[1] GEIGER B, SPATZ J P, BERSHADSKY A D. Environmental sensing through focal adhesions [J]. Nature reviews. Molecular cell biology, 2009, 10(1): 21-33.
[2] GEIGER B, YAMADA K M. Molecular architecture and function of matrix adhesions [J]. Cold Spring Harbor perspectives in biology, 2011, 3(5):
[3] WEHRLE-HALLER B. Structure and function of focal adhesions [J]. Current opinion in cell biology, 2012, 24(1): 116-124.
[4] GUNAWAN F, GENTILE A, FUKUDA R, et al. Focal adhesions are essential to drive zebrafish heart valve morphogenesis [J]. The Journal of cell biology, 2019, 218(3): 1039-1054.
[5] KERSTEIN P C, PATEL K M, GOMEZ T M. Calpain-Mediated Proteolysis of Talin and FAK Regulates Adhesion Dynamics Necessary for Axon Guidance [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2017, 37(6): 1568-1580.
[6] YUE J, ZHANG Y, LIANG W G, et al. In vivo epidermal migration requires focal adhesion targeting of ACF7 [J]. Nature communications, 2016, 7(11692.
[7] ZHANG P, CAO X, GUAN M, et al. CPNE8 Promotes Gastric Cancer Metastasis by Modulating Focal Adhesion Pathway and Tumor Microenvironment [J]. International journal of biological sciences, 2022, 18(13): 4932-4949.
[8] SAMAREL A M. Focal adhesion signaling in heart failure [J]. Pflugers Archiv : European journal of physiology, 2014, 466(6): 1101-1111.
[9] CHEN S, HE T, ZHONG Y, et al. Roles of focal adhesion proteins in skeleton and diseases [J]. Acta pharmaceutica Sinica. B, 2023, 13(3): 998-1013.
[10] LEGERSTEE K, HOUTSMULLER A B. A Layered View on Focal Adhesions [J]. Biology, 2021, 10(11):
[11] KIM D H, WIRTZ D. Focal adhesion size uniquely predicts cell migration [J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2013, 27(4): 1351-1361.
[12] KANCHANAWONG P, SHTENGEL G, PASAPERA A M, et al. Nanoscale architecture of integrin-based cell adhesions [J]. Nature, 2010, 468(7323): 580-584.
[13] ABERCROMBIE M, HEAYSMAN J E, PEGRUM S M. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella [J]. Experimental cell research, 1971, 67(2): 359-367.
[14] LAZARIDES E, WEBER K. Actin antibody: the specific visualization of actin filaments in non-muscle cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(6): 2268-2272.
[15] GEIGER B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells [J]. Cell, 1979, 18(1): 193-205.
[16] COLLIER N C, WANG K. Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s) [J]. The Journal of biological chemistry, 1982, 257(12): 6937-6943.
[17] HORWITZ A, DUGGAN K, BUCK C, et al. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage [J]. Nature, 1986, 320(6062): 531-533.
[18] MITRA S K, HANSON D A, SCHLAEPFER D D. Focal adhesion kinase: in command and control of cell motility [J]. Nature reviews. Molecular cell biology, 2005, 6(1): 56-68.
[19] BROWN M C, TURNER C E. Paxillin: adapting to change [J]. Physiological reviews, 2004, 84(4): 1315-1339.
[20] GALBRAITH C G, YAMADA K M, SHEETZ M P. The relationship between force and focal complex development [J]. The Journal of cell biology, 2002, 159(4): 695-705.
[21] HU K, JI L, APPLEGATE K T, et al. Differential transmission of actin motion within focal adhesions [J]. Science (New York, N.Y.), 2007, 315(5808): 111-115.
[22] BROWN C M, HEBERT B, KOLIN D L, et al. Probing the integrin-actin linkage using high-resolution protein velocity mapping [J]. Journal of cell science, 2006, 119(Pt 24): 5204-5214.
[23] JIANG G, GIANNONE G, CRITCHLEY D R, et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin [J]. Nature, 2003, 424(6946): 334-337.
[24] YOSHIGI M, HOFFMAN L M, JENSEN C C, et al. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement [J]. The Journal of cell biology, 2005, 171(2): 209-215.
[25] OTEY C A, CARPEN O. Alpha-actinin revisited: a fresh look at an old player [J]. Cell motility and the cytoskeleton, 2004, 58(2): 104-111.
[26] LIU J, WANG Y, GOH W I, et al. Talin determines the nanoscale architecture of focal adhesions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): E4864-4873.
[27] PASZEK M J, DUFORT C C, RUBASHKIN M G, et al. Scanning angle interference microscopy reveals cell dynamics at the nanoscale [J]. Nature methods, 2012, 9(8): 825-827.
[28] STUBB A, GUZMáN C, NäRVä E, et al. Superresolution architecture of cornerstone focal adhesions in human pluripotent stem cells [J]. Nature communications, 2019, 10(1): 4756.
[29] CASE L B, BAIRD M A, SHTENGEL G, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions [J]. Nature cell biology, 2015, 17(7): 880-892.
[30] ORRé T, JOLY A, KARATAS Z, et al. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions [J]. Nature communications, 2021, 12(1): 3104.
[31] MAVRAKIS M, JUANES M A. The compass to follow: Focal adhesion turnover [J]. Current opinion in cell biology, 2023, 80(102152.
[32] CALDERWOOD D A, TAI V, DI PAOLO G, et al. Competition for talin results in trans-dominant inhibition of integrin activation [J]. The Journal of biological chemistry, 2004, 279(28): 28889-28895.
[33] CHINTHALAPUDI K, RANGARAJAN E S, IZARD T. The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10339-10344.
[34] MITRA S K, SCHLAEPFER D D. Integrin-regulated FAK-Src signaling in normal and cancer cells [J]. Current opinion in cell biology, 2006, 18(5): 516-523.
[35] GARDEL M L, SCHNEIDER I C, ARATYN-SCHAUS Y, et al. Mechanical integration of actin and adhesion dynamics in cell migration [J]. Annual review of cell and developmental biology, 2010, 26(315-333.
[36] RIDLEY A J, SCHWARTZ M A, BURRIDGE K, et al. Cell migration: integrating signals from front to back [J]. Science (New York, N.Y.), 2003, 302(5651): 1704-1709.
[37] SENGUPTA S, PARENT C A, BEAR J E. The principles of directed cell migration [J]. Nature reviews. Molecular cell biology, 2021, 22(8): 529-547.
[38] HELFMAN D M, LEVY E T, BERTHIER C, et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions [J]. Molecular biology of the cell, 1999, 10(10): 3097-3112.
[39] WISEMAN P W, BROWN C M, WEBB D J, et al. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy [J]. Journal of cell science, 2004, 117(Pt 23): 5521-5534.
[40] CHOI C K, VICENTE-MANZANARES M, ZARENO J, et al. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner [J]. Nature cell biology, 2008, 10(9): 1039-1050.
[41] BERSHADSKY A D, BALABAN N Q, GEIGER B. Adhesion-dependent cell mechanosensitivity [J]. Annual review of cell and developmental biology, 2003, 19(677-695.
[42] DEL RIO A, PEREZ-JIMENEZ R, LIU R, et al. Stretching single talin rod molecules activates vinculin binding [J]. Science (New York, N.Y.), 2009, 323(5914): 638-641.
[43] ROTTY J D, BEAR J E. Competition and collaboration between different actin assembly pathways allows for homeostatic control of the actin cytoskeleton [J]. Bioarchitecture, 2014, 5(1-2): 27-34.
[44] SEPT D, XU J, POLLARD T D, et al. Annealing accounts for the length of actin filaments formed by spontaneous polymerization [J]. Biophysical journal, 1999, 77(6): 2911-2919.
[45] BLANCHOIN L, BOUJEMAA-PATERSKI R, SYKES C, et al. Actin dynamics, architecture, and mechanics in cell motility [J]. Physiological reviews, 2014, 94(1): 235-263.
[46] MCINTOSH J R. Mitosis [J]. Cold Spring Harbor perspectives in biology, 2016, 8(9):
[47] VISWANADHA R, SALE W S, PORTER M E. Ciliary Motility: Regulation of Axonemal Dynein Motors [J]. Cold Spring Harbor perspectives in biology, 2017, 9(8):
[48] AKHMANOVA A, STEINMETZ M O. Microtubule +TIPs at a glance [J]. Journal of cell science, 2010, 123(Pt 20): 3415-3419.
[49] MIESCH J, WIMBISH R T, VELLUZ M C, et al. Phase separation of +TIP networks regulates microtubule dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(35): e2301457120.
[50] IVASHKO-PACHIMA Y, GOZES I. Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy [J]. Progress in molecular biology and translational science, 2021, 177(65-90.
[51] RAMEY V H, WANG H W, NAKAJIMA Y, et al. The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule [J]. Molecular biology of the cell, 2011, 22(4): 457-466.
[52] KUMAR A, MEIER S M, FARCAS A M, et al. Structure and regulation of the microtubule plus-end tracking protein Kar9 [J]. Structure (London, England : 1993), 2021, 29(11): 1266-1278.e1264.
[53] SMALL J V, ROTTNER K, KAVERINA I, et al. Assembling an actin cytoskeleton for cell attachment and movement [J]. Biochimica et biophysica acta, 1998, 1404(3): 271-281.
[54] HOTULAINEN P, LAPPALAINEN P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells [J]. The Journal of cell biology, 2006, 173(3): 383-394.
[55] BURRIDGE K, GUILLUY C. Focal adhesions, stress fibers and mechanical tension [J]. Experimental cell research, 2016, 343(1): 14-20.
[56] CRAMER L P, SIEBERT M, MITCHISON T J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force [J]. The Journal of cell biology, 1997, 136(6): 1287-1305.
[57] ADAMS J C. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: implications for the anti-adhesive activities of thrombospondin-1 [J]. Journal of cell science, 1995, 108 ( Pt 5)(1977-1990.
[58] WANG K, ASH J F, SINGER S J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(11): 4483-4486.
[59] LEHTIMäKI J I, RAJAKYLä E K, TOJKANDER S, et al. Generation of stress fibers through myosin-driven reorganization of the actin cortex [J]. eLife, 2021, 10(
[60] MIYAMOTO S, TERAMOTO H, COSO O A, et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules [J]. The Journal of cell biology, 1995, 131(3): 791-805.
[61] TADOKORO S, SHATTIL S J, ETO K, et al. Talin binding to integrin beta tails: a final common step in integrin activation [J]. Science (New York, N.Y.), 2003, 302(5642): 103-106.
[62] MOSER M, LEGATE K R, ZENT R, et al. The tail of integrins, talin, and kindlins [J]. Science (New York, N.Y.), 2009, 324(5929): 895-899.
[63] OWEN L M, BAX N A, WEIS W I, et al. The C-terminal actin-binding domain of talin forms an asymmetric catch bond with F-actin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2109329119.
[64] BACHMANN M, SU B, RAHIKAINEN R, et al. ConFERMing the role of talin in integrin activation and mechanosignaling [J]. Journal of cell science, 2023, 136(8):
[65] ZHAO Y, LYKOV N, TZENG C. Talin‑1 interaction network in cellular mechanotransduction (Review) [J]. International journal of molecular medicine, 2022, 49(5):
[66] ZHU L, PLOW E F, QIN J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view [J]. Protein science : a publication of the Protein Society, 2021, 30(3): 531-542.
[67] YAO M, GOULT B T, CHEN H, et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation [J]. Scientific reports, 2014, 4(4610.
[68] LAWSON C, LIM S T, URYU S, et al. FAK promotes recruitment of talin to nascent adhesions to control cell motility [J]. The Journal of cell biology, 2012, 196(2): 223-232.
[69] SUN Z, TSENG H Y, TAN S, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation [J]. Nature cell biology, 2016, 18(9): 941-953.
[70] KAVERINA I, ROTTNER K, SMALL J V. Targeting, capture, and stabilization of microtubules at early focal adhesions [J]. The Journal of cell biology, 1998, 142(1): 181-190.
[71] EZRATTY E J, PARTRIDGE M A, GUNDERSEN G G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase [J]. Nature cell biology, 2005, 7(6): 581-590.
[72] THEISEN U, STRAUBE E, STRAUBE A. Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions [J]. Developmental cell, 2012, 23(6): 1153-1166.
[73] CARLUCCI A, GEDRESSI C, LIGNITTO L, et al. Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration [J]. The Journal of biological chemistry, 2008, 283(16): 10919-10929.
[74] SIDDIQUI N, ZWETSLOOT A J, BACHMANN A, et al. PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport [J]. Nature communications, 2019, 10(1): 2693.
[75] ESKOVA A, KNAPP B, MATELSKA D, et al. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin [J]. Journal of cell science, 2014, 127(Pt 11): 2433-2447.
[76] KAVERINA I N, MININ A A, GYOEVA F K, et al. Kinesin-associated transport is involved in the regulation of cell adhesion [J]. Cell biology international, 1997, 21(4): 229-236.
[77] STEHBENS S J, PASZEK M, PEMBLE H, et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover [J]. Nature cell biology, 2014, 16(6): 561-573.
[78] MACPHERSON I R, RAINERO E, MITCHELL L E, et al. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer [J]. Journal of cell science, 2014, 127(Pt 18): 3893-3901.
[79] FRITTOLI E, PALAMIDESSI A, MARIGHETTI P, et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination [J]. The Journal of cell biology, 2014, 206(2): 307-328.
[80] THOMPSON P M, TOLBERT C E, SHEN K, et al. Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties [J]. Structure (London, England : 1993), 2014, 22(5): 697-706.
[81] JANSSEN M E, KIM E, LIU H, et al. Three-dimensional structure of vinculin bound to actin filaments [J]. Molecular cell, 2006, 21(2): 271-281.
[82] YE F, PETRICH B G, ANEKAL P, et al. The mechanism of kindlin-mediated activation of integrin αIIbβ3 [J]. Current biology : CB, 2013, 23(22): 2288-2295.
[83] PERNIER J, CARDOSO DOS SANTOS M, SOUISSI M, et al. Talin and kindlin cooperate to control the density of integrin clusters [J]. Journal of cell science, 2023, 136(8):
[84] LI B, TRUEB B. Analysis of the alpha-actinin/zyxin interaction [J]. The Journal of biological chemistry, 2001, 276(36): 33328-33335.
[85] BRINDLE N P, HOLT M R, DAVIES J E, et al. The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin [J]. The Biochemical journal, 1996, 318 ( Pt 3)(Pt 3): 753-757.
[86] DREES B, FRIEDERICH E, FRADELIZI J, et al. Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins [J]. The Journal of biological chemistry, 2000, 275(29): 22503-22511.
[87] FERRON F, REBOWSKI G, LEE S H, et al. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP [J]. The EMBO journal, 2007, 26(21): 4597-4606.
[88] ROCA-CUSACHS P, DEL RIO A, PUKLIN-FAUCHER E, et al. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): E1361-1370.
[89] LEGATE K R, MONTAñEZ E, KUDLACEK O, et al. ILK, PINCH and parvin: the tIPP of integrin signalling [J]. Nature reviews. Molecular cell biology, 2006, 7(1): 20-31.
[90] FUKUDA K, GUPTA S, CHEN K, et al. The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions [J]. Molecular cell, 2009, 36(5): 819-830.
[91] VELYVIS A, YANG Y, WU C, et al. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain [J]. The Journal of biological chemistry, 2001, 276(7): 4932-4939.
[92] FUKUDA K, KNIGHT J D, PISZCZEK G, et al. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase [J]. The Journal of biological chemistry, 2011, 286(24): 21886-21895.
[93] QIN J, WU C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling [J]. Current opinion in cell biology, 2012, 24(5): 607-613.
[94] VAYNBERG J, FUKUDA K, LU F, et al. Non-catalytic signaling by pseudokinase ILK for regulating cell adhesion [J]. Nature communications, 2018, 9(1): 4465.
[95] HANNIGAN G E, LEUNG-HAGESTEIJN C, FITZ-GIBBON L, et al. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase [J]. Nature, 1996, 379(6560): 91-96.
[96] PASQUET J M, NOURY M, NURDEN A T. Evidence that the platelet integrin alphaIIb beta3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway [J]. Thrombosis and haemostasis, 2002, 88(1): 115-122.
[97] NIKOLOPOULOS S N, TURNER C E. Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions [J]. The Journal of biological chemistry, 2001, 276(26): 23499-23505.
[98] NIKOLOPOULOS S N, TURNER C E. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion [J]. The Journal of cell biology, 2000, 151(7): 1435-1448.
[99] TURNER C E, GLENNEY J R, JR., BURRIDGE K. Paxillin: a new vinculin-binding protein present in focal adhesions [J]. The Journal of cell biology, 1990, 111(3): 1059-1068.
[100] DOUGHERTY G W, CHOPP T, QI S M, et al. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions [J]. Experimental cell research, 2005, 306(1): 168-179.
[101] SIMPSON K J, SELFORS L M, BUI J, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach [J]. Nature cell biology, 2008, 10(9): 1027-1038.
[102] WINOGRAD-KATZ S E, ITZKOVITZ S, KAM Z, et al. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown [J]. The Journal of cell biology, 2009, 186(3): 423-436.
[103] DOUGHERTY G W, JOSE C, GIMONA M, et al. The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells [J]. European journal of cell biology, 2008, 87(8-9): 721-734.
[104] KADRMAS J L, SMITH M A, CLARK K A, et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1 [J]. The Journal of cell biology, 2004, 167(6): 1019-1024.
[105] MONTANEZ E, KARAKöSE E, TISCHNER D, et al. PINCH-1 promotes Bcl-2-dependent survival signalling and inhibits JNK-mediated apoptosis in the primitive endoderm [J]. Journal of cell science, 2012, 125(Pt 21): 5233-5240.
[106] GONZALEZ-NIEVES R, DESANTIS A I, CUTLER M L. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms [J]. Journal of cell communication and signaling, 2013, 7(4): 279-293.
[107] KIM Y C, GONZALEZ-NIEVES R, CUTLER M L. Rsu1 contributes to cell adhesion and spreading in MCF10A cells via effects on P38 map kinase signaling [J]. Cell adhesion & migration, 2015, 9(3): 227-232.
[108] CASTRO-GINER F, ACETO N. Tracking cancer progression: from circulating tumor cells to metastasis [J]. Genome medicine, 2020, 12(1): 31.
[109] FAN T M, ROBERTS R D, LIZARDO M M. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression [J]. Frontiers in oncology, 2020, 10(13.
[110] VASATURO F, DOUGHERTY G W, CUTLER M L. Ectopic expression of Rsu-1 results in elevation of p21CIP and inhibits anchorage-independent growth of MCF7 breast cancer cells [J]. Breast cancer research and treatment, 2000, 61(1): 69-78.
[111] GIOTOPOULOU N, VALIAKOU V, PAPANIKOLAOU V, et al. Ras suppressor-1 promotes apoptosis in breast cancer cells by inhibiting PINCH-1 and activating p53-upregulated-modulator of apoptosis (PUMA); verification from metastatic breast cancer human samples [J]. Clinical & experimental metastasis, 2015, 32(3): 255-265.
[112] GKRETSI V, BOGDANOS D P. Elimination of Ras Suppressor-1 from hepatocellular carcinoma cells hinders their in vitro metastatic properties [J]. Anticancer research, 2015, 35(3): 1509-1512.
[113] DONTHAMSETTY S, BHAVE V S, MARS W M, et al. Role of PINCH and its partner tumor suppressor Rsu-1 in regulating liver size and tumorigenesis [J]. PloS one, 2013, 8(9): e74625.
[114] LOUCA M, STYLIANOU A, MINIA A, et al. Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation [J]. Scientific reports, 2019, 9(1): 7782.
[115] BARBAZáN J, ALONSO-ALCONADA L, MUINELO-ROMAY L, et al. Molecular characterization of circulating tumor cells in human metastatic colorectal cancer [J]. PloS one, 2012, 7(7): e40476.
[116] LANSBERGEN G, GRIGORIEV I, MIMORI-KIYOSUE Y, et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta [J]. Developmental cell, 2006, 11(1): 21-32.
[117] HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly [J]. Nature cell biology, 2015, 17(12): 1577-1587.
[118] PARADŽIK M, HUMPHRIES J D, STOJANOVIĆ N, et al. KANK2 Links αVβ5 Focal Adhesions to Microtubules and Regulates Sensitivity to Microtubule Poisons and Cell Migration [J]. Frontiers in cell and developmental biology, 2020, 8(125.
[119] XU Y, GUO C, PAN W, et al. Nephrotic-syndrome-associated mutation of KANK2 induces pathologic binding competition with physiological interactor KIF21A [J]. The Journal of biological chemistry, 2021, 297(2): 100958.
[120] TADIJAN A, SAMARŽIJA I, HUMPHRIES J D, et al. KANK family proteins in cancer [J]. The international journal of biochemistry & cell biology, 2021, 131(105903.
[121] BOUCHET B P, GOUGH R E, AMMON Y C, et al. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions [J]. eLife, 2016, 5(
[122] CHEN N P, SUN Z, FäSSLER R. The Kank family proteins in adhesion dynamics [J]. Current opinion in cell biology, 2018, 54(130-136.
[123] ASTRO V, CHIARETTI S, MAGISTRATI E, et al. Liprin-α1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration [J]. Journal of cell science, 2014, 127(Pt 17): 3862-3876.
[124] ASTRO V, TONOLI D, CHIARETTI S, et al. Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover [J]. Scientific reports, 2016, 6(33653.
[125] DE CURTIS I. Function of liprins in cell motility [J]. Experimental cell research, 2011, 317(1): 1-8.
[126] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins [J]. Cell reports, 2021, 36(4): 109476.
[127] HELD R G, LIU C, KAESER P S. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains [J]. eLife, 2016, 5(
[128] JIN G, LIN L, LI K, et al. Structural basis of ELKS/Rab6B interaction and its role in vesicle capturing enhanced by liquid-liquid phase separation [J]. The Journal of biological chemistry, 2023, 299(6): 104808.
[129] RAMELLA M, RIBOLLA L M, DE CURTIS I. Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function [J]. Journal of molecular biology, 2022, 434(1): 167228.
[130] RIBOLLA L M, SALA K, TONOLI D, et al. Interfering with the ERC1-LL5β interaction disrupts plasma membrane-Associated platforms and affects tumor cell motility [J]. PloS one, 2023, 18(7): e0287670.
[131] GRIGORIEV I, YU K L, MARTINEZ-SANCHEZ E, et al. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers [J]. Current biology : CB, 2011, 21(11): 967-974.
[132] RAJAN S, TERMAN J R, REISLER E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics [J]. Frontiers in cell and developmental biology, 2023, 11(1124202.
[133] JIA X, LIN L, XU S, et al. Crystal Structure of the SH3 Domain of ASAP1 in Complex with the Proline Rich Motif (PRM) of MICAL1 Reveals a Unique SH3/PRM Interaction Mode [J]. International journal of molecular sciences, 2023, 24(2):
[134] AKHMANOVA A, HOOGENRAAD C C, DRABEK K, et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts [J]. Cell, 2001, 104(6): 923-935.
[135] SLEP K C, VALE R D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1 [J]. Molecular cell, 2007, 27(6): 976-991.
[136] LAWRENCE E J, ZANIC M, RICE L M. CLASPs at a glance [J]. Journal of cell science, 2020, 133(8):
[137] MIMORI-KIYOSUE Y, GRIGORIEV I, LANSBERGEN G, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex [J]. The Journal of cell biology, 2005, 168(1): 141-153.
[138] MAFFINI S, MAIA A R, MANNING A L, et al. Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux [J]. Current biology : CB, 2009, 19(18): 1566-1572.
[139] DRABEK K, GUTIéRREZ L, VERMEIJ M, et al. The microtubule plus-end tracking protein CLASP2 is required for hematopoiesis and hematopoietic stem cell maintenance [J]. Cell reports, 2012, 2(4): 781-788.
[140] MILLER P M, FOLKMANN A W, MAIA A R, et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells [J]. Nature cell biology, 2009, 11(9): 1069-1080.
[141] ZHU B, QI L, LIU S, et al. CLASP2 is involved in the EMT and early progression after transurethral resection of the bladder tumor [J]. BMC cancer, 2017, 17(1): 105.
[142] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation [J]. Science (New York, N.Y.), 2009, 324(5935): 1729-1732.
[143] MEHTA S, ZHANG J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer [J]. Nature reviews. Cancer, 2022, 22(4): 239-252.
[144] AGUDO-CANALEJO J, SCHULTZ S W, CHINO H, et al. Wetting regulates autophagy of phase-separated compartments and the cytosol [J]. Nature, 2021, 591(7848): 142-146.
[145] COURCHAINE E M, BARENTINE A E S, STRAUBE K, et al. DMA-tudor interaction modules control the specificity of in vivo condensates [J]. Cell, 2021, 184(14): 3612-3625.e3617.
[146] QIU H, WU X, MA X, et al. Short-distance vesicle transport via phase separation [J]. Cell, 2024, DOI: 10.1016/j.cell.2024.03.003
[147] GUO Q, SHI X, WANG X. RNA and liquid-liquid phase separation [J]. Non-coding RNA research, 2021, 6(2): 92-99.
[148] JING H, BAI Q, LIN Y, et al. Fission and Internal Fusion of Protocell with Membraneless "Organelles" Formed by Liquid-Liquid Phase Separation [J]. Langmuir : the ACS journal of surfaces and colloids, 2020, 36(27): 8017-8026.
[149] PENG P H, HSU K W, WU K J. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology [J]. American journal of cancer research, 2021, 11(8): 3766-3776.
[150] SU Q, MEHTA S, ZHANG J. Liquid-liquid phase separation: Orchestrating cell signaling through time and space [J]. Molecular cell, 2021, 81(20): 4137-4146.
[151] CASE L B, DE PASQUALE M, HENRY L, et al. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation [J]. eLife, 2022, 11(
[152] ZHU J, ZHOU Q, XIA Y, et al. GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling [J]. Molecular cell, 2020, 79(5): 782-796.e786.
[153] WANG Y, ZHANG C, YANG W, et al. LIMD1 phase separation contributes to cellular mechanics and durotaxis by regulating focal adhesion dynamics in response to force [J]. Developmental cell, 2021, 56(9): 1313-1325.e1317.
[154] GUO K, ZHANG J, HUANG P, et al. KANK1 shapes focal adhesions by orchestrating protein binding, mechanical force sensing, and phase separation [J]. Cell reports, 2023, 42(11): 113321.
[155] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins [J]. Cell reports, 2021, 34(12): 108901.
[156] WU Y O, BRYANT A T, NELSON N T, et al. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate [J]. PloS one, 2021, 16(12): e0260401.
[157] SONG X, YANG F, YANG T, et al. Phase separation of EB1 guides microtubule plus-end dynamics [J]. Nature cell biology, 2023, 25(1): 79-91.
[158] MEIER S M, FARCAS A M, KUMAR A, et al. Multivalency ensures persistence of a +TIP body at specialized microtubule ends [J]. Nature cell biology, 2023, 25(1): 56-67.
[159] YU H, XING H, HAN W, et al. MicroRNA-409-5p is upregulated in breast cancer and its downregulation inhibits cancer development through downstream target of RSU1 [J]. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2017, 39(5): 1010428317701647.
[160] KUMAR S A, KRAKOW J S. Studies on the product binding sites of the Azotobacter vinelandii ribonucleic acid polymerase [J]. The Journal of biological chemistry, 1975, 250(8): 2878-2884.
[161] VICENTE J J, WORDEMAN L. The quantification and regulation of microtubule dynamics in the mitotic spindle [J]. Current opinion in cell biology, 2019, 60(36-43.
[162] AKHMANOVA A, KAPITEIN L C. Mechanisms of microtubule organization in differentiated animal cells [J]. Nature reviews. Molecular cell biology, 2022, 23(8): 541-558.
[163] GARCIN C, STRAUBE A. Microtubules in cell migration [J]. Essays in biochemistry, 2019, 63(5): 509-520.
[164] AKHMANOVA A, STEINMETZ M O. Control of microtubule organization and dynamics: two ends in the limelight [J]. Nature reviews. Molecular cell biology, 2015, 16(12): 711-726.
[165] NOORDSTRA I, AKHMANOVA A. Linking cortical microtubule attachment and exocytosis [J]. F1000Research, 2017, 6(469.
[166] LAWRENCE E J, ARPAG G, NORRIS S R, et al. Human CLASP2 specifically regulates microtubule catastrophe and rescue [J]. Molecular biology of the cell, 2018, 29(10): 1168-1177.
[167] AHER A, RAI D, SCHAEDEL L, et al. CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation [J]. Current biology : CB, 2020, 30(11): 2175-2183.e2176.
[168] SALA K, CORBETTA A, MINICI C, et al. The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase [J]. Scientific reports, 2019, 9(1): 13530.
[169] MCDONALD N A, FETTER R D, SHEN K. Assembly of synaptic active zones requires phase separation of scaffold molecules [J]. Nature, 2020, 588(7838): 454-458.
[170] LIU Z, YANG Y, GU A, et al. Par complex cluster formation mediated by phase separation [J]. Nature communications, 2020, 11(1): 2266.
[171] LEVONE B R, LENZKEN S C, ANTONACI M, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation [J]. The Journal of cell biology, 2021, 220(5):
[172] JIJUMON A S, BODAKUNTLA S, GENOVA M, et al. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours [J]. Nature cell biology, 2022, 24(2): 253-267.
[173] SANDERS D W, KEDERSHA N, LEE D S W, et al. Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization [J]. Cell, 2020, 181(2): 306-324.e328.
[174] WU X, GANZELLA M, ZHOU J, et al. Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates [J]. Molecular cell, 2021, 81(1): 13-24.e17.
[175] PARK D, WU Y, WANG X, et al. Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates [J]. Nature communications, 2023, 14(1): 455.
[176] KUMAR P, LYLE K S, GIERKE S, et al. GSK3beta phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment [J]. The Journal of cell biology, 2009, 184(6): 895-908.
[177] WATANABE T, NORITAKE J, KAKENO M, et al. Phosphorylation of CLASP2 by GSK-3beta regulates its interaction with IQGAP1, EB1 and microtubules [J]. Journal of cell science, 2009, 122(Pt 16): 2969-2979.
[178] KAMAGATA K, IWAKI N, HAZRA M K, et al. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets [J]. Scientific reports, 2021, 11(1): 19323.
[179] JO Y, JANG J, SONG D, et al. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates [J]. Chemical science, 2022, 13(2): 522-530.
[180] ETIENNE-MANNEVILLE S, HALL A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity [J]. Nature, 2003, 421(6924): 753-756.
修改评论