中文版 | English
题名

黏着斑相关蛋白Rsu1及CLASP2动态调控细胞骨架的分子机制研究

其他题名
MECHANISTIC STUDY OF FOCAL ADHESION ASSOCIATED PROTEINS RSU1 AND CLASP2 IN DYNAMIC REGULATION OF CYTOSKELETONS
姓名
姓名拼音
LIN Leishu
学号
11930511
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
魏志毅
导师单位
神经生物学系
论文答辩日期
2024-05-06
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

黏着斑是连接细胞骨架与细胞外基质的重要结构,对于细胞的粘附和迁移等过程至关重要。黏着斑结构具有高度动态性。在细胞迁移过程中,黏着斑经历形成、成熟、解聚和再形成的周转过程,以调控细胞的迁移方向和速度。黏着斑周围的微丝和微管在促进黏着斑周转过程中发挥着重要的作用。因此,细胞骨架的动态调控对于黏着斑的动态至关重要。黏着斑相关蛋白包含黏着斑核心蛋白和黏着斑周边蛋白,这些蛋白一起构成庞大的黏着斑网络,对黏着斑的组装、成熟和解聚的过程,以及黏着斑周围细胞骨架的调控过程至关重要。Rsu1是黏着斑核心蛋白之一,通过与PINCH1的相互作用定位于黏着斑上。Rsu1PINCH1可发挥协同作用,调控黏着斑的动态结构和应力纤维的形成。另一方面,黏着斑周边蛋白ELKSLL5β定位于黏着斑周围,可与微管末端追踪蛋白CLASP相互作用,进而调控微管在黏着斑处的靶向。然而,这些蛋白在黏着斑周围细胞骨架调控中具体的分子机制仍不清楚。本论文第一部分中,为了研究黏着斑核心蛋白Rsu1PINCH1调控黏着斑动态,以及应力纤维形成的分子机制,利用蛋白质相互作用实验,确定了Rsu1PINCH1具体的结合位置,并进一步获得了该复合物的晶体结构。通过结构分析,发现PINCH1Rsu1的结合表面与微丝的结合表面相互重叠。因此,推测Rsu1可能通过结合PINCH1,破坏PINCH1与微丝的结合,进而抑制IPP介导的对微丝捆绑成束的功能。通过体外的微丝捆绑实验以及细胞实验,证明了Rsu1PINCH1的相互作用能够抑制IPP介导的微丝捆绑,从而影响黏着斑的动态与应力纤维的组装。此外,发现了细胞内适量的Rsu1有助于IPP复合物的稳定,而帮助黏着斑附近微丝的捆绑。最后探讨了不同细胞类型中Rsu1对细胞迁移的功能,这些功能可能与Rsu1的相对表达水平紧密相关。综上,过量的Rsu1破坏了PINCH1与微丝的结合,从而抑制黏着斑周围微丝的捆绑作用。与此相反,适量的Rsu1有利于IPP复合物的稳定,从而促进微丝的捆绑。Rsu1的这种双重的功能使之能够调控黏着斑的动态以及应力纤维的形成,从而调控细胞的迁移。本文第二部分中,为了研究黏着斑周边蛋白ELKSLL5βCLASP调控微管正末端靶向黏着斑的分子机制,通过生化实验确认了CLASP2/CLIP170CLASP2/LL5β以及ELKS2/LL5β之间的具体结合位置,并成功获得了这些复合物的晶体结构。通过结构分析,结合蛋白相互作用实验,设计了突变以打破这些蛋白质之间的结合。在细胞内,发现CLIP170以及ELKS1能够发生液-液相分离而形成凝聚体,并且将CLASP2招募到其中。有趣的是,CLASP2能够引起CLIP170以及ELKS1凝聚体发生稳定的接触,从而帮助微管靶向至黏着斑。此外,发现CLASP2的磷酸化调节CLIP170凝聚体与ELKS1凝聚体的分离,从而使微管末端离开黏着斑。综上,CLASP2通过调控凝聚体之间的相互作用,调控了微管正末端与黏着斑的接触与分离。通过以上两部分的研究,利用了生化实验、结构分析以及细胞实验,阐释了Rsu1CLASP2等蛋白调控黏着斑周围细胞骨架的分子机理,为进一步深入理解黏着斑及其周围的细胞骨架的动态调控提供了新的思路和方向。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-07
参考文献列表

[1] GEIGER B, SPATZ J P, BERSHADSKY A D. Environmental sensing through focal adhesions [J]. Nature reviews. Molecular cell biology, 2009, 10(1): 21-33.
[2] GEIGER B, YAMADA K M. Molecular architecture and function of matrix adhesions [J]. Cold Spring Harbor perspectives in biology, 2011, 3(5):
[3] WEHRLE-HALLER B. Structure and function of focal adhesions [J]. Current opinion in cell biology, 2012, 24(1): 116-124.
[4] GUNAWAN F, GENTILE A, FUKUDA R, et al. Focal adhesions are essential to drive zebrafish heart valve morphogenesis [J]. The Journal of cell biology, 2019, 218(3): 1039-1054.
[5] KERSTEIN P C, PATEL K M, GOMEZ T M. Calpain-Mediated Proteolysis of Talin and FAK Regulates Adhesion Dynamics Necessary for Axon Guidance [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2017, 37(6): 1568-1580.
[6] YUE J, ZHANG Y, LIANG W G, et al. In vivo epidermal migration requires focal adhesion targeting of ACF7 [J]. Nature communications, 2016, 7(11692.
[7] ZHANG P, CAO X, GUAN M, et al. CPNE8 Promotes Gastric Cancer Metastasis by Modulating Focal Adhesion Pathway and Tumor Microenvironment [J]. International journal of biological sciences, 2022, 18(13): 4932-4949.
[8] SAMAREL A M. Focal adhesion signaling in heart failure [J]. Pflugers Archiv : European journal of physiology, 2014, 466(6): 1101-1111.
[9] CHEN S, HE T, ZHONG Y, et al. Roles of focal adhesion proteins in skeleton and diseases [J]. Acta pharmaceutica Sinica. B, 2023, 13(3): 998-1013.
[10] LEGERSTEE K, HOUTSMULLER A B. A Layered View on Focal Adhesions [J]. Biology, 2021, 10(11):
[11] KIM D H, WIRTZ D. Focal adhesion size uniquely predicts cell migration [J]. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2013, 27(4): 1351-1361.
[12] KANCHANAWONG P, SHTENGEL G, PASAPERA A M, et al. Nanoscale architecture of integrin-based cell adhesions [J]. Nature, 2010, 468(7323): 580-584.
[13] ABERCROMBIE M, HEAYSMAN J E, PEGRUM S M. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella [J]. Experimental cell research, 1971, 67(2): 359-367.
[14] LAZARIDES E, WEBER K. Actin antibody: the specific visualization of actin filaments in non-muscle cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(6): 2268-2272.
[15] GEIGER B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells [J]. Cell, 1979, 18(1): 193-205.
[16] COLLIER N C, WANG K. Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s) [J]. The Journal of biological chemistry, 1982, 257(12): 6937-6943.
[17] HORWITZ A, DUGGAN K, BUCK C, et al. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage [J]. Nature, 1986, 320(6062): 531-533.
[18] MITRA S K, HANSON D A, SCHLAEPFER D D. Focal adhesion kinase: in command and control of cell motility [J]. Nature reviews. Molecular cell biology, 2005, 6(1): 56-68.
[19] BROWN M C, TURNER C E. Paxillin: adapting to change [J]. Physiological reviews, 2004, 84(4): 1315-1339.
[20] GALBRAITH C G, YAMADA K M, SHEETZ M P. The relationship between force and focal complex development [J]. The Journal of cell biology, 2002, 159(4): 695-705.
[21] HU K, JI L, APPLEGATE K T, et al. Differential transmission of actin motion within focal adhesions [J]. Science (New York, N.Y.), 2007, 315(5808): 111-115.
[22] BROWN C M, HEBERT B, KOLIN D L, et al. Probing the integrin-actin linkage using high-resolution protein velocity mapping [J]. Journal of cell science, 2006, 119(Pt 24): 5204-5214.
[23] JIANG G, GIANNONE G, CRITCHLEY D R, et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin [J]. Nature, 2003, 424(6946): 334-337.
[24] YOSHIGI M, HOFFMAN L M, JENSEN C C, et al. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement [J]. The Journal of cell biology, 2005, 171(2): 209-215.
[25] OTEY C A, CARPEN O. Alpha-actinin revisited: a fresh look at an old player [J]. Cell motility and the cytoskeleton, 2004, 58(2): 104-111.
[26] LIU J, WANG Y, GOH W I, et al. Talin determines the nanoscale architecture of focal adhesions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): E4864-4873.
[27] PASZEK M J, DUFORT C C, RUBASHKIN M G, et al. Scanning angle interference microscopy reveals cell dynamics at the nanoscale [J]. Nature methods, 2012, 9(8): 825-827.
[28] STUBB A, GUZMáN C, NäRVä E, et al. Superresolution architecture of cornerstone focal adhesions in human pluripotent stem cells [J]. Nature communications, 2019, 10(1): 4756.
[29] CASE L B, BAIRD M A, SHTENGEL G, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions [J]. Nature cell biology, 2015, 17(7): 880-892.
[30] ORRé T, JOLY A, KARATAS Z, et al. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions [J]. Nature communications, 2021, 12(1): 3104.
[31] MAVRAKIS M, JUANES M A. The compass to follow: Focal adhesion turnover [J]. Current opinion in cell biology, 2023, 80(102152.
[32] CALDERWOOD D A, TAI V, DI PAOLO G, et al. Competition for talin results in trans-dominant inhibition of integrin activation [J]. The Journal of biological chemistry, 2004, 279(28): 28889-28895.
[33] CHINTHALAPUDI K, RANGARAJAN E S, IZARD T. The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10339-10344.
[34] MITRA S K, SCHLAEPFER D D. Integrin-regulated FAK-Src signaling in normal and cancer cells [J]. Current opinion in cell biology, 2006, 18(5): 516-523.
[35] GARDEL M L, SCHNEIDER I C, ARATYN-SCHAUS Y, et al. Mechanical integration of actin and adhesion dynamics in cell migration [J]. Annual review of cell and developmental biology, 2010, 26(315-333.
[36] RIDLEY A J, SCHWARTZ M A, BURRIDGE K, et al. Cell migration: integrating signals from front to back [J]. Science (New York, N.Y.), 2003, 302(5651): 1704-1709.
[37] SENGUPTA S, PARENT C A, BEAR J E. The principles of directed cell migration [J]. Nature reviews. Molecular cell biology, 2021, 22(8): 529-547.
[38] HELFMAN D M, LEVY E T, BERTHIER C, et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions [J]. Molecular biology of the cell, 1999, 10(10): 3097-3112.
[39] WISEMAN P W, BROWN C M, WEBB D J, et al. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy [J]. Journal of cell science, 2004, 117(Pt 23): 5521-5534.
[40] CHOI C K, VICENTE-MANZANARES M, ZARENO J, et al. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner [J]. Nature cell biology, 2008, 10(9): 1039-1050.
[41] BERSHADSKY A D, BALABAN N Q, GEIGER B. Adhesion-dependent cell mechanosensitivity [J]. Annual review of cell and developmental biology, 2003, 19(677-695.
[42] DEL RIO A, PEREZ-JIMENEZ R, LIU R, et al. Stretching single talin rod molecules activates vinculin binding [J]. Science (New York, N.Y.), 2009, 323(5914): 638-641.
[43] ROTTY J D, BEAR J E. Competition and collaboration between different actin assembly pathways allows for homeostatic control of the actin cytoskeleton [J]. Bioarchitecture, 2014, 5(1-2): 27-34.
[44] SEPT D, XU J, POLLARD T D, et al. Annealing accounts for the length of actin filaments formed by spontaneous polymerization [J]. Biophysical journal, 1999, 77(6): 2911-2919.
[45] BLANCHOIN L, BOUJEMAA-PATERSKI R, SYKES C, et al. Actin dynamics, architecture, and mechanics in cell motility [J]. Physiological reviews, 2014, 94(1): 235-263.
[46] MCINTOSH J R. Mitosis [J]. Cold Spring Harbor perspectives in biology, 2016, 8(9):
[47] VISWANADHA R, SALE W S, PORTER M E. Ciliary Motility: Regulation of Axonemal Dynein Motors [J]. Cold Spring Harbor perspectives in biology, 2017, 9(8):
[48] AKHMANOVA A, STEINMETZ M O. Microtubule +TIPs at a glance [J]. Journal of cell science, 2010, 123(Pt 20): 3415-3419.
[49] MIESCH J, WIMBISH R T, VELLUZ M C, et al. Phase separation of +TIP networks regulates microtubule dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(35): e2301457120.
[50] IVASHKO-PACHIMA Y, GOZES I. Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy [J]. Progress in molecular biology and translational science, 2021, 177(65-90.
[51] RAMEY V H, WANG H W, NAKAJIMA Y, et al. The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule [J]. Molecular biology of the cell, 2011, 22(4): 457-466.
[52] KUMAR A, MEIER S M, FARCAS A M, et al. Structure and regulation of the microtubule plus-end tracking protein Kar9 [J]. Structure (London, England : 1993), 2021, 29(11): 1266-1278.e1264.
[53] SMALL J V, ROTTNER K, KAVERINA I, et al. Assembling an actin cytoskeleton for cell attachment and movement [J]. Biochimica et biophysica acta, 1998, 1404(3): 271-281.
[54] HOTULAINEN P, LAPPALAINEN P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells [J]. The Journal of cell biology, 2006, 173(3): 383-394.
[55] BURRIDGE K, GUILLUY C. Focal adhesions, stress fibers and mechanical tension [J]. Experimental cell research, 2016, 343(1): 14-20.
[56] CRAMER L P, SIEBERT M, MITCHISON T J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force [J]. The Journal of cell biology, 1997, 136(6): 1287-1305.
[57] ADAMS J C. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: implications for the anti-adhesive activities of thrombospondin-1 [J]. Journal of cell science, 1995, 108 ( Pt 5)(1977-1990.
[58] WANG K, ASH J F, SINGER S J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(11): 4483-4486.
[59] LEHTIMäKI J I, RAJAKYLä E K, TOJKANDER S, et al. Generation of stress fibers through myosin-driven reorganization of the actin cortex [J]. eLife, 2021, 10(
[60] MIYAMOTO S, TERAMOTO H, COSO O A, et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules [J]. The Journal of cell biology, 1995, 131(3): 791-805.
[61] TADOKORO S, SHATTIL S J, ETO K, et al. Talin binding to integrin beta tails: a final common step in integrin activation [J]. Science (New York, N.Y.), 2003, 302(5642): 103-106.
[62] MOSER M, LEGATE K R, ZENT R, et al. The tail of integrins, talin, and kindlins [J]. Science (New York, N.Y.), 2009, 324(5929): 895-899.
[63] OWEN L M, BAX N A, WEIS W I, et al. The C-terminal actin-binding domain of talin forms an asymmetric catch bond with F-actin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2109329119.
[64] BACHMANN M, SU B, RAHIKAINEN R, et al. ConFERMing the role of talin in integrin activation and mechanosignaling [J]. Journal of cell science, 2023, 136(8):
[65] ZHAO Y, LYKOV N, TZENG C. Talin‑1 interaction network in cellular mechanotransduction (Review) [J]. International journal of molecular medicine, 2022, 49(5):
[66] ZHU L, PLOW E F, QIN J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view [J]. Protein science : a publication of the Protein Society, 2021, 30(3): 531-542.
[67] YAO M, GOULT B T, CHEN H, et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation [J]. Scientific reports, 2014, 4(4610.
[68] LAWSON C, LIM S T, URYU S, et al. FAK promotes recruitment of talin to nascent adhesions to control cell motility [J]. The Journal of cell biology, 2012, 196(2): 223-232.
[69] SUN Z, TSENG H Y, TAN S, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation [J]. Nature cell biology, 2016, 18(9): 941-953.
[70] KAVERINA I, ROTTNER K, SMALL J V. Targeting, capture, and stabilization of microtubules at early focal adhesions [J]. The Journal of cell biology, 1998, 142(1): 181-190.
[71] EZRATTY E J, PARTRIDGE M A, GUNDERSEN G G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase [J]. Nature cell biology, 2005, 7(6): 581-590.
[72] THEISEN U, STRAUBE E, STRAUBE A. Directional persistence of migrating cells requires Kif1C-mediated stabilization of trailing adhesions [J]. Developmental cell, 2012, 23(6): 1153-1166.
[73] CARLUCCI A, GEDRESSI C, LIGNITTO L, et al. Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration [J]. The Journal of biological chemistry, 2008, 283(16): 10919-10929.
[74] SIDDIQUI N, ZWETSLOOT A J, BACHMANN A, et al. PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport [J]. Nature communications, 2019, 10(1): 2693.
[75] ESKOVA A, KNAPP B, MATELSKA D, et al. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin [J]. Journal of cell science, 2014, 127(Pt 11): 2433-2447.
[76] KAVERINA I N, MININ A A, GYOEVA F K, et al. Kinesin-associated transport is involved in the regulation of cell adhesion [J]. Cell biology international, 1997, 21(4): 229-236.
[77] STEHBENS S J, PASZEK M, PEMBLE H, et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover [J]. Nature cell biology, 2014, 16(6): 561-573.
[78] MACPHERSON I R, RAINERO E, MITCHELL L E, et al. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer [J]. Journal of cell science, 2014, 127(Pt 18): 3893-3901.
[79] FRITTOLI E, PALAMIDESSI A, MARIGHETTI P, et al. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination [J]. The Journal of cell biology, 2014, 206(2): 307-328.
[80] THOMPSON P M, TOLBERT C E, SHEN K, et al. Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties [J]. Structure (London, England : 1993), 2014, 22(5): 697-706.
[81] JANSSEN M E, KIM E, LIU H, et al. Three-dimensional structure of vinculin bound to actin filaments [J]. Molecular cell, 2006, 21(2): 271-281.
[82] YE F, PETRICH B G, ANEKAL P, et al. The mechanism of kindlin-mediated activation of integrin αIIbβ3 [J]. Current biology : CB, 2013, 23(22): 2288-2295.
[83] PERNIER J, CARDOSO DOS SANTOS M, SOUISSI M, et al. Talin and kindlin cooperate to control the density of integrin clusters [J]. Journal of cell science, 2023, 136(8):
[84] LI B, TRUEB B. Analysis of the alpha-actinin/zyxin interaction [J]. The Journal of biological chemistry, 2001, 276(36): 33328-33335.
[85] BRINDLE N P, HOLT M R, DAVIES J E, et al. The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin [J]. The Biochemical journal, 1996, 318 ( Pt 3)(Pt 3): 753-757.
[86] DREES B, FRIEDERICH E, FRADELIZI J, et al. Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins [J]. The Journal of biological chemistry, 2000, 275(29): 22503-22511.
[87] FERRON F, REBOWSKI G, LEE S H, et al. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP [J]. The EMBO journal, 2007, 26(21): 4597-4606.
[88] ROCA-CUSACHS P, DEL RIO A, PUKLIN-FAUCHER E, et al. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): E1361-1370.
[89] LEGATE K R, MONTAñEZ E, KUDLACEK O, et al. ILK, PINCH and parvin: the tIPP of integrin signalling [J]. Nature reviews. Molecular cell biology, 2006, 7(1): 20-31.
[90] FUKUDA K, GUPTA S, CHEN K, et al. The pseudoactive site of ILK is essential for its binding to alpha-Parvin and localization to focal adhesions [J]. Molecular cell, 2009, 36(5): 819-830.
[91] VELYVIS A, YANG Y, WU C, et al. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain [J]. The Journal of biological chemistry, 2001, 276(7): 4932-4939.
[92] FUKUDA K, KNIGHT J D, PISZCZEK G, et al. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase [J]. The Journal of biological chemistry, 2011, 286(24): 21886-21895.
[93] QIN J, WU C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling [J]. Current opinion in cell biology, 2012, 24(5): 607-613.
[94] VAYNBERG J, FUKUDA K, LU F, et al. Non-catalytic signaling by pseudokinase ILK for regulating cell adhesion [J]. Nature communications, 2018, 9(1): 4465.
[95] HANNIGAN G E, LEUNG-HAGESTEIJN C, FITZ-GIBBON L, et al. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase [J]. Nature, 1996, 379(6560): 91-96.
[96] PASQUET J M, NOURY M, NURDEN A T. Evidence that the platelet integrin alphaIIb beta3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway [J]. Thrombosis and haemostasis, 2002, 88(1): 115-122.
[97] NIKOLOPOULOS S N, TURNER C E. Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions [J]. The Journal of biological chemistry, 2001, 276(26): 23499-23505.
[98] NIKOLOPOULOS S N, TURNER C E. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion [J]. The Journal of cell biology, 2000, 151(7): 1435-1448.
[99] TURNER C E, GLENNEY J R, JR., BURRIDGE K. Paxillin: a new vinculin-binding protein present in focal adhesions [J]. The Journal of cell biology, 1990, 111(3): 1059-1068.
[100] DOUGHERTY G W, CHOPP T, QI S M, et al. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions [J]. Experimental cell research, 2005, 306(1): 168-179.
[101] SIMPSON K J, SELFORS L M, BUI J, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach [J]. Nature cell biology, 2008, 10(9): 1027-1038.
[102] WINOGRAD-KATZ S E, ITZKOVITZ S, KAM Z, et al. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown [J]. The Journal of cell biology, 2009, 186(3): 423-436.
[103] DOUGHERTY G W, JOSE C, GIMONA M, et al. The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells [J]. European journal of cell biology, 2008, 87(8-9): 721-734.
[104] KADRMAS J L, SMITH M A, CLARK K A, et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1 [J]. The Journal of cell biology, 2004, 167(6): 1019-1024.
[105] MONTANEZ E, KARAKöSE E, TISCHNER D, et al. PINCH-1 promotes Bcl-2-dependent survival signalling and inhibits JNK-mediated apoptosis in the primitive endoderm [J]. Journal of cell science, 2012, 125(Pt 21): 5233-5240.
[106] GONZALEZ-NIEVES R, DESANTIS A I, CUTLER M L. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms [J]. Journal of cell communication and signaling, 2013, 7(4): 279-293.
[107] KIM Y C, GONZALEZ-NIEVES R, CUTLER M L. Rsu1 contributes to cell adhesion and spreading in MCF10A cells via effects on P38 map kinase signaling [J]. Cell adhesion & migration, 2015, 9(3): 227-232.
[108] CASTRO-GINER F, ACETO N. Tracking cancer progression: from circulating tumor cells to metastasis [J]. Genome medicine, 2020, 12(1): 31.
[109] FAN T M, ROBERTS R D, LIZARDO M M. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression [J]. Frontiers in oncology, 2020, 10(13.
[110] VASATURO F, DOUGHERTY G W, CUTLER M L. Ectopic expression of Rsu-1 results in elevation of p21CIP and inhibits anchorage-independent growth of MCF7 breast cancer cells [J]. Breast cancer research and treatment, 2000, 61(1): 69-78.
[111] GIOTOPOULOU N, VALIAKOU V, PAPANIKOLAOU V, et al. Ras suppressor-1 promotes apoptosis in breast cancer cells by inhibiting PINCH-1 and activating p53-upregulated-modulator of apoptosis (PUMA); verification from metastatic breast cancer human samples [J]. Clinical & experimental metastasis, 2015, 32(3): 255-265.
[112] GKRETSI V, BOGDANOS D P. Elimination of Ras Suppressor-1 from hepatocellular carcinoma cells hinders their in vitro metastatic properties [J]. Anticancer research, 2015, 35(3): 1509-1512.
[113] DONTHAMSETTY S, BHAVE V S, MARS W M, et al. Role of PINCH and its partner tumor suppressor Rsu-1 in regulating liver size and tumorigenesis [J]. PloS one, 2013, 8(9): e74625.
[114] LOUCA M, STYLIANOU A, MINIA A, et al. Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation [J]. Scientific reports, 2019, 9(1): 7782.
[115] BARBAZáN J, ALONSO-ALCONADA L, MUINELO-ROMAY L, et al. Molecular characterization of circulating tumor cells in human metastatic colorectal cancer [J]. PloS one, 2012, 7(7): e40476.
[116] LANSBERGEN G, GRIGORIEV I, MIMORI-KIYOSUE Y, et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta [J]. Developmental cell, 2006, 11(1): 21-32.
[117] HORTON E R, BYRON A, ASKARI J A, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly [J]. Nature cell biology, 2015, 17(12): 1577-1587.
[118] PARADŽIK M, HUMPHRIES J D, STOJANOVIĆ N, et al. KANK2 Links αVβ5 Focal Adhesions to Microtubules and Regulates Sensitivity to Microtubule Poisons and Cell Migration [J]. Frontiers in cell and developmental biology, 2020, 8(125.
[119] XU Y, GUO C, PAN W, et al. Nephrotic-syndrome-associated mutation of KANK2 induces pathologic binding competition with physiological interactor KIF21A [J]. The Journal of biological chemistry, 2021, 297(2): 100958.
[120] TADIJAN A, SAMARŽIJA I, HUMPHRIES J D, et al. KANK family proteins in cancer [J]. The international journal of biochemistry & cell biology, 2021, 131(105903.
[121] BOUCHET B P, GOUGH R E, AMMON Y C, et al. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions [J]. eLife, 2016, 5(
[122] CHEN N P, SUN Z, FäSSLER R. The Kank family proteins in adhesion dynamics [J]. Current opinion in cell biology, 2018, 54(130-136.
[123] ASTRO V, CHIARETTI S, MAGISTRATI E, et al. Liprin-α1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration [J]. Journal of cell science, 2014, 127(Pt 17): 3862-3876.
[124] ASTRO V, TONOLI D, CHIARETTI S, et al. Liprin-α1 and ERC1 control cell edge dynamics by promoting focal adhesion turnover [J]. Scientific reports, 2016, 6(33653.
[125] DE CURTIS I. Function of liprins in cell motility [J]. Experimental cell research, 2011, 317(1): 1-8.
[126] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins [J]. Cell reports, 2021, 36(4): 109476.
[127] HELD R G, LIU C, KAESER P S. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains [J]. eLife, 2016, 5(
[128] JIN G, LIN L, LI K, et al. Structural basis of ELKS/Rab6B interaction and its role in vesicle capturing enhanced by liquid-liquid phase separation [J]. The Journal of biological chemistry, 2023, 299(6): 104808.
[129] RAMELLA M, RIBOLLA L M, DE CURTIS I. Liquid-Liquid Phase Separation at the Plasma Membrane-Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function [J]. Journal of molecular biology, 2022, 434(1): 167228.
[130] RIBOLLA L M, SALA K, TONOLI D, et al. Interfering with the ERC1-LL5β interaction disrupts plasma membrane-Associated platforms and affects tumor cell motility [J]. PloS one, 2023, 18(7): e0287670.
[131] GRIGORIEV I, YU K L, MARTINEZ-SANCHEZ E, et al. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers [J]. Current biology : CB, 2011, 21(11): 967-974.
[132] RAJAN S, TERMAN J R, REISLER E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics [J]. Frontiers in cell and developmental biology, 2023, 11(1124202.
[133] JIA X, LIN L, XU S, et al. Crystal Structure of the SH3 Domain of ASAP1 in Complex with the Proline Rich Motif (PRM) of MICAL1 Reveals a Unique SH3/PRM Interaction Mode [J]. International journal of molecular sciences, 2023, 24(2):
[134] AKHMANOVA A, HOOGENRAAD C C, DRABEK K, et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts [J]. Cell, 2001, 104(6): 923-935.
[135] SLEP K C, VALE R D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1 [J]. Molecular cell, 2007, 27(6): 976-991.
[136] LAWRENCE E J, ZANIC M, RICE L M. CLASPs at a glance [J]. Journal of cell science, 2020, 133(8):
[137] MIMORI-KIYOSUE Y, GRIGORIEV I, LANSBERGEN G, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex [J]. The Journal of cell biology, 2005, 168(1): 141-153.
[138] MAFFINI S, MAIA A R, MANNING A L, et al. Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux [J]. Current biology : CB, 2009, 19(18): 1566-1572.
[139] DRABEK K, GUTIéRREZ L, VERMEIJ M, et al. The microtubule plus-end tracking protein CLASP2 is required for hematopoiesis and hematopoietic stem cell maintenance [J]. Cell reports, 2012, 2(4): 781-788.
[140] MILLER P M, FOLKMANN A W, MAIA A R, et al. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells [J]. Nature cell biology, 2009, 11(9): 1069-1080.
[141] ZHU B, QI L, LIU S, et al. CLASP2 is involved in the EMT and early progression after transurethral resection of the bladder tumor [J]. BMC cancer, 2017, 17(1): 105.
[142] BRANGWYNNE C P, ECKMANN C R, COURSON D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation [J]. Science (New York, N.Y.), 2009, 324(5935): 1729-1732.
[143] MEHTA S, ZHANG J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer [J]. Nature reviews. Cancer, 2022, 22(4): 239-252.
[144] AGUDO-CANALEJO J, SCHULTZ S W, CHINO H, et al. Wetting regulates autophagy of phase-separated compartments and the cytosol [J]. Nature, 2021, 591(7848): 142-146.
[145] COURCHAINE E M, BARENTINE A E S, STRAUBE K, et al. DMA-tudor interaction modules control the specificity of in vivo condensates [J]. Cell, 2021, 184(14): 3612-3625.e3617.
[146] QIU H, WU X, MA X, et al. Short-distance vesicle transport via phase separation [J]. Cell, 2024, DOI: 10.1016/j.cell.2024.03.003
[147] GUO Q, SHI X, WANG X. RNA and liquid-liquid phase separation [J]. Non-coding RNA research, 2021, 6(2): 92-99.
[148] JING H, BAI Q, LIN Y, et al. Fission and Internal Fusion of Protocell with Membraneless "Organelles" Formed by Liquid-Liquid Phase Separation [J]. Langmuir : the ACS journal of surfaces and colloids, 2020, 36(27): 8017-8026.
[149] PENG P H, HSU K W, WU K J. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology [J]. American journal of cancer research, 2021, 11(8): 3766-3776.
[150] SU Q, MEHTA S, ZHANG J. Liquid-liquid phase separation: Orchestrating cell signaling through time and space [J]. Molecular cell, 2021, 81(20): 4137-4146.
[151] CASE L B, DE PASQUALE M, HENRY L, et al. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation [J]. eLife, 2022, 11(
[152] ZHU J, ZHOU Q, XIA Y, et al. GIT/PIX Condensates Are Modular and Ideal for Distinct Compartmentalized Cell Signaling [J]. Molecular cell, 2020, 79(5): 782-796.e786.
[153] WANG Y, ZHANG C, YANG W, et al. LIMD1 phase separation contributes to cellular mechanics and durotaxis by regulating focal adhesion dynamics in response to force [J]. Developmental cell, 2021, 56(9): 1313-1325.e1317.
[154] GUO K, ZHANG J, HUANG P, et al. KANK1 shapes focal adhesions by orchestrating protein binding, mechanical force sensing, and phase separation [J]. Cell reports, 2023, 42(11): 113321.
[155] LIANG M, JIN G, XIE X, et al. Oligomerized liprin-α promotes phase separation of ELKS for compartmentalization of presynaptic active zone proteins [J]. Cell reports, 2021, 34(12): 108901.
[156] WU Y O, BRYANT A T, NELSON N T, et al. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate [J]. PloS one, 2021, 16(12): e0260401.
[157] SONG X, YANG F, YANG T, et al. Phase separation of EB1 guides microtubule plus-end dynamics [J]. Nature cell biology, 2023, 25(1): 79-91.
[158] MEIER S M, FARCAS A M, KUMAR A, et al. Multivalency ensures persistence of a +TIP body at specialized microtubule ends [J]. Nature cell biology, 2023, 25(1): 56-67.
[159] YU H, XING H, HAN W, et al. MicroRNA-409-5p is upregulated in breast cancer and its downregulation inhibits cancer development through downstream target of RSU1 [J]. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2017, 39(5): 1010428317701647.
[160] KUMAR S A, KRAKOW J S. Studies on the product binding sites of the Azotobacter vinelandii ribonucleic acid polymerase [J]. The Journal of biological chemistry, 1975, 250(8): 2878-2884.
[161] VICENTE J J, WORDEMAN L. The quantification and regulation of microtubule dynamics in the mitotic spindle [J]. Current opinion in cell biology, 2019, 60(36-43.
[162] AKHMANOVA A, KAPITEIN L C. Mechanisms of microtubule organization in differentiated animal cells [J]. Nature reviews. Molecular cell biology, 2022, 23(8): 541-558.
[163] GARCIN C, STRAUBE A. Microtubules in cell migration [J]. Essays in biochemistry, 2019, 63(5): 509-520.
[164] AKHMANOVA A, STEINMETZ M O. Control of microtubule organization and dynamics: two ends in the limelight [J]. Nature reviews. Molecular cell biology, 2015, 16(12): 711-726.
[165] NOORDSTRA I, AKHMANOVA A. Linking cortical microtubule attachment and exocytosis [J]. F1000Research, 2017, 6(469.
[166] LAWRENCE E J, ARPAG G, NORRIS S R, et al. Human CLASP2 specifically regulates microtubule catastrophe and rescue [J]. Molecular biology of the cell, 2018, 29(10): 1168-1177.
[167] AHER A, RAI D, SCHAEDEL L, et al. CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation [J]. Current biology : CB, 2020, 30(11): 2175-2183.e2176.
[168] SALA K, CORBETTA A, MINICI C, et al. The ERC1 scaffold protein implicated in cell motility drives the assembly of a liquid phase [J]. Scientific reports, 2019, 9(1): 13530.
[169] MCDONALD N A, FETTER R D, SHEN K. Assembly of synaptic active zones requires phase separation of scaffold molecules [J]. Nature, 2020, 588(7838): 454-458.
[170] LIU Z, YANG Y, GU A, et al. Par complex cluster formation mediated by phase separation [J]. Nature communications, 2020, 11(1): 2266.
[171] LEVONE B R, LENZKEN S C, ANTONACI M, et al. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation [J]. The Journal of cell biology, 2021, 220(5):
[172] JIJUMON A S, BODAKUNTLA S, GENOVA M, et al. Lysate-based pipeline to characterize microtubule-associated proteins uncovers unique microtubule behaviours [J]. Nature cell biology, 2022, 24(2): 253-267.
[173] SANDERS D W, KEDERSHA N, LEE D S W, et al. Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization [J]. Cell, 2020, 181(2): 306-324.e328.
[174] WU X, GANZELLA M, ZHOU J, et al. Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates [J]. Molecular cell, 2021, 81(1): 13-24.e17.
[175] PARK D, WU Y, WANG X, et al. Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates [J]. Nature communications, 2023, 14(1): 455.
[176] KUMAR P, LYLE K S, GIERKE S, et al. GSK3beta phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment [J]. The Journal of cell biology, 2009, 184(6): 895-908.
[177] WATANABE T, NORITAKE J, KAKENO M, et al. Phosphorylation of CLASP2 by GSK-3beta regulates its interaction with IQGAP1, EB1 and microtubules [J]. Journal of cell science, 2009, 122(Pt 16): 2969-2979.
[178] KAMAGATA K, IWAKI N, HAZRA M K, et al. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets [J]. Scientific reports, 2021, 11(1): 19323.
[179] JO Y, JANG J, SONG D, et al. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates [J]. Chemical science, 2022, 13(2): 522-530.
[180] ETIENNE-MANNEVILLE S, HALL A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity [J]. Nature, 2003, 421(6924): 753-756.

所在学位评定分委会
生物学
国内图书分类号
Q28
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765692
专题南方科技大学
生命科学学院_生物系
推荐引用方式
GB/T 7714
林磊澍. 黏着斑相关蛋白Rsu1及CLASP2动态调控细胞骨架的分子机制研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930511-林磊澍-生物系.pdf(22131KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林磊澍]的文章
百度学术
百度学术中相似的文章
[林磊澍]的文章
必应学术
必应学术中相似的文章
[林磊澍]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。