[1] LI G, FAN Y, LAI Y, et al. Coronavirus infections and immune responses[J]. J Med Virol, 2020, 92(4): 424-432.
[2] CHEN B, TIAN E K, HE B, et al. Overview of lethal human coronaviruses[J]. Signal Transduct Target Ther, 2020, 5(1): 89.
[3] FENG Y, GAO G F. Towards our understanding of SARS-CoV, an emerging and devastating but quickly conquered virus[J]. Comp Immunol Microbiol Infect Dis, 2007, 30(5-6): 309-327.
[4] ZHOU G, YAN G. Severe acute respiratory syndrome epidemic in Asia[J]. Emerg Infect Dis, 2003, 9(12): 1608-1610.
[5] WHO. Middle East respiratory syndrome coronavirus (MERS-CoV)[Z]. 2023
[6] ZHU N, ZHANG D, WANG W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733.
[7] JIANG S, SHI Z, SHU Y, et al. A distinct name is needed for the new coronavirus[J]. Lancet, 2020, 395(10228): 949.
[8] WHO. COVID-19 Epidemiological Update - 24 November 2023[Z]. 2023
[9] YAO H, SONG Y, CHEN Y, et al. Molecular Architecture of the SARS-CoV-2 Virus[J]. Cell, 2020, 183(3): 730-738 e713.
[10] FEDRY J, HURDISS D L, WANG C Y, et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11[J]. Science Advances, 2021, 7(23)
[11] DOROFTEI B, CIOBICA A, ILIE O D, et al. Mini-Review Discussing the Reliability and Efficiency of COVID-19 Vaccines[J]. Diagnostics, 2021, 11(4)
[12] SAINI J, KAUR P, MALIK N, et al. Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 era[J]. Microbiol Res, 2022, 265: 127206.
[13] VERONIN M A, LANG A, REINERT J P. Remdesivir and Coronavirus Disease 2019 (COVID-19): Essential Questions and Answers for Pharmacists and Pharmacy Technicians[J]. J Pharm Technol, 2021, 37(1): 62-74.
[14] SHEAHAN T P, SIMS A C, GRAHAM R L, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses[J]. Science Translational Medicine, 2017, 9(396)
[15] BEIGEL J H, TOMASHEK K M, DODD L E, et al. Remdesivir for the Treatment of Covid-19-Final Report[J]. New England Journal of Medicine, 2020, 383(19): 1813-1826.
[16] TAN K, WILKINSON M F. Regulation of both transcription and RNA turnover contribute to germline specification[J]. Nucleic Acids Res, 2022, 50(13): 7310-7325.
[17] HERZOG V A, REICHHOLF B, NEUMANN T, et al. Thiol-linked alkylation of RNA to assess expression dynamics[J]. Nat Methods, 2017, 14(12): 1198-1204.
[18] IRAM T, KERN F, KAUR A, et al. Author Correction: Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17[J]. Nature, 2023, 613(7942): E1.
[19] MUHAR M, EBERT A, NEUMANN T, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis[J]. Science, 2018, 360(6390): 800-805.
[20] KIM M I, LEE C H. Human Coronavirus OC43 as a Low-Risk Model to Study COVID-19[J]. Viruses-Basel, 2023, 15(2)
[21] HERZOG V A, REICHHOLF B, NEUMANN T, et al. Thiol-linked alkylation of RNA to assess expression dynamics[J]. Nature Methods, 2017, 14(12): 1198-+.
[22] ALMAZAN G, AFAR D E, BELL J C. Phosphorylation and disruption of intermediate filament proteins in oligodendrocyte precursor cultures treated with calyculin A[J]. J Neurosci Res, 1993, 36(2): 163-172.
[23] HARTENIAN E, NANDAKUMAR D, LARI A, et al. The molecular virology of coronaviruses[J]. J Biol Chem, 2020, 295(37): 12910-12934.
[24] PAULES C I, MARSTON H D, FAUCI A S. Coronavirus Infections-More Than Just the Common Cold[J]. Jama-Journal of the American Medical Association, 2020, 323(8): 707-708.
[25] SIU Y L, TEOH K T, LO J, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles[J]. J Virol, 2008, 82(22): 11318-11330.
[26] LI F. Structure, Function, and Evolution of Coronavirus Spike Proteins[J]. Annu Rev Virol, 2016, 3(1): 237-261.
[27] MILLET J K, WHITTAKER G R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202: 120-134.
[28] PODURI R, JOSHI G, JAGADEESH G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19[J]. Cellular Signalling, 2020, 74
[29] HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor[J]. Cell, 2020, 181(2): 271-+.
[30] WANG N S, SHI X L, JIANG L W, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4[J]. Cell Research, 2013, 23(8): 986-993.
[31] SHIRATO K, KAWASE M, MATSUYAMA S. Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2[J]. Journal of Virology, 2013, 87(23): 12552-12561.
[32] VAN DER HOEK L. Human coronaviruses: what do they cause?[J]. Antivir Ther, 2007, 12(4 Pt B): 651-658.
[33] BRADBURNE A F, BYNOE M L, TYRRELL D A. Effects of a "new" human respiratory virus in volunteers[J]. Br Med J, 1967, 3(5568): 767-769.
[34] MCINTOSH K, CHAO R K, KRAUSE H E, et al. Coronavirus infection in acute lower respiratory tract disease of infants[J]. J Infect Dis, 1974, 130(5): 502-507.
[35] BIRCH C J, CLOTHIER H J, SECCULL A, et al. Human coronavirus OC43 causes influenza-like illness in residents and staff of aged-care facilities in Melbourne, Australia[J]. Epidemiol Infect, 2005, 133(2): 273-277.
[36] KOZAK R, PROST K, YIP L, et al. Severity of coronavirus respiratory tract infections in adults admitted to acute care in Toronto, Ontario[J]. J Clin Virol, 2020, 126: 104338.
[37] MASSE S, CAPAI L, VILLECHENAUD N, et al. Epidemiology and Clinical Symptoms Related to Seasonal Coronavirus Identified in Patients with Acute Respiratory Infections Consulting in Primary Care over Six Influenza Seasons (2014-2020) in France[J]. Viruses, 2020, 12(6)
[38] SHAH M M, WINN A, DAHL R M, et al. Seasonality of Common Human Coronaviruses, United States, 2014-2021(1)[J]. Emerg Infect Dis, 2022, 28(10): 1970-1976.
[39] JEAN A, QUACH C, YUNG A, et al. Severity and outcome associated with human coronavirus OC43 infections among children[J]. Pediatr Infect Dis J, 2013, 32(4): 325-329.
[40] GAGNEUR A, SIZUN J, VALLET S, et al. Coronavirus-related nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: a prospective study[J]. J Hosp Infect, 2002, 51(1): 59-64.
[41] KUYPERS J, MARTIN E T, HEUGEL J, et al. Clinical disease in children associated with newly described coronavirus subtypes[J]. Pediatrics, 2007, 119(1): e70-76.
[42] TALBOT H K, CROWE J E, JR., EDWARDS K M, et al. Coronavirus infection and hospitalizations for acute respiratory illness in young children[J]. J Med Virol, 2009, 81(5): 853-856.
[43] VABRET A, MOUREZ T, GOUARIN S, et al. An outbreak of coronavirus OC43 respiratory infection in Normandy, France[J]. Clin Infect Dis, 2003, 36(8): 985-989.
[44] PATRICK D M, PETRIC M, SKOWRONSKI D M, et al. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-reactivity with SARS Coronavirus[J]. Can J Infect Dis Med Microbiol, 2006, 17(6): 330-336.
[45] VABRET A, DINA J, GOUARIN S, et al. Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France[J]. J Paediatr Child Health, 2008, 44(4): 176-181.
[46] MURRAY R S, BROWN B, BRIAN D, et al. Detection of coronavirus RNA and antigen in multiple sclerosis brain[J]. Ann Neurol, 1992, 31(5): 525-533.
[47] LUO X, ZHOU G Z, ZHANG Y, et al. Coronaviruses and gastrointestinal diseases[J]. Mil Med Res, 2020, 7(1): 49.
[48] SETHNA P B, HUNG S L, BRIAN D A. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons[J]. Proc Natl Acad Sci U S A, 1989, 86(14): 5626-5630.
[49] SAWICKI S G, SAWICKI D L. Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis[J]. J Virol, 1990, 64(3): 1050-1056.
[50] RISKU M, LAPPALAINEN S, RASANEN S, et al. Detection of human coronaviruses in children with acute gastroenteritis[J]. J Clin Virol, 2010, 48(1): 27-30.
[51] KHEYAMI A M, NAKAGOMI T, NAKAGOMI O, et al. Detection of coronaviruses in children with acute gastroenteritis in Maddina, Saudi Arabia[J]. Ann Trop Paediatr, 2010, 30(1): 45-50.
[52] VAN MARLE G, LUYTJES W, VAN DER MOST R G, et al. Regulation of coronavirus mRNA transcription[J]. J Virol, 1995, 69(12): 7851-7856.
[53] KASEREKA M C, HAWKES M T. Neuroinvasive potential of human coronavirus OC43: case report of fatal encephalitis in an immunocompromised host[J]. J Neurovirol, 2021, 27(2): 340-344.
[54] NILSSON A, EDNER N, ALBERT J, et al. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child[J]. Infect Dis (Lond), 2020, 52(6): 419-422.
[55] BRUSSOW H, BRUSSOW L. Clinical evidence that the pandemic from 1889 to 1891 commonly called the Russian flu might have been an earlier coronavirus pandemic[J]. Microb Biotechnol, 2021, 14(5): 1860-1870.
[56] KING A. Two more coronaviruses may infect people[J]. Science, 2021, 372(6545): 893.
[57] VLASOVA A N, DIAZ A, DAMTIE D, et al. Novel Canine Coronavirus Isolated from a Hospitalized Patient With Pneumonia in East Malaysia[J]. Clin Infect Dis, 2022, 74(3): 446-454.
[58] LEDNICKY J A, TAGLIAMONTE M S, WHITE S K, et al. Independent infections of porcine deltacoronavirus among Haitian children[J]. Nature, 2021, 600(7887): 133-137.
[59] LIU Y, WANG B, LIANG Q Z, et al. Roles of Two Major Domains of the Porcine Deltacoronavirus S1 Subunit in Receptor Binding and Neutralization[J]. J Virol, 2021, 95(24): e0111821.
[60] PRATELLI A, TEMPESTA M, ELIA G, et al. The knotty biology of canine coronavirus: A worrying model of coronaviruses' danger[J]. Res Vet Sci, 2022, 144: 190-195.
[61] DREXLER J F, CORMAN V M, DROSTEN C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS[J]. Antiviral Res, 2014, 101: 45-56.
[62] VLASOVA A N, SAIF L J. Bovine Coronavirus and the Associated Diseases[J]. Front Vet Sci, 2021, 8: 643220.
[63] CHRISTOFFERSON R C, CORMIER S A. Beyond the Unknown: A Broad Framing for Preparedness for Emerging Infectious Threats[J]. Am J Trop Med Hyg, 2022, 107(6): 1159-1161.
[64] ANTHONY S J, EPSTEIN J H, MURRAY K A, et al. A strategy to estimate unknown viral diversity in mammals[J]. mBio, 2013, 4(5): e00598-00513.
[65] COUSINS S. WHO hedges its bets: the next global pandemic could be disease X[J]. British Medical Journal, 2018, 361
[66] SAVILLE M, CRAMER J P, DOWNHAM M, et al. Delivering Pandemic Vaccines in 100 Days - What Will It Take?[J]. N Engl J Med, 2022, 387(2): e3.
[67] KELLAND K. Disease X : the 100 days mission to end pandemics[M]. Kingston upon Thames, Surrey, United Kingdom: Canbury Press, 2023.
[68] ISLAM M R, AHMED I, URMI T J. The pathogenicity and risk evaluation of Rift Valley virus to cause mysterious "Disease X": an update on recent evidences[J]. Ann Med Surg (Lond), 2024, 86(3): 1243-1246.
[69] WOODBY B, ARNOLD M M, VALACCHI G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection?[J]. Ann N Y Acad Sci, 2021, 1486(1): 15-38.
[70] VAN KESSEL S A M, OLDE HARTMAN T C, LUCASSEN P, et al. Post-acute and long-COVID-19 symptoms in patients with mild diseases: a systematic review[J]. Fam Pract, 2022, 39(1): 159-167.
[71] YONG S J, LIU S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies[J]. Rev Med Virol, 2022, 32(4): e2315.
[72] REN A L, DIGBY R J, NEEDHAM E J. Neurological update: COVID-19[J]. J Neurol, 2021, 268(11): 4379-4387.
[73] TAQUET M, DERCON Q, HARRISON P J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: A retrospective cohort study of 10,024 breakthrough infections[J]. Brain Behav Immun, 2022, 103: 154-162.
[74] BAIG A M. Deleterious Outcomes in Long-Hauler COVID-19: The Effects of SARS-CoV-2 on the CNS in Chronic COVID Syndrome[J]. ACS Chem Neurosci, 2020, 11(24): 4017-4020.
[75] GASMI A, TIPPAIROTE T, MUJAWDIYA P K, et al. Neurological Involvements of SARS-CoV2 Infection[J]. Mol Neurobiol, 2021, 58(3): 944-949.
[76] STEFANOU M I, PALAIODIMOU L, BAKOLA E, et al. Neurological manifestations of long-COVID syndrome: a narrative review[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221076890.
[77] TANG S W, HELMESTE D, LEONARD B. Inflammatory neuropsychiatric disorders and COVID-19 neuroinflammation[J]. Acta Neuropsychiatr, 2021, 33(4): 165-177.
[78] DOYLE M E, APPLETON A, LIU Q R, et al. Human Type II Taste Cells Express Angiotensin-Converting Enzyme 2 and Are Infected by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)[J]. Am J Pathol, 2021, 191(9): 1511-1519.
[79] EVANS P C, RAINGER G E, MASON J C, et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science[J]. Cardiovasc Res, 2020, 116(14): 2177-2184.
[80] OSTERGAARD L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation[J]. Physiol Rep, 2021, 9(3): e14726.
[81] ROBERTS K A, COLLEY L, AGBAEDENG T A, et al. Vascular Manifestations of COVID-19 - Thromboembolism and Microvascular Dysfunction[J]. Front Cardiovasc Med, 2020, 7: 598400.
[82] WALLUKAT G, HOHBERGER B, WENZEL K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms[J]. J Transl Autoimmun, 2021, 4: 100100.
[83] BLITSHTEYN S, WHITELAW S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients[J]. Immunol Res, 2021, 69(2): 205-211.
[84] GOLDSTEIN D S. The possible association between COVID-19 and postural tachycardia syndrome[J]. Heart Rhythm, 2021, 18(4): 508-509.
[85] YONG S J. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis[J]. ACS Chem Neurosci, 2021, 12(4): 573-580.
[86] TAVERNE J, SALVATOR H, LEBOULCH C, et al. High incidence of hyperventilation syndrome after COVID-19[J]. J Thorac Dis, 2021, 13(6): 3918-3922.
[87] SCHULTHEISS C, WILLSCHER E, PASCHOLD L, et al. The IL-1beta, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19[J]. Cell Rep Med, 2022, 3(6): 100663.
[88] JACOBS J J L. Persistent SARS-2 infections contribute to long COVID-19[J]. Med Hypotheses, 2021, 149: 110538.
[89] AFRIN L B, WEINSTOCK L B, MOLDERINGS G J. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome[J]. Int J Infect Dis, 2020, 100: 327-332.
[90] KAZAMA I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve post-COVID syndrome?[J]. Drug Discov Ther, 2020, 14(5): 259-261.
[91] YONG S J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments[J]. Infect Dis (Lond), 2021, 53(10): 737-754.
[92] GALEOTTI C, BAYRY J. Autoimmune and inflammatory diseases following COVID-19[J]. Nat Rev Rheumatol, 2020, 16(8): 413-414.
[93] ZUMLA A, CHAN J F, AZHAR E I, et al. Coronaviruses - drug discovery and therapeutic options[J]. Nat Rev Drug Discov, 2016, 15(5): 327-347.
[94] SPANAKIS N, TSIODRAS S, HAAGMANS B L, et al. Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen[J]. International Journal of Antimicrobial Agents, 2014, 44(6): 528-532.
[95] LEE N, HUI D, WU A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong[J]. New England Journal of Medicine, 2003, 348(20): 1986-1994.
[96] CHU C M, CHENG V C, HUNG I F, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings[J]. Thorax, 2004, 59(3): 252-256.
[97] LOUTFY M R, BLATT L M, SIMINOVITCH K A, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study[J]. JAMA, 2003, 290(24): 3222-3228.
[98] SHEN C, WANG Z, ZHAO F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma[J]. JAMA, 2020, 323(16): 1582-1589.
[99] OMARJEE L, JANIN A, PERROT F, et al. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19[J]. Clinical Immunology, 2020, 216
[100] WADAA-ALLAH A, EMHAMED M S, SADEQ M A, et al. Efficacy of the current investigational drugs for the treatment of COVID-19: a scoping review[J]. Annals of Medicine, 2021, 53(1): 318-334.
[101] ZHENG Y, LI S, SONG K, et al. A Broad Antiviral Strategy: Inhibitors of Human DHODH Pave the Way for Host-Targeting Antivirals against Emerging and Re-Emerging Viruses[J]. Viruses, 2022, 14(5)
[102] ADALJA A, INGLESBY T. Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool[J]. Expert Rev Anti Infect Ther, 2019, 17(7): 467-470.
[103] GAO G F. From "A"IV to "Z"IKV: Attacks from Emerging and Re-emerging Pathogens[J]. Cell, 2018, 172(6): 1157-1159.
[104] WANG L Y, CUI J J, OUYANG Q Y, et al. Remdesivir and COVID-19[J]. Lancet, 2020, 396(10256): 953-954.
[105] MORENO S, ALCáZAR B, DUEñAS C, et al. Use of Antivirals in SARS-CoV-2 Infection. Critical Review of the Role of Remdesivir[J]. Drug Des Devel Ther, 2022, 16: 827-841.
[106] NORKIN M, ORDONEZ-MORAN P, HUELSKEN J. High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer[J]. Cell Reports, 2021, 35(3)
[107] LEE C M, ZHOU L Q, LIU J P, et al. Single-cell RNA-seq analysis revealed long-lasting adverse effects of tamoxifen on neurogenesis in prenatal and adult brains[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19578-19589.
[108] RABANI M, RAYCHOWDHURY R, JOVANOVIC M, et al. High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies[J]. Cell, 2014, 159(7): 1698-1710.
[109] CORE L J, WATERFALL J J, LIS J T. Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters[J]. Science, 2008, 322(5909): 1845-1848.
[110] CHURCHMAN L S, WEISSMAN J S. Nascent transcript sequencing visualizes transcription at nucleotide resolution[J]. Nature, 2011, 469(7330): 368-+.
[111] CLEARY M D, MEIERING C D, JAN E, et al. Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay[J]. Nat Biotechnol, 2005, 23(2): 232-237.
[112] SCHOFIELD J A, DUFFY E E, KIEFER L, et al. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding[J]. Nature Methods, 2018, 15(3): 221-+.
[113] RIML C, AMORT T, RIEDER D, et al. Osmium-Mediated Transformation of 4-Thiouridine to Cytidine as Key To Study RNA Dynamics by Sequencing[J]. Angewandte Chemie-International Edition, 2017, 56(43): 13479-13483.
[114] MAHAT D B, KWAK H, BOOTH G T, et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq)[J]. Nat Protoc, 2016, 11(8): 1455-1476.
[115] UHLITZ F, BISCHOFF P, PEIDLI S, et al. Mitogen-activated protein kinase activity drives cell trajectories in colorectal cancer[J]. Embo Molecular Medicine, 2021, 13(10)
[116] SHANG J C, HE L, WANG J Y, et al. In Situ Visualizing Nascent RNA by Exploring DNA-Templated Oxidative Amination of 4-Thiouridine[J]. Bioconjugate Chemistry, 2022, 33(1): 164-171.
[117] TAN K, SONG H W, WILKINSON M F. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade[J]. Cell Reports, 2021, 36(3)
[118] PETERSEN C P, REDDIEN P W. Wnt signaling and the polarity of the primary body axis[J]. Cell, 2009, 139(6): 1056-1068.
[119] RIJSEWIJK F, SCHUERMANN M, WAGENAAR E, et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless[J]. Cell, 1987, 50(4): 649-657.
[120] SHARMA R P, CHOPRA V L. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster[J]. Dev Biol, 1976, 48(2): 461-465.
[121] SHARMA R P. Wingless a new mutant in Drosophila melanogaster, F, 1973 [C].
[122] NUSSLEIN-VOLHARD C, WIESCHAUS E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795-801.
[123] NUSSE R, VARMUS H E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell, 1982, 31(1): 99-109.
[124] SIEGFRIED E, CHOU T B, PERRIMON N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate[J]. Cell, 1992, 71(7): 1167-1179.
[125] PEIFER M, SWEETON D, CASEY M, et al. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo[J]. Development, 1994, 120(2): 369-380.
[126] AKIYAMA T. Wnt/beta-catenin signaling[J]. Cytokine Growth Factor Rev, 2000, 11(4): 273-282.
[127] WANG H Y. WNT-frizzled signaling via cyclic GMP[J]. Front Biosci, 2004, 9: 1043-1047.
[128] BEHRENS J, VON KRIES J P, KUHL M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1[J]. Nature, 1996, 382(6592): 638-642.
[129] MACDONALD B T, TAMAI K, HE X. Wnt/beta-catenin signaling: components, mechanisms, and diseases[J]. Dev Cell, 2009, 17(1): 9-26.
[130] WEHRLI M, DOUGAN S T, CALDWELL K, et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling[J]. Nature, 2000, 407(6803): 527-530.
[131] IKEDA S, KISHIDA M, MATSUURA Y, et al. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin[J]. Oncogene, 2000, 19(4): 537-545.
[132] RUBINFELD B, TICE D A, POLAKIS P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon[J]. J Biol Chem, 2001, 276(42): 39037-39045.
[133] YAMAMOTO H, KISHIDA S, KISHIDA M, et al. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability[J]. J Biol Chem, 1999, 274(16): 10681-10684.
[134] CHAE W J, BOTHWELL A L M. Canonical and Non-Canonical Wnt Signaling in Immune Cells[J]. Trends Immunol, 2018, 39(10): 830-847.
[135] LIU J, XIAO Q, XIAO J, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3.
[136] HUANG P, YAN R, ZHANG X, et al. Activating Wnt/beta-catenin signaling pathway for disease therapy: Challenges and opportunities[J]. Pharmacol Ther, 2019, 196: 79-90.
[137] VAN ZUYLEN W J, RAWLINSON W D, FORD C E. The Wnt pathway: a key network in cell signalling dysregulated by viruses[J]. Rev Med Virol, 2016, 26(5): 340-355.
[138] WANG T, WANG C, HAN J, et al. beta-catenin facilitates fowl adenovirus serotype 4 replication through enhancing virus-induced autophagy[J]. Vet Microbiol, 2023, 276: 109617.
[139] WANG J, GONG L, ZHANG W, et al. Wnt/beta-catenin signaling pathway inhibits porcine reproductive and respiratory syndrome virus replication by enhancing the nuclear factor-kappaB-dependent innate immune response[J]. Vet Microbiol, 2020, 251: 108904.
[140] JIMENEZ O A, NARASIPURA S D, BARBIAN H J, et al. beta-Catenin Restricts Zika Virus Internalization by Downregulating Axl[J]. J Virol, 2021, 95(17): e0070521.
[141] CHOI E Y, PARK H H, KIM H, et al. Wnt5a and Wnt11 as acute respiratory distress syndrome biomarkers for severe acute respiratory syndrome coronavirus 2 patients[J]. Eur Respir J, 2020, 56(5)
[142] CHATTERJEE S, KESHRY S S, GHOSH S, et al. Versatile beta-Catenin Is Crucial for SARS-CoV-2 Infection[J]. Microbiol Spectr, 2022, 10(5): e0167022.
[143] HARPER J V, BROOKS G. The mammalian cell cycle: an overview[J]. Methods Mol Biol, 2005, 296: 113-153.
[144] VERMEULEN K, VAN BOCKSTAELE D R, BERNEMAN Z N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer[J]. Cell Prolif, 2003, 36(3): 131-149.
[145] LIM S, KALDIS P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation[J]. Development, 2013, 140(15): 3079-3093.
[146] BAGGA S, BOUCHARD M J. Cell cycle regulation during viral infection[J]. Methods Mol Biol, 2014, 1170: 165-227.
[147] DOVE B, BROOKS G, BICKNELL K, et al. Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication[J]. J Virol, 2006, 80(8): 4147-4156.
[148] SWANTON C, JONES N. Strategies in subversion: de-regulation of the mammalian cell cycle by viral gene products[J]. Int J Exp Pathol, 2001, 82(1): 3-13.
[149] GEARHART T L, BOUCHARD M J. Replication of the hepatitis B virus requires a calcium-dependent HBx-induced G1 phase arrest of hepatocytes[J]. Virology, 2010, 407(1): 14-25.
[150] KERR J F, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239-257.
[151] GALLUZZI L, KEPP O, TROJEL-HANSEN C, et al. Mitochondrial control of cellular life, stress, and death[J]. Circ Res, 2012, 111(9): 1198-1207.
[152] ROULSTON A, MARCELLUS R C, BRANTON P E. Viruses and apoptosis[J]. Annu Rev Microbiol, 1999, 53: 577-628.
[153] CRYNS V, YUAN J. Proteases to die for[J]. Genes Dev, 1998, 12(11): 1551-1570.
[154] EVERETT H, MCFADDEN G. Apoptosis: an innate immune response to virus infection[J]. Trends Microbiol, 1999, 7(4): 160-165.
[155] ZHANG J, HAN Y, SHI H, et al. Swine acute diarrhea syndrome coronavirus-induced apoptosis is caspase- and cyclophilin D- dependent[J]. Emerg Microbes Infect, 2020, 9(1): 439-456.
[156] LI S, ZHANG Y, GUAN Z, et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation[J]. Signal Transduct Target Ther, 2020, 5(1): 235.
[157] COLLINS A R. Induction of apoptosis in MRC-5, diploid human fetal lung cells after infection with human coronavirus OC43[J]. Adv Exp Med Biol, 2001, 494: 677-682.
[158] KIM Y, LEE C. Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor[J]. Virology, 2014, 460-461: 180-193.
[159] LEE Y J, LEE C. Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway[J]. Virus Res, 2018, 253: 112-123.
[160] ZHENG C, ZHENG Z, SUN J, et al. MiR-16-5p mediates a positive feedback loop in EV71-induced apoptosis and suppresses virus replication[J]. Sci Rep, 2017, 7(1): 16422.
[161] HEYLBROECK C, BALACHANDRAN S, SERVANT M J, et al. The IRF-3 transcription factor mediates Sendai virus-induced apoptosis[J]. J Virol, 2000, 74(8): 3781-3792.
[162] YEGANEH B, GHAVAMI S, RAHIM M N, et al. Autophagy activation is required for influenza A virus-induced apoptosis and replication[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(2): 364-378.
[163] ZHU Y, ZHAO L, LIU L, et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis[J]. Protein Cell, 2010, 1(5): 468-477.
[164] THOMSON B J. Viruses and apoptosis[J]. Int J Exp Pathol, 2001, 82(2): 65-76.
[165] GIOTI K, KOTTARIDI C, VOYIATZAKI C, et al. Animal Coronaviruses Induced Apoptosis[J]. Life (Basel), 2021, 11(3)
[166] LI X, LI Z, ZHOU W, et al. Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells[J]. Cell Death Dis, 2013, 4(9): e803-809.
[167] MAHARJAN S, KANG M, KIM J, et al. Apoptosis Enhances the Replication of Human Coronavirus OC43[J]. Viruses, 2021, 13(11)
[168] HAMMITT L L, KAZUNGU S, WELCH S, et al. Added value of an oropharyngeal swab in detection of viruses in children hospitalized with lower respiratory tract infection[J]. J Clin Microbiol, 2011, 49(6): 2318-2320.
[169] LEE K C, LIM D, WONG S M, et al. Purification, crystallization and X-ray analysis of Hibiscus chlorotic ringspot virus[J]. Acta Crystallogr D Biol Crystallogr, 2003, 59(Pt 8): 1481-1483.
[170] TORTORICI M A, WALLS A C, LANG Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors[J]. Nat Struct Mol Biol, 2019, 26(6): 481-489.
[171] HULSWIT R J G, LANG Y, BAKKERS M J G, et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A[J]. Proc Natl Acad Sci U S A, 2019, 116(7): 2681-2690.
[172] KOVACOVICOVA K, VINCIGUERRA M. Isolation of senescent cells by iodixanol (OptiPrep) density gradient-based separation[J]. Cell Prolif, 2019, 52(6): e12674.
[173] ASHLEY C R, CAUL E O. Potassium tartrate-glycerol as a density gradient substrate for separation of small, round viruses from human feces[J]. J Clin Microbiol, 1982, 16(2): 377-381.
[174] WU Y, YIN Z, ZHU R, et al. Development of a rapid neutralization assay for the detection of neutralizing antibodies against coxsackievirus B1[J]. Diagn Microbiol Infect Dis, 2022, 103(2): 115676.
[175] DELLE H, SAITO M H, YOSHIMOTO P M, et al. The use of iodixanol for the purification of rat pancreatic islets[J]. Transplant Proc, 2007, 39(2): 467-469.
[176] WANG M, CAO R, ZHANG L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Research, 2020, 30(3): 269-271.
[177] STONE N E, JARAMILLO S A, JONES A N, et al. Stenoparib, an Inhibitor of Cellular Poly(ADP-Ribose) Polymerase, Blocks Replication of the SARS-CoV-2 and HCoV-NL63 Human Coronaviruses In Vitro[J]. mBio, 2021, 12(1)
[178] CATANZARO M, FAGIANI F, RACCHI M, et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2[J]. Signal Transduct Target Ther, 2020, 5(1): 84.
[179] SHI Y. A structural view of mitochondria-mediated apoptosis[J]. Nat Struct Biol, 2001, 8(5): 394-401.
[180] MARCHI S, GUILBAUD E, TAIT S W G, et al. Mitochondrial control of inflammation[J]. Nature Reviews Immunology, 2023, 23(3): 159-173.
[181] PAN R, RYAN J, PAN D, et al. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis[J]. Cell, 2022, 185(9): 1521-1538 e1518.
[182] LI S, KUANG M, CHEN L, et al. The mitochondrial protein ERAL1 suppresses RNA virus infection by facilitating RIG-I-like receptor signaling[J]. Cell Rep, 2021, 34(3): 108631.
[183] LEUNG T Y M, CHAN A Y L, CHAN E W, et al. Short- and potential long-term adverse health outcomes of COVID-19: a rapid review[J]. Emerg Microbes Infect, 2020, 9(1): 2190-2199.
[184] EBERHARDT N, NOVAL M G, KAUR R, et al. SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels[J]. Nat Cardiovasc Res, 2023, 2(10): 899-916.
[185] RIM E Y, CLEVERS H, NUSSE R. The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators[J]. Annu Rev Biochem, 2022, 91: 571-598.
[186] KEGG. 网页https://www.kegg.jp/entry/maua04210
[187] LEDNICKY J A, TAGLIAMONTE M S, WHITE S K, et al. Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution[J]. medRxiv, 2021
[188] BALLERING A V, VAN ZON S K R, OLDE HARTMAN T C, et al. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study[J]. Lancet, 2022, 400(10350): 452-461.
[189] HARVARD. Homepage[Z].
[190] MSEMBURI W, KARLINSKY A, KNUTSON V, et al. The WHO estimates of excess mortality associated with the COVID-19 pandemic[J]. Nature, 2023, 613(7942): 130-137.
[191] DUAN X, BOO Z Z, CHUA S L, et al. A Bacterial Quorum Sensing Regulated Protease Inhibits Host Immune Responses by Cleaving Death Domains of Innate Immune Adaptors[J]. Adv Sci (Weinh), 2023, 10(34): e2304891.
[192] BOGDANOW B, WANG X, EICHELBAUM K, et al. The dynamic proteome of influenza A virus infection identifies M segment splicing as a host range determinant[J]. Nat Commun, 2019, 10(1): 5518.
[193] PAN H, LI W J, YAO X J, et al. In Situ Bioorthogonal Metabolic Labeling for Fluorescence Imaging of Virus Infection In Vivo[J]. Small, 2017, 13(17)
[194] ZHAO T, ZHANG J, LEI H, et al. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity[J]. EMBO J, 2023, 42(16): e113258.
[195] TAPIA-ROJAS C, INESTROSA N C. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice[J]. J Neurochem, 2018, 144(4): 443-465.
[196] HOSETH E Z, KRULL F, DIESET I, et al. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder[J]. Transl Psychiatry, 2018, 8(1): 55.
[197] CHATTERJEE S, GHOSH S, DATEY A, et al. Chikungunya virus perturbs the Wnt/beta-catenin signaling pathway for efficient viral infection[J]. J Virol, 2023, 97(11): e0143023.
[198] DAUD M, RANA M A, HUSNAIN T, et al. Modulation of Wnt signaling pathway by hepatitis B virus[J]. Arch Virol, 2017, 162(10): 2937-2947.
[199] DUFFY E E, SCHOFIELD J A, SIMON M D. Gaining insight into transcriptome-wide RNA population dynamics through the chemistry of 4-thiouridine[J]. Wiley Interdiscip Rev RNA, 2019, 10(1): e1513.
[200] DONMEZ Y N, AYKAN H H, ORHAN D, et al. Intrapericardial inflammatory myofibroblastic tumour in a 3-month-old infant associated with Coronavirus OC43 presenting with pericardial tamponade[J]. Paediatr Int Child Health, 2020, 40(4): 261-267.
[201] PUNTMANN V O, CARERJ M L, WIETERS I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19)[J]. JAMA Cardiol, 2020, 5(11): 1265-1273.
[202] SISTI N, VALENTE S, MANDOLI G E, et al. COVID-19 in patients with heart failure: the new and the old epidemic[J]. Postgrad Med J, 2021, 97(1145): 175-179.
[203] WANG Y, ZHANG D, DU G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial[J]. Lancet, 2020, 395(10236): 1569-1578.
[204] BOILEAU E, ALTMULLER J, NAARMANN-DE VRIES I S, et al. A comparison of metabolic labeling and statistical methods to infer genome-wide dynamics of RNA turnover[J]. Brief Bioinform, 2021, 22(6)
[205] BOLLYKY T J, CASTRO E, ARAVKIN A Y, et al. Assessing COVID-19 pandemic policies and behaviours and their economic and educational trade-offs across US states from Jan 1, 2020, to July 31, 2022: an observational analysis[J]. Lancet (London, England), 2023, 401(10385): 1341-1360.
[206] FUNK L-M, POSCHMANN G, RABE VON PAPPENHEIM F, et al. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design[J]. Nature Communications, 2024, 15(1): 411.
[207] WANG Q, IKETANI S, LI Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants[J]. Cell, 2023, 186(2)
[208] WANG Q, GUO Y, LIU L, et al. Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike[J]. Nature, 2023, 624(7992): 639-644.
[209] DATTA P K, LIU F, FISCHER T, et al. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy[J]. Theranostics, 2020, 10(16): 7448-7464.
[210] SCHOOF M, FAUST B, SAUNDERS R A, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike[J]. Science (New York, NY), 2020, 370(6523): 1473-1479.
[211] WU Y, LI C, XIA S, et al. Identification of Human Single-Domain Antibodies against SARS-CoV-2[J]. Cell Host & Microbe, 2020, 27(6)
[212] YANG YANG J Z, SHENGNAN ZHANG, CHENHUI ZHANG, CHENGUANG SHEN, SHUO SONG, YANQUN WANG, YUN PENG, XIAOHUA GONG, JUN DAI, CHONGWEI XIE, T. KHRUSTALEVA, V. V. KHRUSTALEV, YONGTING HUO, DI LU, DA YAO, JINCUN ZHAO, YINGXIA LIU, HONGZHOU LU. A novel nanobody broadly neutralizes SARS-CoV-2 via induction of spike trimer dimers conformation[J]. Exploration, 2023, -(-): -.
[213] BAYER V. An Overview of Monoclonal Antibodies[J]. Semin Oncol Nurs, 2019, 35(5): 150927.
[214] NGUYEN V K, HAMERS R, WYNS L, et al. Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire[J]. EMBO J, 2000, 19(5): 921-930.
[215] BEVER C S, DONG J X, VASYLIEVA N, et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals[J]. Anal Bioanal Chem, 2016, 408(22): 5985-6002.
[216] LI T, BOURGEOIS J P, CELLI S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging[J]. FASEB J, 2012, 26(10): 3969-3979.
[217] ZOTTEL A, NOVAK M, SAMEC N, et al. Anti-Vimentin Nanobody Decreases Glioblastoma Cell Invasion In Vitro and In Vivo[J]. Cancers (Basel), 2023, 15(3)
[218] JONES D R, TAYLOR W A, BATE C, et al. A Camelid Anti-PrP Antibody Abrogates PrPSc Replication in Prion-Permissive Neuroblastoma Cell Lines[J]. PLoS ONE, 2010, 5(3): e9804.
[219] HARMSEN M M, FIJTEN H P, ENGEL B, et al. Passive immunization with llama single-domain antibody fragments reduces foot-and-mouth disease transmission between pigs[J]. Vaccine, 2009, 27(13): 1904-1911.
[220] WANG L, ZHANG L, HUANG B, et al. A Nanobody Targeting Viral Nonstructural Protein 9 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication[J]. J Virol, 2019, 93(4)
[221] LU L, SU S, YANG H, et al. Antivirals with common targets against highly pathogenic viruses[J]. Cell, 2021, 184(6): 1604-1620.
[222] TERRYN S, FRANCART A, LAMORAL S, et al. Protective effect of different anti-rabies virus VHH constructs against rabies disease in mice[J]. PLoS One, 2014, 9(10): e109367.
[223] YANG Z, LI C, SONG Y, et al. Inhalable antibodies for the treatment of COVID-19[J]. Innovation (Cambridge (Mass)), 2022, 3(6): 100328.
[224] LI C, ZHAN W, YANG Z, et al. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody[J]. Cell, 2022, 185(8)
[225] LAI S K, MCSWEENEY M D, PICKLES R J. Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19[J]. Journal of Controlled Release : Official Journal of the Controlled Release Society, 2021, 329: 87-95.
[226] YONG JOON KIM J, SANG Z, XIANG Y, et al. Nanobodies: Robust miniprotein binders in biomedicine[J]. Advanced Drug Delivery Reviews, 2023, 195: 114726.
[227] PATTON J S, BYRON P R. Inhaling medicines: delivering drugs to the body through the lungs[J]. Nature Reviews Drug Discovery, 2007, 6(1): 67-74.
[228] WANG W, HU Y, LI B, et al. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2[J]. Biochemical Pharmacology, 2023, 208: 115401.
[229] LI M, WANG H, TIAN L, et al. COVID-19 vaccine development: milestones, lessons and prospects[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 146.
[230] LEI S, CHEN X, WU J, et al. Small molecules in the treatment of COVID-19[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 387.
[231] LI F, HUANG Q, ZHOU Z, et al. Gold nanoparticles combat enveloped RNA virus by affecting organelle dynamics[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 285.
[232] LI G, HILGENFELD R, WHITLEY R, et al. Therapeutic strategies for COVID-19: progress and lessons learned[J]. Nature Reviews Drug Discovery, 2023, 22(6): 449-475.
[233] WU Y, WANG F, SHEN C, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2[J]. Science (New York, NY), 2020, 368(6496): 1274-1278.
[234] PANTALEO G, CORREIA B, FENWICK C, et al. Antibodies to combat viral infections: development strategies and progress[J]. Nature Reviews Drug Discovery, 2022, 21(9): 676-696.
[235] ZHAI L, ZHANG L, JIANG Y, et al. Broadly neutralizing antibodies recognizing different antigenic epitopes act synergistically against the influenza B virus[J]. Journal of Medical Virology, 2023, 95(1): e28106.
[236] WANG Q, IKETANI S, LI Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants[J]. Cell, 2023, 186(2): 279-286 e278.
[237] JIAN F, YU Y, SONG W, et al. Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants[J]. Lancet Infect Dis, 2022, 22(11): 1535-1537.
[238] CAO Y, WANG J, JIAN F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies[J]. Nature, 2022, 602(7898): 657-663.
[239] LIU L, IKETANI S, GUO Y, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2[J]. Nature, 2022, 602(7898): 676-681.
[240] DEJNIRATTISAI W, HUO J, ZHOU D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses[J]. Cell, 2022, 185(3): 467-484 e415.
[241] BARNES C O, WEST A P, JR., HUEY-TUBMAN K E, et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies[J]. Cell, 2020, 182(4): 828-842 e816.
[242] KUMAR S, CHANDELE A, SHARMA A. Correction: Current status of therapeutic monoclonal antibodies against SARS-CoV-2[J]. PLoS Pathog, 2022, 18(11): e1010983.
[243] LEACH A R. Molecular Modelling: Principles and Applications[J]. Briefings in Bioinformatics, 2001, 2(2): 199-200.
[244] KARPLUS M, MCCAMMON J A. Molecular dynamics simulations of biomolecules[J]. Nat Struct Biol, 2002, 9(9): 646-652.
[245] KARPLUS M, PETSKO G A. Molecular dynamics simulations in biology[J]. Nature, 1990, 347(6294): 631-639.
[246] HOLLINGSWORTH S A, DROR R O. Molecular Dynamics Simulation for All[J]. Neuron, 2018, 99(6): 1129-1143.
[247] MORRIS G M, LIM-WILBY M. Molecular docking[J]. Methods Mol Biol, 2008, 443: 365-382.
[248] PAGADALA N S, SYED K, TUSZYNSKI J. Software for molecular docking: a review[J]. Biophys Rev, 2017, 9(2): 91-102.
[249] GODDARD T D, HUANG C C, MENG E C, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis[J]. Protein Science : a Publication of the Protein Society, 2018, 27(1): 14-25.
[250] SZILáRD PáLL M J A, CARSTEN KUTZNER, BERK HESS, ERIK LINDAHL. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS[Z]. Lecture Notes in Computer Science Lecture Notes in Computer Science 2015.10.1007/978-3-319-15976-8_1
[251] JO S, KIM T, IYER V G, et al. CHARMM-GUI: a web-based graphical user interface for CHARMM[J]. Journal of Computational Chemistry, 2008, 29(11): 1859-1865.
[252] HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1)
[253] SCHRODINGER L, DELANO, W. PyMOL[J]. 2020
[254] LEMAN J K, WEITZNER B D, LEWIS S M, et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks[J]. Nature Methods, 2020, 17(7): 665-680.
[255] PEDEBOS C, KHALID S. Simulations of the spike: molecular dynamics and SARS-CoV-2[J]. Nature Reviews Microbiology, 2022, 20(4): 192.
[256] BAGHERI M, NIAVARANI A. Molecular dynamics analysis predicts ritonavir and naloxegol strongly block the SARS-CoV-2 spike protein-hACE2 binding[J]. Journal of Biomolecular Structure & Dynamics, 2022, 40(4): 1597-1606.
[257] BEAUDOIN-BUSSIERES G, LAUMAEA A, ANAND S P, et al. Decline of Humoral Responses against SARS-CoV-2 Spike in Convalescent Individuals[J]. mBio, 2020, 11(5)
[258] BECKER M, DULOVIC A, JUNKER D, et al. Immune response to SARS-CoV-2 variants of concern in vaccinated individuals[J]. Nat Commun, 2021, 12(1): 3109.
[259] PENG Q, ZHOU R, WANG Y, et al. Waning immune responses against SARS-CoV-2 variants of concern among vaccinees in Hong Kong[J]. EBioMedicine, 2022, 77: 103904.
[260] SHI Z, LI X, WANG L, et al. Structural basis of nanobodies neutralizing SARS-CoV-2 variants[J]. Structure, 2022, 30(5): 707-720 e705.
[261] XIANG Y, NAMBULLI S, XIAO Z, et al. Versatile, Multivalent Nanobody Cocktails Efficiently Neutralize SARS-CoV-2[J]. bioRxiv, 2020
[262] CHI X, YAN R, ZHANG J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2[J]. Science, 2020, 369(6504): 650-655.
[263] DU S, CAO Y, ZHU Q, et al. Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy[J]. Cell, 2020, 183(4): 1013-1023 e1013.
[264] YAO H, SUN Y, DENG Y Q, et al. Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection[J]. Cell Res, 2021, 31(1): 25-36.
修改评论