中文版 | English
题名

复杂环境下自动驾驶车辆的运动规划研究

其他题名
RESEARCH ON MOTION PLANNING OF AUTOMATED VEHICLE IN COMPLEX ENVIRONMENT
姓名
姓名拼音
CHEN Ruishuang
学号
12031260
学位类型
博士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
杨再跃
导师单位
系统设计与智能制造学院
论文答辩日期
2024-05-08
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

作为工业与信息社会的代表性产物,汽车自诞生以来便极大地提高了交通的运转效率,而自动驾驶技术的出现,则为汽车工业带来了新的技术变革,并为现代智慧城市与智慧交通注入了新的动力。自动驾驶车辆是一个复杂的信息物理系统,其涵盖了多个技术模块与研究领域,而运动规划作为其核心功能之一,直接影响着车辆的行驶质量和效率。
对于不同的复杂道路环境,运动规划需要面对不同的问题形式和任务要求。在结构化的道路环境中,不同车辆存在着驾驶需求的竞争和冲突,这使得运动规划需有效地化解矛盾并提高驾驶的社会效益;在非结构化的道路环境中,复杂约束的耦合以及高度非线性使运动规划问题呈现出高维非凸非线性的特征,这使得如何提高问题的可解性与计算效率成为难点。基于此,本文在结构化与非结构化的不同道路环境中,分别针对单车道匝道汇车、多车道匝道汇车、单车辆避障、多车辆协同这四类典型场景下的运动规划问题展开研究,主要的研究工作如下:

针对结构化道路环境下的单车道匝道汇车问题,通过引入时间价值,构建了车辆包含行驶时间、能源消耗、驾驶舒适度等多项性能指标的经济效益函数。将可转移效用的双人合作博弈论与最优控制结合,通过威胁策略和旁支付平衡不同车辆间的收益并化解冲突,确定了兼顾总体与个体收益的汇车序列,并基于最优控制得到车辆的协同汇车轨迹,最终实现了总体收益最大且个体收益共赢的单车道匝道汇车运动规划算法。不同情形下的仿真实验与对比结果验证了所提出算法能够有效地实现无冲突的协同汇车,并能更好地提高整个交通系统的经济收益。

针对结构化道路环境下的多车道匝道汇车问题,通过控制区域划分将其解耦为主路变道问题与匝道汇车问题。结合多人合作博弈论与数值最优控制,基于焦点均衡与夏普利值提出了收益共赢的车道分配机制,构建了考虑完整运动学约束的协同变道模型,并引入先离线求解后在线查询的策略实时求解该问题。同时建立了优化时间的单车道汇车模型,并与提出的匝道汇车算法融合,进而实现了有效化解主路变道与匝道汇车冲突的多车道匝道汇车运动规划算法。不同情形下的仿真实验与对比结果表明,所提出算法能够在满足实时性的前提下,实现安全高效且社会收益较高的协同变道与汇车。
针对非结构化道路环境下的单车辆避障问题,基于交替方向乘子法将原始复杂问题拆分为两个分别仅包含运动学约束和避障约束的子问题,并基于可行域的几何性质,引入凸可行集算法将仅含避障约束的子问题进一步凸化为一系列的二次规划次子问题。将交替方向乘子法与凸可行集算法结合以弥补各自的短板,进而提出了约束解耦与凸化的单车辆避障运动规划算法,并证明了其收敛性。不同情形的下的仿真实验与对比结果表明,所提出算法仅依赖简单初始解便可求解更为复杂的问题,且在问题可解性与计算效率上具有显著的优势。
针对非结构化道路环境下的多车辆协同问题,通过引入辅助变量和基于一致性问题的交替方向乘子法将原始复杂问题分解为相互解耦且可并行计算的运动学子问题与避障子问题。对于运动学子问题,提出了先求解后整定时间的方法以消除时间耦合,进而将该子问题拆分为不同车辆间可并行求解的次子问题。对于避障子问题,基于副本变量将其也拆分为可并行求解的次子问题,并提出了改进的凸可行集算法与凸化引导策略,实现了对该次子问题的凸化热启动求解。不同问题间的并行迭代求解构建了高效的多车辆协同运动规划算法。不同情形下的仿真实验与对比结果表明,所提出的算法能在兼顾最优性的同时显著提高计算效率。
上述研究成果分别针对结构化环境下的单车道与多车道匝道汇车问题,以及非结构化环境下的单车辆避障与多车辆协同问题,基于博弈论、最优控制、分布式优化、非线性规划等方法,从不同角度提出了可行有效的运动规划算法,为自动驾驶车辆在复杂环境下的智能驾驶提供参考。本文最后对全文研究进行了总结并展望了未来的研究方向。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] DUARTE F, RATTI C. The Impact of Autonomous Vehicles on Cities: A Review[J/OL]. Journal of Urban Technology, 2018, 25(4): 3-18. DOI: 10.1080/10630732.2018.1493883.
[2] 百度地图. 2022 年度中国城市交通报告[EB/OL]. 2022
[2023-03-01]. https://jiaotong.baidu.com/cms/reports/traffic/2022/index.html.
[3] 冯国强, 李菁, 武卓尔, 等. 道路交通拥堵与城市雾霾污染的关系研究[J]. 中国人口·资源与环境, 2020, 30(3): 93-99.
[4] CRAMTON P, GEDDES R R, OCKENFELS A. Set road charges in real time to ease traffic[J/OL]. Nature, 2018, 560(7716): 23-25. DOI: 10.1038/d41586-018-05836-0.
[5] World Health Organization. Global status report on road safety 2018[M]. Geneva: World HealthOrganization, 2018: 4-10.
[6] 王珏. 汽车主动安全技术及其发展方向[J]. 时代汽车, 2017(3): 32-32.
[7] 孙振平. 自主驾驶汽车智能控制系统[D]. 长沙: 国防科学技术大学, 2004.
[8] BIMBRAW K. Autonomous cars: Past, present and future a review of the developments inthe last century, the present scenario and the expected future of autonomous vehicle technology[C]//2015 12th International Conference on Informatics in Control, Automation and Robotics(ICINCO): Vol. 1. IEEE, 2015: 191-198.
[9] 李柏. 复杂约束下自动驾驶车辆运动规划的计算最优控制方法研究[D]. 杭州: 浙江大学,2018.
[10] USECHE S A, HAN W, ZHAO J, et al. Driver behaviour and traffic accident involvementamong professional heavy semi-trailer truck drivers in China[J/OL]. Plos One, 2021, 16(12).DOI: 10.1371/journal.pone.0260217.
[11] GUSIKHIN O, FILEV D, RYCHTYCKYJ N. Intelligent vehicle systems: applications and newtrends[M]. Springer, 2008: 3-14.
[12] MILFORD M, ANTHONY S, SCHEIRER W. Self-driving vehicles: Key technical challengesand progress off the road[J]. IEEE Potentials, 2019, 39(1): 37-45.
[13] QURESHI K N, ABDULLAH A H. A survey on intelligent transportation systems[J]. MiddleEast Journal of Scientific Research, 2013, 15(5): 629-642.
[14] FAGNANT D J, KOCKELMAN K M. The travel and environmental implications of sharedautonomous vehicles, using agent-based model scenarios[J/OL]. Transportation Research PartC: Emerging Technologies, 2014, 40: 1-13. DOI: 10.1016/j.trc.2013.12.001.
[15] GOLBABAEI F, YIGITCANLAR T, BUNKER J. The role of shared autonomous vehiclesystems in delivering smart urban mobility: A systematic review of the literature[J/OL]. International Journal of Sustainable Transportation, 2020, 15(10): 731-748. DOI: 10.1080/15568318.2020.1798571.
[16] BRADLEY J M, ATKINS E M. Optimization and control of cyber-physical vehicle systems[J].Sensors, 2015, 15(9): 23020-23049.
[17] 徐西峰, 董明芳. 面向 2020 的自动驾驶业态及我国产业发展的政策建议[J]. 现代电信科技, 2017, 47(1): 34-37.
[18] CHEN L, LI Y, HUANG C, et al. Milestones in Autonomous Driving and Intelligent Vehicles:Survey of Surveys[J/OL]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1046-1056.DOI: 10.1109/TIV.2022.3223131.
[19] POMERLEAU D. ALVINN: An Autonomous Land Vehicle In a Neural Network[C]//TOURETZKY D. Proceedings of (NeurIPS) Neural Information Processing Systems. Morgan Kaufmann, 1989: 305 - 313.
[20] DE RONDE BRESSER N, STOKER E. THE PARKSHUTTLE PILOT PROJECT[C]//SixthInternational Conference of Automated People Movers (APMs) Committee on Automated People Movers of the Urban Transportation Division, American Society of Civil Engineers. 1997.
[21] PENDLETON S D, ANDERSEN H, DU X, et al. Perception, planning, control, and coordination for autonomous vehicles[J]. Machines, 2017, 5(1): 6.
[22] NOROOZI F, DANESHMAND M, FIORINI P. Conventional, Heuristic and Learning-BasedRobot Motion Planning: Reviewing Frameworks of Current Practical Significance[J/OL]. Machines, 2023, 11(7). DOI: 10.3390/machines11070722.
[23] OKUMURA B, JAMES M R, KANZAWA Y, et al. Challenges in perception and decisionmaking for intelligent automotive vehicles: A case study[J]. IEEE Transactions on IntelligentVehicles, 2016, 1(1): 20-32.
[24] CLAUSSMANN L, REVILLOUD M, GRUYER D, et al. A Review of Motion Planning forHighway Autonomous Driving[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 1826-1848. DOI: 10.1109/tits.2019.2913998.
[25] TENG S, HU X, DENG P, et al. Motion Planning for Autonomous Driving: The State ofthe Art and Future Perspectives[J/OL]. IEEE Transactions on Intelligent Vehicles, 2023, 8(6):3692-3711. DOI: 10.1109/tiv.2023.3274536.
[26] PADEN B, CAP M, YONG S Z, et al. A Survey of Motion Planning and Control Techniquesfor Self-Driving Urban Vehicles[J/OL]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1):33-55. DOI: 10.1109/tiv.2016.2578706.
[27] CHAZELLE B. Approximation and decomposition of shapes[J]. Algorithmic and GeometricAspects of Robotics, 1985, 1: 145-185.
[28] TAKAHASHI O, SCHILLING R J. Motion planning in a plane using generalized Voronoidiagrams[J]. IEEE Transactions on Robotics and Automation, 1989, 5(2): 143-150.
[29] NILSSON N J. A mobile automaton: An application of artificial intelligence techniques[R].Sri International Menlo Park Ca Artificial Intelligence Center, 1969.
[30] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
[31] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination ofminimum cost paths[J]. IEEE transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
[32] EBENDT R, DRECHSLER R. Weighted A∗ search–unifying view and application[J]. ArtificialIntelligence, 2009, 173(14): 1310-1342.
[33] STENTZ A. Optimal and efficient path planning for partially-known environments[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation. IEEE,1994: 3310-3317.
[34] HANSEN E A, ZHOU R. Anytime heuristic search[J]. Journal of Artificial Intelligence Research, 2007, 28: 267-297.
[35] DOLGOV D, THRUN S, MONTEMERLO M, et al. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments[J/OL]. The International Journal of RoboticsResearch, 2010, 29(5): 485-501. DOI: 10.1177/0278364909359210.
[36] PIVTORAIKO M, KNEPPER R A, KELLY A. Differentially constrained mobile robot motionplanning in state lattices[J]. Journal of Field Robotics, 2009, 26(3): 308-333.
[37] FAN H, ZHU F, LIU C, et al. Baidu apollo em motion planner[A]. 2018.
[38] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planningin high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation,1996, 12(4): 566-580.
[39] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. TheInternational Journal of Robotics Research, 2011, 30(7): 846-894.
[40] LAVALLE S M, KUFFNER J J, DONALD B. Rapidly-exploring random trees: Progress andprospects[J]. Algorithmic and Computational Robotics: New Directions, 2001, 5: 293-308.
[41] KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incrementalsampling-based methods[C]//49th IEEE Conference on Decision and Control (CDC). IEEE,2010: 7681-7687.
[42] VON HUNDELSHAUSEN F, HIMMELSBACH M, HECKER F, et al. Driving with tentacles:Integral structures for sensing and motion[J]. Journal of Field Robotics, 2008, 25(9): 640-673.
[43] VANHOLME B, GRUYER D, LUSETTI B, et al. Highly automated driving on highways basedon legal safety[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 14(1): 333-347.
[44] DUBINS L E. On curves of minimal length with a constraint on average curvature, and withprescribed initial and terminal positions and tangents[J]. American Journal of Mathematics,1957, 79(3): 497-516.
[45] REEDS J, SHEPP L. Optimal paths for a car that goes both forwards and backwards[J]. PacificJournal of Mathematics, 1990, 145(2): 367-393.
[46] MOUHAGIR H, TALJ R, CHERFAOUI V, et al. Integrating safety distances with trajectoryplanning by modifying the occupancy grid for autonomous vehicle navigation[C]//2016 IEEE19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016: 1114-1119.
[47] CLAUSSMANN L, CARVALHO A, SCHILDBACH G. A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams[C]//2015European Control Conference (ECC). IEEE, 2015: 2976-2982.
[48] MCNAUGHTON M, URMSON C, DOLAN J M, et al. Motion planning for autonomousdriving with a conformal spatiotemporal lattice[C]//2011 IEEE International Conference onRobotics and Automation. IEEE, 2011: 4889-4895.
[49] TEHRANI H, DO Q H, EGAWA M, et al. General behavior and motion model for automatedlane change[C]//2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015: 1154-1159.
[50] CHOI J. Kinodynamic motion planning for autonomous vehicles[J]. International Journal ofAdvanced Robotic Systems, 2014, 11(6): 90.
[51] CHEN J, ZHAO P, MEI T, et al. Lane change path planning based on piecewise bezier curvefor autonomous vehicle[C]//Proceedings of 2013 IEEE International Conference on VehicularElectronics and Safety. IEEE, 2013: 17-22.
[52] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
[53] PAN Z, ZHANG C, XIA Y, et al. An improved artificial potential field method for path planningand formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and SystemsII: Express Briefs, 2021, 69(3): 1129-1133.
[54] AMES A D, COOGAN S, EGERSTEDT M, et al. Control barrier functions: Theory and applications[C]//2019 18th European Control Conference (ECC). IEEE, 2019: 3420-3431.
[55] SINGLETARY A, KLINGEBIEL K, BOURNE J, et al. Comparative analysis of control barrierfunctions and artificial potential fields for obstacle avoidance[C]//2021 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2021: 8129-8136.
[56] FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research, 1998, 17(7): 760-772.
[57] VAN DEN BERG J, LIN M, MANOCHA D. Reciprocal velocity obstacles for real-time multiagent navigation[C]//2008 IEEE International Conference on Robotics and Automation. IEEE,2008: 1928-1935.
[58] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[C]//RoboticsResearch: The 14th International Symposium ISRR. Springer, 2011: 3-19.
[59] FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance[J].IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33.
[60] OGREN P, LEONARD N E. A convergent dynamic window approach to obstacle avoidance[J]. IEEE Transactions on Robotics, 2005, 21(2): 188-195.
[61] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Modeling lane-changing behaviorin a connected environment: A game theory approach[J/OL]. Transportation Research Part C:Emerging Technologies, 2015, 59: 216-232. DOI: 10.1016/j.trc.2015.07.007.
[62] DING N, MENG X, XIA W, et al. Multivehicle Coordinated Lane Change Strategy inthe Roundabout Under Internet of Vehicles Based on Game Theory and Cognitive Computing[J/OL]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5435-5443. DOI:10.1109/tii.2019.2959795.
[63] LI N, KOLMANOVSKY I, GIRARD A, et al. Game theoretic modeling of vehicle interactionsat unsignalized intersections and application to autonomous vehicle control[C]//2018 AnnualAmerican Control Conference (ACC). IEEE, 2018: 3215-3220.
[64] BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4:1-51.
[65] MAO Y, DUERI D, SZMUK M, et al. Successive convexification of non-convex optimal controlproblems with state constraints[J]. IFAC-PapersOnline, 2017, 50(1): 4063-4069.
[66] HAN Z, WU Y, LI T, et al. An efficient spatial-temporal trajectory planner for autonomousvehicles in unstructured environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2023.
[67] ZHANG X, LINIGER A, BORRELLI F. Optimization-Based Collision Avoidance[J/OL]. IEEETransactions on Control Systems Technology, 2021, 29(3): 972-983. DOI: 10.1109/tcst.2019.2949540.
[68] LIU C, LIN C Y, TOMIZUKA M. The convex feasible set algorithm for real time optimizationin motion planning[J]. SIAM Journal on Control and Optimization, 2018, 56(4): 2712-2733.
[69] LIU C, TOMIZUKA M. Real time trajectory optimization for nonlinear robotic systems: Relaxation and convexification[J/OL]. Systems & Control Letters, 2017, 108: 56-63. DOI:10.1016/j.sysconle.2017.08.004.
[70] SUN C, LI Q, LI B, et al. A Successive Linearization in Feasible Set Algorithm for VehicleMotion Planning in Unstructured and Low-Speed Scenarios[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3724-3736. DOI: 10.1109/TITS.2020.3041075.
[71] RöSMANN C, FEITEN W, WöSCH T, et al. Trajectory modification considering dynamicconstraints of autonomous robots[C]//ROBOTIK 2012; 7th German Conference on Robotics.VDE, 2012: 1-6.
[72] LI B, ZHANG Y, SHAO Z. Spatio-temporal decomposition: a knowledge-based initializationstrategy for parallel parking motion optimization[J/OL]. Knowledge-Based Systems, 2016,107: 179-196. DOI: 10.1016/j.knosys.2016.06.008.
[73] LI B, OUYANG Y, ZHANG Y, et al. Optimal Cooperative Maneuver Planning for MultipleNonholonomic Robots in a Tiny Environment via Adaptive-Scaling Constrained Optimization[J/OL]. IEEE Robotics and Automation Letters, 2021, 6(2): 1511-1518. DOI: 10.1109/lra.2021.3056346.
[74] CAP M, NOVAK P, KLEINER A, et al. Prioritized Planning Algorithms for Trajectory Coordination of Multiple Mobile Robots[J/OL]. IEEE Transactions on Automation Science andEngineering, 2015, 12(3): 835-849. DOI: 10.1109/tase.2015.2445780.
[75] LI J, RAN M, XIE L. Efficient Trajectory Planning for Multiple Non-Holonomic Mobile Robotsvia Prioritized Trajectory Optimization[J/OL]. IEEE Robotics and Automation Letters, 2021,6(2): 405-412. DOI: 10.1109/lra.2020.3044834.
[76] BOYD S. Distributed Optimization and Statistical Learning via the Alternating DirectionMethod of Multipliers[J/OL]. Foundations and Trends® in Machine Learning, 2010, 3(1): 1-122. DOI: 10.1561/2200000016.
[77] PARYS R V, PIPELEERS G. Online distributed motion planning for multi-vehicle systems[C/OL]//2016 European Control Conference (ECC). 2016: 1580-1585. DOI: 10.1109/ECC.2016.7810516.
[78] ZHANG X, CHENG Z, MA J, et al. Parallel Collaborative Motion Planning with AlternatingDirection Method of Multipliers[C/OL]//IECON 2021–47th Annual Conference of the IEEEIndustrial Electronics Society. 2021: 1-6. DOI: 10.1109/iecon48115.2021.9589675.
[79] WANG J, ZHANG T, MA N, et al. A survey of learning‐based robot motion planning[J/OL].IET Cyber-Systems and Robotics, 2021, 3(4): 302-314. DOI: 10.1049/csy2.12020.
[80] LIU W, WANG Z, LIU X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26.
[81] WU J. Introduction to convolutional neural networks[J]. National Key Lab for Novel SoftwareTechnology. Nanjing University. China, 2017, 5(23): 495.
[82] MEDSKER L R, JAIN L. Recurrent neural networks[J]. Design and Applications, 2001, 5(64-67): 2.
[83] HAMANDI M, D’ ARCY M, FAZLI P. Deepmotion: Learning to navigate like humans[C]//2019 28th IEEE International Conference on Robot and Human Interactive Communication(RO-MAN). IEEE, 2019: 1-7.
[84] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[85] KURUTACH T, TAMAR A, YANG G, et al. Learning plannable representations with causalinfogan[J]. Advances in Neural Information Processing Systems, 2018, 31.
[86] PFEIFFER M, SCHAEUBLE M, NIETO J, et al. From perception to decision: A datadriven approach to end-to-end motion planning for autonomous ground robots[C/OL]//2017IEEE International Conference on Robotics and Automation (ICRA). 2017: 1527-1533. DOI:10.1109/ICRA.2017.7989182.
[87] BENCY M J, QURESHI A H, YIP M C. Neural Path Planning: Fixed Time, Near-Optimal PathGeneration via Oracle Imitation[C/OL]//2019 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS). 2019: 3965-3972. DOI: 10.1109/IROS40897.2019.8968089.
[88] WANG J, CHI W, LI C, et al. Neural RRT*: Learning-based optimal path planning[J]. IEEETransactions on Automation Science and Engineering, 2020, 17(4): 1748-1758.
[89] KIM S, AN B. Learning Heuristic A: Efficient Graph Search using Neural Network[C]//2020IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 9542-9547.
[90] NIAN R, LIU J, HUANG B. A review on reinforcement learning: Introduction and applicationsin industrial process control[J]. Computers & Chemical Engineering, 2020, 139: 106886.
[91] SUTTON R S. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming[M]. Elsevier, 1990: 216-224.
[92] KENDALL A, HAWKE J, JANZ D, et al. Learning to drive in a day[C]//2019 InternationalConference on Robotics and Automation (ICRA). IEEE, 2019: 8248-8254.
[93] TAMAR A, WU Y, THOMAS G, et al. Value iteration networks[J]. Advances in Neural Information Processing Systems, 2016, 29.
[94] FAUST A, OSLUND K, RAMIREZ O, et al. Prm-rl: Long-range robotic navigation tasks bycombining reinforcement learning and sampling-based planning[C]//2018 IEEE InternationalConference on Robotics and Automation (ICRA). IEEE, 2018: 5113-5120.
[95] QUAN L, HAN L, ZHOU B, et al. Survey of UAV motion planning[J/OL]. IET Cyber-Systemsand Robotics, 2020, 2(1): 14-21. DOI: 10.1049/iet-csr.2020.0004.
[96] ELBANHAWI M, SIMIC M. Sampling-Based Robot Motion Planning: A Review[J/OL]. IEEEAccess, 2014, 2: 56-77. DOI: 10.1109/access.2014.2302442.
[97] BOSURGI G, D’ ANDREA A. A polynomial parametric curve (PPC‐curve) for the designof horizontal geometry of highways[J]. Computer‐Aided Civil and Infrastructure Engineering,2012, 27(4): 304-a312.
[98] PATERNAIN S, CALVO-FULLANA M, CHAMON L F, et al. Safe policies for reinforcementlearning via primal-dual methods[J]. IEEE Transactions on Automatic Control, 2022, 68(3):1321-1336.
[99] IORDANIDOU G, RONCOLI C, PAPAMICHAIL I, et al. Feedback-Based Mainstream TrafficFlow Control for Multiple Bottlenecks on Motorways[J/OL]. IEEE Transactions on IntelligentTransportation Systems, 2015, 16(2): 610-621. DOI: 10.1109/TITS.2014.2331985.
[100] MARGIOTTA R A, SNYDER D. An agency guide on how to establish localized congestionmitigation programs[R]. United States. Federal Highway Administration. Office of Operations,2011: 17-35.
[101] SCHMIDT G, POSCH B. A two-layer control scheme for merging of automated vehicles[C/OL]//The 22nd IEEE Conference on Decision and Control. 1983: 495-500. DOI:10.1109/cdc.1983.269891.
[102] POSCH B, SCHMIDT G. A Comprehensive Control Concept for Merging of Automated Vehicles Under a Broad Class of Traffic Conditions[J/OL]. IFAC Proceedings Volumes, 1983, 16(4): 187-194. DOI: 10.1016/s1474-6670(17)62561-8.
[103] MILANES V, GODOY J, VILLAGRA J, et al. Automated On-Ramp Merging System forCongested Traffic Situations[J/OL]. IEEE Transactions on Intelligent Transportation Systems,2011, 12(2): 500-508. DOI: 10.1109/tits.2010.2096812.
[104] WANG Y, E W, TANG W, et al. Automated on‐ramp merging control algorithm based onInternet‐connected vehicles[J/OL]. IET Intelligent Transport Systems, 2013, 7(4): 371-379.DOI: 10.1049/iet-its.2011.0228.
[105] MARINESCU D, CURN J, BOUROCHE M, et al. On-ramp traffic merging using cooperativeintelligent vehicles: A slot-based approach[C/OL]//2012 15th International IEEE Conferenceon Intelligent Transportation Systems. 900-906. DOI: 10.1109/itsc.2012.6338779.
[106] RIOS-TORRES J, MALIKOPOULOS A A. Automated and Cooperative Vehicle Merging atHighway On-Ramps[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(4): 780-789. DOI: 10.1109/tits.2016.2587582.
[107] XIAO W, CASSANDRAS C G. Decentralized optimal merging control for Connected andAutomated Vehicles with safety constraint guarantees[J/OL]. Automatica, 2021, 123. DOI:10.1016/j.automatica.2020.109333.
[108] DING J, LI L, PENG H, et al. A Rule-Based Cooperative Merging Strategy for Connected andAutomated Vehicles[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3436-3446. DOI: 10.1109/tits.2019.2928969.
[109] CAO W, MUKAI M, KAWABE T, et al. Cooperative vehicle path generation during mergingusing model predictive control with real-time optimization[J/OL]. Control Engineering Practice, 2015, 34: 98-105. DOI: 10.1016/j.conengprac.2014.10.005.
[110] CAO W, MUKAI M, KAWABE T, et al. Gap Selection and Path Generation during Merging Maneuver of Automobile Using Real-Time Optimization[J/OL]. SICE Journal of Control,Measurement, and System Integration, 2021, 7(4): 227-236. DOI: 10.9746/jcmsi.7.227.
[111] XU L, LU J, RAN B, et al. Cooperative Merging Strategy for Connected Vehicles at HighwayOn-Ramps[J/OL]. Journal of Transportation Engineering, Part A: Systems, 2019, 145(6). DOI:10.1061/jtepbs.0000243.
[112] XU H, FENG S, ZHANG Y, et al. A Grouping-Based Cooperative Driving Strategy for CAVsMerging Problems[J/OL]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6125-6136. DOI: 10.1109/tvt.2019.2910987.
[113] CHEN N, VAN AREM B, ALKIM T, et al. A Hierarchical Model-Based Optimization ControlApproach for Cooperative Merging by Connected Automated Vehicles[J/OL]. IEEE Transactions on Intelligent Transportation Systems, 2020: 1-14. DOI: 10.1109/tits.2020.3007647.
[114] KITA H. A merging–giveway interaction model of cars in a merging section: a game theoreticanalysis[J]. Transportation Research Part A: Policy and Practice, 1999, 33(3-4): 305-312.
[115] KITA H, TANIMOTO K, FUKUYAMA K. A Game Theoretic Analysis of Merging-GivewayInteraction: A Joint Estimation Model[M]. Emerald Group Publishing Limited, 2002: 503-518.
[116] YOO J H, LANGARI R. A stackelberg game theoretic driver model for merging[C]//DynamicSystems and Control Conference: Vol. 56130. American Society of Mechanical Engineers,2013: V002T30A003.
[117] KANG K, RAKHA H A. Game Theoretical Approach to Model Decision Making for Merging Maneuvers at Freeway On-Ramps[J/OL]. Transportation Research Record: Journal of theTransportation Research Board, 2017, 2623(1): 19-28. DOI: 10.3141/2623-03.
[118] KANG K, RAKHA H A. Modeling Driver Merging Behavior: A Repeated Game Theoretical Approach[J/OL]. Transportation Research Record: Journal of the Transportation ResearchBoard, 2018, 2672(20): 144-153. DOI: 10.1177/0361198118792982.
[119] ZIMMERMANN M, SCHOPF D, LüTTEKEN N, et al. Carrot and stick: A game-theoreticapproach to motivate cooperative driving through social interaction[J/OL]. Transportation Research Part C: Emerging Technologies, 2018, 88: 159-175. DOI: 10.1016/j.trc.2018.01.017.
[120] JING S, HUI F, ZHAO X, et al. Cooperative Game Approach to Optimal Merging Sequence andon-Ramp Merging Control of Connected and Automated Vehicles[J/OL]. IEEE Transactions onIntelligent Transportation Systems, 2019, 20(11): 4234-4244. DOI: 10.1109/tits.2019.2925871.
[121] HANG P, LV C, HUANG C, et al. Cooperative Decision Making of Connected Automated Vehicles at Multi-Lane Merging Zone: A Coalitional Game Approach[J/OL]. IEEE Transactionson Intelligent Transportation Systems, 2021: 1-13. DOI: 10.1109/tits.2021.3069463.
[122] LIN D, LI L, JABARI S E. Pay to change lanes: A cooperative lane-changing strategy forconnected/automated driving[J/OL]. Transportation Research Part C: Emerging Technologies,2019, 105: 550-564. DOI: 10.1016/j.trc.2019.06.006.
[123] HOSSAN M S, ASGARI H, JIN X. Investigating preference heterogeneity in Value of Time(VOT) and Value of Reliability (VOR) estimation for managed lanes[J/OL]. TransportationResearch Part A: Policy and Practice, 2016, 94: 638-649. DOI: https://doi.org/10.1016/j.tra.2016.10.022.
[124] MALIKOPOULOS A A, PAPALAMBROS P Y, ASSANIS D N. Online Identification andStochastic Control for Autonomous Internal Combustion Engines[J/OL]. Journal of DynamicSystems, Measurement, and Control, 2010, 132(2). DOI: 10.1115/1.4000819.
[125] GONZáLEZ D, MILANéS V, PéREZ J, et al. Speed profile generation based on quintic Béziercurves for enhanced passenger comfort[C/OL]//2016 IEEE 19th International Conference onIntelligent Transportation Systems (ITSC). 2016: 814-819. DOI: 10.1109/ITSC.2016.7795649.
[126] FERGUSON T S. A Course in Game Theory[M/OL]. World Scientific, 2020: 208-227. DOI:10.1142/9789813227361_0017.
[127] OWEN G. Game Theory[M]. Emerald Group Publishing Limited, 2013: 13-30.
[128] LI X, CUI J, AN S, et al. Stop-and-go traffic analysis: Theoretical properties, environmentalimpacts and oscillation mitigation[J/OL]. Transportation Research Part B: Methodological,2014, 70: 319-339. DOI: https://doi.org/10.1016/j.trb.2014.09.014.
[129] LUO X, LI X, RAZAUR RAHMAN SHAON M, et al. Multi-lane-merging strategy for connected automated vehicles on freeway ramps[J/OL]. Transportmetrica B: Transport Dynamics,2022: 1-19. DOI: 10.1080/21680566.2022.2041503.
[130] KANARIS A, KOSMATOPOULOS E B, LOANNOU P A. Strategies and spacing requirementsfor lane changing and merging in automated highway systems[J/OL]. IEEE Transactions onVehicular Technology, 2001, 50(6): 1568-1581. DOI: 10.1109/25.966586.
[131] LI L, FEI-YUE W, KIM H. Cooperative driving and lane changing at blind crossings[C/OL]//IEEE Proceedings. Intelligent Vehicles Symposium, 2005. 2005: 435-440. DOI: 10.1109/IVS.2005.1505142.
[132] KHAN S M, CHOWDHURY M. Situation-Aware Left-Turning Connected and AutomatedVehicle Operation at Signalized Intersections[J/OL]. IEEE Internet of Things Journal, 2021, 8(16): 13077-13094. DOI: 10.1109/jiot.2021.3064041.
[133] PHAN T T, LE L B, NGODUY D. A Cooperative Space Distribution Method for AutonomousVehicles at A Lane-Drop Bottleneck on Multi-Lane Freeways[J/OL]. IEEE Transactions onIntelligent Transportation Systems, 2022, 23(4): 3710-3723. DOI: 10.1109/tits.2020.3040431.
[134] PEI H, FENG S, ZHANG Y, et al. A Cooperative Driving Strategy for Merging at On-RampsBased on Dynamic Programming[J/OL]. IEEE Transactions on Vehicular Technology, 2019,68(12): 11646-11656. DOI: 10.1109/TVT.2019.2947192.
[135] HU Z, HUANG J, YANG Z, et al. Embedding Robust Constraint-Following Control in Cooperative On-Ramp Merging[J/OL]. IEEE Transactions on Vehicular Technology, 2021, 70(1):133-145. DOI: 10.1109/TVT.2021.3049866.
[136] LI B, ZHANG Y, FENG Y, et al. Balancing Computation Speed and Quality: A DecentralizedMotion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles[J/OL]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 340-350. DOI: 10.1109/tiv.2018.2843159.
[137] HU X, SUN J. Trajectory optimization of connected and autonomous vehicles at a multilanefreeway merging area[J/OL]. Transportation Research Part C: Emerging Technologies, 2019,101: 111-125. DOI: 10.1016/j.trc.2019.02.016.
[138] XIAO W, CASSANDRAS C G, BELTA C. Decentralized Optimal Control in Multi-lane Merging for Connected and Automated Vehicles[J]. 2020 IEEE 23rd International Conference onIntelligent Transportation Systems (ITSC), 2020.
[139] DING H, DI Y, ZHENG X, et al. Automated cooperative control of multilane freeway mergingareas in connected and autonomous vehicle environments[J/OL]. Transportmetrica B: TransportDynamics, 2021, 9(1): 437-455. DOI: 10.1080/21680566.2021.1887774.
[140] LIU J, ZHAO W, XU C. An Efficient On-Ramp Merging Strategy for Connected and AutomatedVehicles in Multi-Lane Traffic[J/OL]. IEEE Transactions on Intelligent Transportation Systems,2021: 1-12. DOI: 10.1109/tits.2020.3046643.
[141] MALIKOPOULOS A A, CASSANDRAS C G, ZHANG Y J. A decentralized energy-optimalcontrol framework for connected automated vehicles at signal-free intersections[J/OL]. Automatica, 2018, 93: 244-256. DOI: https://doi.org/10.1016/j.automatica.2018.03.056.
[142] LI B, SHAO Z. A unified motion planning method for parking an autonomous vehicle in thepresence of irregularly placed obstacles[J/OL]. Knowledge-Based Systems, 2015, 86: 11-20.DOI: 10.1016/j.knosys.2015.04.016.
[143] LI B, ZHANG Y M, GE Y M, et al. Optimal Control-based Online Motion Planning for Cooperative Lane Changes of Connected and Automated Vehicles[J]. 2017 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS), 2017: 3689-3694.
[144] MCCAIN R A. Game theory: A nontechnical introduction to the analysis of strategy[M]. WorldScientific Publishing Company, 2014: 43-63.
[145] SUGDEN R. A Theory of Focal Points[J/OL]. The Economic Journal, 1995, 105(430): 533-550. DOI: 10.2307/2235016.
[146] BRANZEI R, DIMITROV D, TIJS S. Models in cooperative game theory: Vol. 556[M].Springer Science & Business Media, 2008: 2-30.
[147] KAMESWARAN S, BIEGLER L T. Simultaneous dynamic optimization strategies: Recentadvances and challenges[J/OL]. Computers & Chemical Engineering, 2006, 30(10-12): 1560-1575. DOI: 10.1016/j.compchemeng.2006.05.034.
[148] WäCHTER A, BIEGLER L T. On the implementation of an interior-point filter line-searchalgorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106(1): 25-57.
[149] BIEGLER L. Simultaneous methods for dynamic optimization[J]. Nonlinear Programming:Concepts, Algorithms, and Applications to Chemical Processes, 2010: 287-324.
[150] ZAFAR M N, MOHANTA J. Methodology for path planning and optimization of mobile robots:A review[J]. Procedia Computer Science, 2018, 133: 141-152.
[151] MOHANAN M G, SALGOANKAR A. A survey of robotic motion planning in dynamic environments[J/OL]. Robotics and Autonomous Systems, 2018, 100: 171-185. DOI: 10.1016/j.robot.2017.10.011.
[152] HWANG Y K, AHUJA N. Gross Motion Planning - a Survey[J]. Computing Surveys, 1992,24(3): 219-291.
[153] LI B, WANG K, SHAO Z. Time-Optimal Maneuver Planning in Automatic Parallel Parking Using a Simultaneous Dynamic Optimization Approach[J/OL]. IEEE Transactions on IntelligentTransportation Systems, 2016, 17(11): 3263-3274. DOI: 10.1109/tits.2016.2546386.
[154] BECERRA V M. Practical direct collocation methods for computational optimal control[M].Springer, 2012: 33-60.
[155] SHEN K, SHIVGAN R, MEDINA J, et al. Multidepot Drone Path Planning With CollisionAvoidance[J/OL]. IEEE Internet of Things Journal, 2022, 9(17): 16297-16307. DOI: 10.1109/JIOT.2022.3151791.
[156] YANG J, HUO J, XI M, et al. A Time-Saving Path Planning Scheme for Autonomous Underwater Vehicles With Complex Underwater Conditions[J/OL]. IEEE Internet of Things Journal,2023, 10(2): 1001-1013. DOI: 10.1109/JIOT.2022.3205685.
[157] SAFDARNEJAD S M, HEDENGREN J D, LEWIS N R, et al. Initialization strategies foroptimization of dynamic systems[J/OL]. Computers & Chemical Engineering, 2015, 78: 39-50. DOI: 10.1016/j.compchemeng.2015.04.016.
[158] RAO A V. A survey of numerical methods for optimal control[J]. Advances in the AstronauticalSciences, 2009, 135(1): 497-528.
[159] OH S H, LUUS R. Use of orthogonal collocation method in optimal control problems[J/OL].International Journal of Control, 2007, 26(5): 657-673. DOI: 10.1080/00207177708922339.
[160] TONE K. Revisions of constraint approximations in the successive QP method for nonlinearprogramming problems[J/OL]. Mathematical Programming, 1983, 26(2): 144-152. DOI: 10.1007/BF02592051.
[161] SPELLUCCI P. A new technique for inconsistent QP problems in the SQP method[J/OL].Mathematical Methods of Operations Research, 1998, 47(3): 355-400. DOI: 10.1007/BF01198402.
[162] LI W, TODOROV E. Iterative linear quadratic regulator design for nonlinear biological movement systems[C]//ICINCO (1). Citeseer, 2004: 222-229.
[163] DEORI L, GARATTI S, PRANDINI M. 4-D Flight Trajectory Tracking: A Receding HorizonApproach Integrating Feedback Linearization and Scenario Optimization[J/OL]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 981-996. DOI: 10.1109/tcst.2018.2810201.
[164] MAO Y, SZMUK M, AçıKMEşE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]//2016 IEEE 55th Conference on Decision andControl (CDC). IEEE: 3636-3641.
[165] MAO Y, DUERI D, SZMUK M, et al. Successive convexification of non-convex optimal controlproblems with state constraints[J]. IFAC-PapersOnline, 2017, 50(1): 4063-4069.
[166] HAN Z, WU Y, LI T, et al. An Efficient Spatial-Temporal Trajectory Planner for AutonomousVehicles in Unstructured Environments[J/OL]. IEEE Transactions on Intelligent TransportationSystems, 2023: 1-18. DOI: 10.1109/TITS.2023.3315320.
[167] MURRAY R M, RATHINAM M, SLUIS W. Differential flatness of mechanical controlsystems: A catalog of prototype systems[C]//ASME International Mechanical EngineeringCongress and Exposition. Citeseer, 1995.
[168] ACIKMESE B, CARSON J M, BLACKMORE L. Lossless Convexification of NonconvexControl Bound and Pointing Constraints of the Soft Landing Optimal Control Problem[J/OL].IEEE Transactions on Control Systems Technology, 2013, 21(6): 2104-2113. DOI: 10.1109/tcst.2012.2237346.
[169] HARRIS M W, AçıKMEşE B. Lossless convexification of non-convex optimal control problems for state constrained linear systems[J]. Automatica, 2014, 50(9): 2304-2311.
[170] SINGLETARY A, KLINGEBIEL K, BOURNE J, et al. Comparative analysis of control barrierfunctions and artificial potential fields for obstacle avoidance[C]//2021 IEEE/RSJ InternationalConference on Intelligent Robots and Systems (IROS). IEEE, 2021: 8129-8136.
[171] JIAN Z, YAN Z, LEI X, et al. Dynamic control barrier function-based model predictive controlto safety-critical obstacle-avoidance of mobile robot[C]//2023 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE, 2023: 3679-3685.
[172] LIU C, TOMIZUKA M. Real time trajectory optimization for nonlinear robotic systems: Relaxation and convexification[J]. Systems & Control Letters, 2017, 108: 56-63.
[173] MA J, CHENG Z, ZHANG X, et al. Alternating direction method of multipliers for constrainediterative LQR in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23031-23042.
[174] LI B, ZHANG Y, SHAO Z, et al. Simultaneous versus joint computing: A case study of multivehicle parking motion planning[J/OL]. Journal of Computational Science, 2017, 20: 30-40.DOI: 10.1016/j.jocs.2017.03.015.
[175] LI Z, CANNY J. Motion of two rigid bodies with rolling constraint[J/OL]. IEEE Transactionson Robotics and Automation, 1990, 6(1): 62-72. DOI: 10.1109/70.88118.
[176] CLARKE F H. Generalized gradients and applications[J]. Transactions of the American Mathematical Society, 1975, 205: 247-262.
[177] WANG Y, YIN W, ZENG J. Global convergence of ADMM in nonconvex nonsmooth optimization[J]. Journal of Scientific Computing, 2019, 78(1): 29-63.
[178] 刘浩洋. 最优化: 建模, 算法与理论[M]. 高等教育出版社, 2020: 430-460.
[179] YANG L, PONG T K, CHEN X. Alternating direction method of multipliers for a class ofnonconvex and nonsmooth problems with applications to background/foreground extraction[J]. SIAM Journal on Imaging Sciences, 2017, 10(1): 74-110.
[180] THOMPSON A, TAYLOR B N. Use of the international system of units (si)[J]. NIST SpecialPublication, Gaithersburg, 2008.
[181] VANDERBEI R J. LOQO:an interior point code for quadratic programming[J/OL]. Optimization Methods and Software, 1999, 11(1-4): 451-484. DOI: 10.1080/10556789908805759.
[182] HART P E, NILSSON N J, RAPHAEL B. A Formal Basis for the Heuristic Determination ofMinimum Cost Paths[J/OL]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. DOI: 10.1109/TSSC.1968.300136.
[183] SOLOVEY K, HALPERIN D. On the hardness of unlabeled multi-robot motion planning[J].The International Journal of Robotics Research, 2016, 35(14): 1750-1759.
[184] TABASSO C, MIMMO N, CICHELLA V, et al. Optimal Motion Planning for Localizationof Avalanche Victims by Multiple UAVs[J/OL]. IEEE Control Systems Letters, 2021, 5(6):2054-2059. DOI: 10.1109/LCSYS.2021.3049314.
[185] COHEN L, URAS T, KUMAR T, et al. Optimal and bounded-suboptimal multi-agent motionplanning[C]//Proceedings of the International Symposium on Combinatorial Search: Vol. 10.44-51.
[186] BRITZELMEIER A, MARCHI A D, RICHTER R. Dynamic and Nonlinear Programmingfor Trajectory Planning[J/OL]. IEEE Control Systems Letters, 2023, 7: 2569-2574. DOI:10.1109/LCSYS.2023.3285746.
[187] ROSSI F, BANDYOPADHYAY S, WOLF M, et al. Review of multi-agent algorithms for collective behavior: a structural taxonomy[J]. IFAC-PapersOnLine, 2018, 51(12): 112-117.
[188] BERG J V D, MING L, MANOCHA D. Reciprocal Velocity Obstacles for real-time multi-agentnavigation[C/OL]//2008 IEEE International Conference on Robotics and Automation. 2008:1928-1935. DOI: 10.1109/ROBOT.2008.4543489.
[189] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[C]//RoboticsResearch: The 14th International Symposium ISRR. Springer, 2011: 3-19.
[190] ALONSO-MORA J, BEARDSLEY P, SIEGWART R. Cooperative Collision Avoidance forNonholonomic Robots[J/OL]. IEEE Transactions on Robotics, 2018, 34(2): 404-420. DOI:10.1109/tro.2018.2793890.
[191] LEOMANNI M, MOLLICA G, DIONIGI A, et al. A Convex Programming Approach to Multipoint Optimal Motion Planning for Unicycle Robots[J/OL]. IEEE Control Systems Letters,2023, 7: 1688-1693. DOI: 10.1109/LCSYS.2023.3278251.
[192] ROBINSON D R, MAR R T, ESTABRIDIS K, et al. An efficient algorithm for optimal trajectory generation for heterogeneous multi-agent systems in non-convex environments[J]. IEEERobotics and Automation Letters, 2018, 3(2): 1215-1222.
[193] BENTO J, DERBINSKY N, ALONSO-MORA J, et al. A message-passing algorithm for multiagent trajectory planning[C]//Advances in Neural Information Processing Systems: Vol. 26.2013.
[194] PATNAIK A, HOTA A R. Optimization Based Collision Avoidance for Multi-Agent DynamicalSystems in Goal Reaching Task[A]. 2021.
[195] CHOI C, ADIL M, RAHMANI A, et al. Multi-Robot Motion Planning via Parabolic Relaxation[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(3): 6423-6430. DOI: 10.1109/lra.2022.3171075.
[196] MANNUCCI A, PALLOTTINO L, PECORA F. On provably safe and live multirobot coordination with online goal posting[J]. IEEE Transactions on Robotics, 2021, 37(6): 1973-1991.

所在学位评定分委会
力学
国内图书分类号
TP273+.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765695
专题南方科技大学
工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
陈瑞爽. 复杂环境下自动驾驶车辆的运动规划研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031260-陈瑞爽-系统设计与智能(7350KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈瑞爽]的文章
百度学术
百度学术中相似的文章
[陈瑞爽]的文章
必应学术
必应学术中相似的文章
[陈瑞爽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。