X-Ray Absorption Spectroscopy of Electrocatalysts for Energy Conversion Reactions[J]. Journal of Materials Chemistry A, 2020, 8(37): 19079-19112.
[83] McBreen J, O'Grady W, Pandya K, et al. EXAFS Study of the Nickel Oxide Electrode[J]. Langmuir, 1987, 3(3): 428-433.
[84] Sasaki K, Wang J X, Naohara H, et al. Recent Advances in Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction: Scale-up Synthesis, Structure and Activity of Pt Shells on Pd Cores[J]. Electrochimica Acta, 2010, 55(8): 2645-2652.
[85] Arruda T M, Shyam B, Lawton J S, et al. Fundamental Aspects of Spontaneous Cathodic Deposition of Ru onto Pt/C Electrocatalysts and Membranes under Direct Methanol Fuel Cell Operating Conditions: An in Situ X-Ray Absorption Spectroscopy and Electron Spin Resonance Study[J]. The Journal of Physical Chemistry C, 2010, 114(2): 1028-1040.
[86] Han Y, Zhang H, Yu Y, et al. In Situ Characterization of Catalysis and Electrocatalysis Using APXPS[J]. ACS Catalysis, 2021, 11(3): 1464-1484.
[87] Nakamura T, Takagi Y, Chaveanghong S, et al. Quick Operando Ambient Pressure Hard X-Ray Photoelectron Spectroscopy for Reaction Kinetic Measurements of Polymer Electrolyte Fuel Cells[J]. The Journal of Physical Chemistry C, 2020, 124(32): 17520-17527.
[88] Zhang H, Wang C, Sun H L, et al. In Situ Dynamic Tracking of Heterogeneous Nanocatalytic Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy[J]. Nature Communications, 2017, 8: 15447.
[89] Jeanmaire D L, Van Duyne R P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.
[90] Yang Y, Qi W, Niu J, et al. Understanding Active Sites and Mechanism of Oxygen Reduction Reaction on FeN4–Doped Graphene from DFT Study[J]. International Journal of Hydrogen Energy, 2020, 45(31): 15465-15475.
[91] Chen X, Zhang Y, Hu R, et al. DFT Study of C2N-Supported Ag3M (M = Cu, Pd, and Pt) Clusters as Potential Oxygen Reduction Reaction Catalysts[J]. Chemical Engineering Science, 2021, 239: 116642.
[92] Chong L, Wen J, Kubal J, et al. Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks[J]. Science, 2018, 362(6420): 1276-1281.
[93] Mancharan R, Goodenough J B. Methanol Oxidation in Acid on Ordered NiTi[J]. Journal of Materials Chemistry, 1992, 2(8): 875-887.
[94] Liu Z, Ling X Y, Su X, et al. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell[J]. The Journal of Physical Chemistry B, 2004, 108(24): 8234-8240.
[95] Zhang W, Xia G-J, Wang Y-G. Mechanistic Insight into Methanol Electro-Oxidation Catalyzed by PtCu Alloy[J]. Chinese Journal of Catalysis, 2022, 43(1): 167-176.
[96] Damte J Y, Lyu S L, Leggesse E G, et al. Methanol Decomposition Reactions over a Boron-Doped Graphene Supported Ru-Pt Catalyst[J]. Physical Chemistry Chemical Physics, 2018, 20(14): 9355-9363.
[97] Chung D Y, Lee K-J, Sung Y-E. Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation[J]. The Journal of Physical Chemistry C, 2016, 120(17): 9028-9035.
[98] Levendorf A M, Chen D-J, Rom C L, et al. Electrochemical and in Situ ATR-SEIRAS Investigations of Methanol and CO Electro-Oxidation on PVP-Free Cubic and Octahedral/Tetrahedral Pt Nanoparticles[J]. RSC Advances, 2014, 4(41): 21284-21293.
[99] Chen H-S, Benedetti T M, Lian J, et al. Role of the Secondary Metal in Ordered and Disordered Pt–M Intermetallic Nanoparticles: An Example of Pt3Sn Nanocubes for the Electrocatalytic Methanol Oxidation[J]. ACS Catalysis, 2021, 11(4): 2235-2243.
[100] Zhao Y, Li X, Schechter J M, et al. Revisiting the Oxidation Peak in the Cathodic Scan of the Cyclic Voltammogram of Alcohol Oxidation on Noble Metal Electrodes[J]. RSC Advances, 2016, 6(7): 5384-5390.
[101] Lai L, Yang G, Zhang Q, et al. Essential Analysis of Cyclic Voltammetry of Methanol Electrooxidation Using the Differential Electrochemical Mass Spectrometry[J]. Journal of Power Sources, 2021, 509: 230397.
[102] Li X T, Lei H, Yang C, et al. Electrochemical Fabrication of Ultra-Low Loading Pt Decorated Porous Nickel Frameworks as Efficient Catalysts for Methanol Electrooxidation in Alkaline Medium[J]. Journal of Power Sources, 2018, 396: 64-72.
[103] Mekazni D S, Arán-Ais R M, Ferre-Vilaplana A, et al. Why Methanol Electro-Oxidation on Platinum in Water Takes Place Only in the Presence of Adsorbed OH[J]. ACS Catalysis, 2022, 12(3): 1965-1970.
[104] Housmans T H, Wonders A H, Koper M T. Structure Sensitivity of Methanol Electrooxidation Pathways on Platinum: An On-Line Electrochemical Mass Spectrometry Study[J]. The Journal of Physical Chemistry B, 2006, 110(20): 10021-10031.
[105] Herrero E, Franaszczuk K, Wieckowski A. Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study[J]. The Journal of Physical Chemistry, 1994, 98(19): 5074-5083.
[106] Sriramulu S, Jarvi T, Stuve E. Reaction Mechanism and Dynamics of Methanol Electrooxidation on Platinum(111)[J]. Journal of Electroanalytical Chemistry, 1999, 467(1-2): 132-142.
[107] Farias M J S, Cheuquepán W, Tanaka A A, et al. Identity of the Most and Least Active Sites for Activation of the Pathways for CO2 Formation from the Electro-Oxidation of Methanol and Ethanol on Platinum[J]. ACS Catalysis, 2019, 10(1): 543-555.
[108] Waszczuk P, Lu G-Q, Wieckowski A, et al. UHV and Electrochemical Studies of CO and Methanol Adsorbed at Platinum/Ruthenium Surfaces, and Reference to Fuel Cell Catalysis[J]. Electrochimica Acta, 2002, 47(22-23): 3637-3652.
[109] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design[J]. Science, 2017, 355(6321): eaad4998.
[110] Sakaushi K, Kumeda T, Hammes-Schiffer S, et al. Advances and Challenges for Experiment and Theory for Multi-Electron Multi-Proton Transfer at Electrified Solid-Liquid Interfaces[J]. Physical Chemistry Chemical Physics, 2020, 22(35): 19401-19442.
[111] Magnussen O M, Gross A. Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics[J]. Journal of the American Chemical Society, 2019, 141(12): 4777-4790.
[112] Calle-Vallejo F, Loffreda D, Koper M T, et al. Introducing Structural Sensitivity into Adsorption-Energy Scaling Relations by Means of Coordination Numbers[J]. Nature Chemistry, 2015, 7(5): 403-410.
[113] Greeley J, Jaramillo T F, Bonde J, et al. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution[J]. Nature Materials, 2006, 5(11): 909-913.
[114] Xin H, Vojvodic A, Voss J, et al. Effects of d-band Shape on the Surface Reactivity of Transition-Metal Alloys[J]. Physical Review B, 2014, 89(11): 115114.
[115] Wexler R B, Martirez J M P, Rappe A M. Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni2P from Nonmetal Surface Doping Interpreted via Machine Learning[J]. Journal of the American Chemical Society, 2018, 140(13): 4678-4683.
[116] Bronsted, J. N. Acid and Basic Catalysis[J]. Chemical Reviews, 1928, 5(3): 213-227.
[117] Evans M G, Polanyi M. Inertia and Driving Force of Chemical Reactions[J]. Transactions of the Faraday Society, 1938, 34: 11-24.
[118] Chen J W, Zhang Z, Yan H M, et al. Pseudo-Adsorption and Long-Range Redox Coupling During Oxygen Reduction Reaction on Single Atom Electrocatalyst[J]. Nature Communications, 2022, 13(1): 1734.
[119] Cao H, Zhang Z, Chen J-W, et al. Potential-Dependent Free Energy Relationship in Interpreting the Electrochemical Performance of CO2 Reduction on Single Atom Catalysts[J]. ACS Catalysis, 2022, 12(11): 6606-6617.
[120] Dong J C, Su M, Briega-Martos V, et al. Direct in Situ Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt(hkl) Surfaces[J]. Journal of the American Chemical Society, 2020, 142(2): 715-719.
[121] Ze H, Chen X, Wang X T, et al. Molecular Insight of the Critical Role of Ni in Pt-Based Nanocatalysts for Improving the Oxygen Reduction Reaction Probed Using an in Situ SERS Borrowing Strategy[J]. Journal of the American Chemical Society, 2021, 143(3): 1318-1322.
[122] Wang Y H, Le J B, Li W Q, et al. In Situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts Towards the Oxygen Reduction Reaction (ORR)[J]. Angewandte Chemie International Edition, 2019, 58(45): 16062-16066.
[123] Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR Spectroscopic Study of Electro-Oxidation of Methanol and Adsorbed CO at Pt−Ru Alloy[J]. The Journal of Physical Chemistry B, 2004, 108(8): 2654-2659.
[124] Wang H, Wingender C, Baltruschat H, et al. Methanol Oxidation on Pt, PtRu, and Colloidal Pt Electrocatalysts: A DEMS Study of Product Formation[J]. Journal of Electroanalytical Chemistry, 2001, 509(2): 163-169.
[125] Delley B. From Molecules to Solids with the DMol3 Approach[J]. The Journal of Ehemical Physics, 2000, 113(18): 7756-7764.
[126] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865.
[127] Hehre W J. Ab Initio Molecular Orbital Theory[J]. Accounts of Chemical Research, 1976, 9(11): 399-406.
[128] Delley B. Hardness Conserving Semilocal Pseudopotentials[J]. Physical Review B, 2002, 66(15): 155125.
[129] Grimme S. Semiempirical GGA‐Type Density Functional Constructed with a Long‐Range Dispersion Correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
[130] Halgren T A, Lipscomb W N. The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States[J]. Chemical Physics Letters, 1977, 49(2): 225-232.
[131] Song X, Zhang X-G, Deng Y-L, et al. Improving the Hydrogen Oxidation Reaction Rate of Ru by Active Hydrogen in the Ultrathin Pd Interlayer[J]. Journal of the American Chemical Society, 2023, 145(23): 12717-12725.
[132] Zhao R, Yue X, Li Q, et al. Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction[J]. Small, 2021, 17(47): 2100391.
[133] Fuchs T, Drnec J, Calle-Vallejo F, et al. Structure Dependency of the Atomic-Scale Mechanisms of Platinum Electro-Oxidation and Dissolution[J]. Nature Catalysis, 2020, 3(9): 754-761.
[134] Ludwig R. New Insight into the Transport Mechanism of Hydrated Hydroxide Ions in Water[J]. Angewandte Chemie International Edition, 2003, 42(3): 258-260.
[135] Tuckerman M E, Marx D, Parrinello M. The Nature and Transport Mechanism of Hydrated Hydroxide Ions in Aqueous Solution[J]. Nature, 2002, 417(6892): 925-929.
[136] Wang Y-H, Zheng S, Yang W-M, et al. In Situ Raman Spectroscopy Reveals the Structure and Dissociation of Interfacial Water[J]. Nature, 2021, 600(7887): 81-85.
[137] Travitsky N, Ripenbein T, Golodnitsky D, et al. Pt-, PtNi-and PtCo-Supported Catalysts for Oxygen Reduction in PEM Fuel Cells[J]. Journal of Power Sources, 2006, 161(2): 782-789.
[138] LiBretto N J, Yang C, Ren Y, et al. Identification of Surface Structures in Pt3Cr Intermetallic Nanocatalysts[J]. Chemistry of Materials, 2019, 31(5): 1597-1609.
[139] Oezaslan M, Hasché F, Strasser P. Oxygen Electroreduction on PtCo3, PtCo and Pt3Co Alloy Nanoparticles for Alkaline and Acidic PEM Fuel Cells[J]. Journal of the Electrochemical Society, 2012, 159(4): B394.
[140] Zhou Z-M, Shao Z-G, Qin X-P, et al. Durability Study of Pt–Pd/C as PEMFC Cathode Catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1719-1726.
[141] Bhuvanendran N, Ravichandran S, Zhang W, et al. Highly Efficient Methanol Oxidation on Durable PtxIr/MWCNT Catalysts for Direct Methanol Fuel Cell Applications[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6447-6460.
[142] Zhao L, Liu H, Liu Y, et al. Mechanistic Insights into the Hydrogen Oxidation Reaction on PtNi Alloys in Alkaline Media: A First-Principles Investigation[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40248-40260.
[143] Zhu W, Pei Y, Liu H, et al. Space Confinement to Regulate Ultrafine CoPt Nanoalloy for Reliable Oxygen Reduction Reaction Catalyst in PEMFC[J]. Advanced Science, 2023, 10(19): 2206062.
[144] Kuzume A, Herrero E, Feliu J M. Oxygen Reduction on Stepped Platinum Surfaces in Acidic Media[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 333-343.
[145] Carpenter M K, Moylan T E, Kukreja R S, et al. Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis[J]. Journal of the American Chemical Society, 2012, 134(20): 8535-8542.
[146] Popov A A, Varygin A D, Plyusnin P E, et al. X-Ray Diffraction Reinvestigation of the Ni-Pt Phase Diagram[J]. Journal of Alloys and Compounds, 2022, 891: 161974.
[147] Bauman Y I, Rudneva Y V, Mishakov I, et al. Synthesis of Filamentary Carbon Material on a Self-Organizing Ni–Pt Catalyst in the Course of 1, 2-Dichloroethane Decomposition[J]. Kinetics and Catalysis, 2018, 59: 363-371.
[148] Wu H, Wexler D, Wang G. Ptxni Alloy Nanoparticles as Cathode Catalyst for PEM Fuel Cells with Enhanced Catalytic Activity[J]. Journal of Alloys and Compounds, 2009, 488(1): 195-198.
[149] Leroux C, Cadeville M, Pierron-Bohnes V, et al. Comparative Investigation of Structural and Transport Properties of L10 NiPt and CoPt Phases; the Role of Magnetism[J]. Journal of Physics F: Metal Physics, 1988, 18(9): 2033.
[150] Stamenkovic V R, Fowler B, Mun B S, et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J]. Science, 2007, 315(5811): 493-497.
[151] Zhang J, Yang H B, Zhou D, et al. Adsorption Energy in Oxygen Electrocatalysis[J]. Chemical Reviews, 2022, 122(23): 17028-17072.
[152] Kan D, Wang D, Cheng Y, et al. Designing of Efficient Bifunctional ORR/OER Pt Single-Atom Catalysts Based on O-Terminated MXenes by First-Principles Calculations[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52508-52518.
[153] Lu X, Li J, Cao S, et al. Constructing N, S and N, P Co‐Coordination in Fe Single Atom Catalyst for High‐Performance Oxygen Redox Reactions[J]. ChemSusChem, 2023, 16: e202300637.
[154] Cao L, Mueller T. Catalytic Activity Maps for Alloy Nanoparticles[J]. Journal of the American Chemical Society, 2023, 145(13): 7352-7360.
[155] Yan W, Guo O, Xing Q, et al. Atomically Dispersed Ni–N4 Sites Assist Pt3Ni Nanocages with Pt Skin to Synergistically Enhance Oxygen Reduction Activity and Stability[J]. Small, 2023, 19: 2300200.
[156] Bonagiri L K S, Panse K S, Zhou S, et al. Real-Space Charge Density Profiling of Electrode–Electrolyte Interfaces with Angstrom Depth Resolution[J]. ACS Nano, 2022, 16(11): 19594-19604.
[157] Xu P, von Rueden A D, Schimmenti R, et al. Optical Method for Quantifying the Potential of Zero Charge at the Platinum–Water Electrochemical Interface[J]. Nature Materials, 2023, 22(4): 503-510.
[158] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and Mechanism of the Electrooxidation of Formic Acid—Spectroelectrochemical Studies in a Flow Cell[J]. Angewandte Chemie International Edition, 2006, 45(6): 981-985.
[159] Liao L W, Liu S X, Tao Q, et al. A Method for Kinetic Study of Methanol Oxidation at Pt Electrodes by Electrochemical in Situ Infrared Spectroscopy[J]. Journal of Electroanalytical Chemistry, 2011, 650(2): 233-240.
[160] Chen Y X, Ye S, Heinen M, et al. Application of In-situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy for the Understanding of Complex Reaction Mechanism and Kinetics: Formic Acid Oxidation on a Pt Film Electrode at Elevated Temperatures[J]. The Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.
[161] Wang Y, Liu T, Li Y. Why Heterogeneous Single-Atom Catalysts Preferentially Produce CO in the Electrochemical CO2 Reduction Reaction[J]. Chemical Science, 2022, 13(21): 6366-6372.
[162] Liu L, Liu Y, Liu C. Enhancing the Understanding of Hydrogen Evolution and Oxidation Reactions on Pt(111) through Ab Initio Simulation of Electrode/Electrolyte Kinetics[J]. Journal of the American Chemical Society, 2020, 142(11): 4985-4989.
[163] Li S, Chen J, Bai L. Synthesis of Ru(IV) Modified Pt/C Electrocatalyst and Its Application for Enhanced Methanol Electrooxidation[J]. International Journal of Electrochemical Science, 2022, 17(2): 220250.
[164] Zhang Y, Gan M, Ma L, et al. Oxygen Vacancy‐Enriched Co3O4 as Efficient Co‐catalyst for Pt Nanoparticles Towards Methanol Electrooxidation[J]. ChemElectroChem, 2022, 9(4): e202101516.
[165] Trasatti S. The Absolute Electrode Potential: An Explanatory Note (Recommendations 1986)[J]. Pure and Applied Chemistry, 1986, 58(7): 955-966.
[166] Stegelmann C, Andreasen A, Campbell C T. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates[J]. Journal of the American Chemical Society, 2009, 131(23): 8077-8082.
[167] Campbell C T. The Degree of Rate Control: A Powerful Tool for Catalysis Research[J]. ACS Catalysis, 2017, 7(4): 2770-2779.

所在学位评定分委会
材料科学与工程
国内图书分类号
O646
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765689
专题南方科技大学
工学院_机械与能源工程系
推荐引用方式
GB/T 7714
刘海军. 基于铂基电催化剂/电解液模型的燃料电池电催化反应动力学研究[D]. 哈尔滨. 哈尔滨工业大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12049014-刘海军-机械与能源工程(14437KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘海军]的文章
百度学术
百度学术中相似的文章
[刘海军]的文章
必应学术
必应学术中相似的文章
[刘海军]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。