[1] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions [J/OL]. IEEE Open Journal of the Communications Society, 2020, 1: 957-975. DOI: 10.1109/OJCOMS.2020.3010270.
[2] NGUYEN D C, DING M, PATHIRANA P N, et al. 6G Internet of Things: A Comprehensive Survey[J/OL]. IEEE Internet of Things Journal, 2022, 9(1): 359-383. DOI: 10.1109/JIOT.202 1.3103320.
[3] LIU F, MASOUROS C, LI A, et al. MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission[J/OL]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755-2770. DOI: 10.1109/TWC.2018.2803045.
[4] LIU F, LIU Y F, LI A, et al. Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming[J/OL]. IEEE Transactions on Signal Processing, 2022, 70: 240-253. DOI: 10.1 109TSP.2021.3135692.
[5] CHEN L, WANG Z, DU Y, et al. Generalized Transceiver Beamforming for DFRC With MIMO Radar and MU-MIMO Communication[J/OL]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1795-1808. DOI: 10.1109/JSAC.2022.3155515.
[6] HE Z, XU W, SHEN H, et al. Full-Duplex Communication for ISAC: Joint Beamforming and Power Optimization[J/OL]. IEEE Journal on Selected Areas in Communications, 2023, 41(9): 2920-2936. DOI: 10.1109/JSAC.2023.3287540.
[7] XU D, YU X, NG D W K, et al. Robust and Secure Resource Allocation for ISAC Systems: A Novel Optimization Framework for Variable-Length Snapshots[J/OL]. IEEE Transactions on Communications, 2022, 70(12): 8196-8214. DOI: 10.1109/TCOMM.2022.3218629.
[8] HUA H, XU J, HAN T X. Optimal Transmit Beamforming for Integrated Sensing and Communication[J/OL]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10588-10603. DOI: 10.1109/TVT.2023.3262513.
[9] QI C, CI W, ZHANG J, et al. Hybrid Beamforming for Millimeter Wave MIMO Integrated Sensing and Communications[J/OL]. IEEE Communications Letters, 2022, 26(5): 1136-1140. DOI: 10.1109/LCOMM.2022.3157751.
[10] WANG X, FEI Z, ZHANG J A, et al. Partially-Connected Hybrid Beamforming Design for Integrated Sensing and Communication Systems[J/OL]. IEEE Transactions on Communications, 2022, 70(10): 6648-6660. DOI: 10.1109/TCOMM.2022.3202215.
[11] BAZZI A, CHAFII M. On Outage-Based Beamforming Design for Dual-Functional Radar- Communication 6G Systems[J/OL]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5598-5612. DOI: 10.1109/TWC.2023.3235617.
[12] WANG Z, MU X, LIU Y. Near-Field Integrated Sensing and Communications[J/OL]. IEEE Communications Letters, 2023, 27(8): 2048-2052. DOI: 10.1109/LCOMM.2023.3280132.
[13] HE Z, XU W, SHEN H, et al. Energy Efficient Beamforming Optimization for Integrated Sensing and Communication[J/OL]. IEEE Wireless Communications Letters, 2022, 11(7): 1374- 1378. DOI: 10.1109/LWC.2022.3169517.
[14] MA S, SHENG H, YANG R, et al. Covert Beamforming Design for Integrated Radar Sensing and Communication Systems[J/OL]. IEEE Transactions on Wireless Communications, 2023, 22(1): 718-731. DOI: 10.1109/TWC.2022.3197940.
[15] CONG D, GUO S, ZHANG H, et al. Beamforming Design for Integrated Sensing and Communication Systems With Finite Alphabet Input[J/OL]. IEEE Wireless Communications Letters, 2022, 11(10): 2190-2194. DOI: 10.1109/LWC.2022.3196498.
[16] CHU J, LIU R, LI M, et al. Joint Secure Transmit Beamforming Designs for Integrated Sensing and Communication Systems[J/OL]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4778-4791. DOI: 10.1109/TVT.2022.3225952.
[17] HUA H, XU J, HAN T X. Optimal Transmit Beamforming for Integrated Sensing and Communication[J/OL]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10588-10603. DOI: 10.1109/TVT.2023.3262513.
[18] ZHAO N, WANG Y, ZHANG Z, et al. Joint Transmit and Receive Beamforming Design for Integrated Sensing and Communication[J/OL]. IEEE Communications Letters, 2022, 26(3): 662-666. DOI: 10.1109/LCOMM.2021.3140093.
[19] AN J, LI H, NG D W K, et al. Fundamental Detection Probability vs. Achievable Rate Tradeoff in Integrated Sensing and Communication Systems[J/OL]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9835-9853. DOI: 10.1109/TWC.2023.3273850.
[20] ZHONG Y, BI T, WANG J, et al. Empowering the V2X Network by Integrated Sensing and Communications: Background, Design, Advances, and Opportunities[J/OL]. IEEE Network, 2022, 36(4): 54-60. DOI: 10.1109/MNET.001.2100688.
[21] CHOI J, VA V, GONZALEZ-PRELCIC N, et al. Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing[J/OL]. IEEE Communications Magazine, 2016, 54 (12): 160-167. DOI: 10.1109/MCOM.2016.1600071CM.
[22] SAMCZYNSKI P, et al. A concept of GSM-based passive radar for vehicle traffic monitoring [C/OL]//Proc. Microw., Radar, Remote Sens. Symp. (MRRS). 2011: 271-274. DOI: 10.1109/ MRRS.2011.6053652.
[23] LIU F, YUAN W, MASOUROS C, et al. Radar-Assisted Predictive Beamforming for Vehicular Links Communication Served by Sensing[J/OL]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704-7719. DOI: 10.1109TWC.2020.3015735.
[24] YING Z, CUI Y, MU J, et al. Particle Filter based Predictive Beamforming for Integrated Vehicle Sensing and Communication[C/OL]//Proc. IEEE VTC-Fall. 2021: 1-5. DOI: 10.1109VTC20 21-Fall52928.2021.9625076.
[25] YUAN W, LIU F, MASOUROS C, et al. Bayesian Predictive Beamforming for Vehicular Networks A Low-Overhead Joint Radar-Communication Approach[J/OL]. IEEE Transactions on Wireless Communications, 2021, 20(3): 1442-1456. DOI: 10.1109TWC.2020.3033776.
[26] LIU C, YUAN W, LI S, et al. Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks[J/OL]. IEEE Journal on Selected Areas in Communications, 2022, 40(8): 2317-2334. DOI: 10.1109JSAC.2022.3180803.
[27] MU J, GONG Y, ZHANG F, et al. Integrated Sensing and Communication-Enabled Predictive Beamforming With Deep Learning in Vehicular Networks[J/OL]. IEEE Communications Letters, 2021, 25(10): 3301-3304. DOI: 10.1109LCOMM.2021.3098748.
[28] LIU B, LIU J, KATO N. Optimal Beamformer Design for Millimeter Wave Dual-Functional Radar-Communication Based V2X Systems[J/OL]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2980-2993. DOI: 10.1109/JSAC.2022.3196089.
[29] DU Z, LIU F, YUAN W, et al. Integrated Sensing and Communications for V2I Networks: Dynamic Predictive Beamforming for Extended Vehicle Targets[J/OL]. IEEE Transactions on Wireless Communications, 2023, 22(6): 3612-3627. DOI: 10.1109/TWC.2022.3219890.
[30] LIU Q, LIANG H, LUO R, et al. Energy-Efficiency Computation Offloading Strategy in UAV Aided V2X Network With Integrated Sensing and Communication[J/OL]. IEEE Open Journal of the Communications Society, 2022, 3: 1337-1346. DOI: 10.1109/OJCOMS.2022.3195703.
[31] LIU Q, LUO R, LIANG H, et al. Energy-Efficient Joint Computation Offloading and Resource Allocation Strategy for ISAC-Aided 6G V2X Networks[J/OL]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 413-423. DOI: 10.1109/TGCN.2023.3234263.
[32] LI Y, LIU F, DU Z, et al. ISAC-Enabled V2I Networks Based on 5G NR: How Much Can the Overhead Be Reduced?[C/OL]//2023 IEEE International Conference on Communications Workshops (ICC Workshops). 2023: 691-696. DOI: 10.1109/ICCWorkshops57953.2023.102 83528.
[33] KUSCHEL H, CRISTALLINI D, OLSEN K E. Tutorial Passive radar tutorial[J/OL]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(2): 2-19. DOI: 10.1109MAES.2018.1 60146.
[34] PUCCI L, MATRICARDI E, PAOLINI E, et al. Performance Analysis of a Bistatic Joint Sensing and Communication System[C/OL]//Proc. IEEE Int. Conf. Commun. (ICC), Seoul, South Korea. 2022: 73-78. DOI: 10.1109ICCWorkshops53468.2022.9814645.
[35] CAO N, CHEN Y, GU X, et al. Joint Bi-Static Radar and Communications Designs for Intelligent Transportation[J/OL]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13060- 13071. DOI: 10.1109TVT.2020.3020218.
[36] MEI W, ZHENG B, YOU C, et al. Intelligent Reflecting Surface-Aided Wireless Networks: From Single-Reflection to Multireflection Design and Optimization[J/OL]. Proc. IEEE, 2022, 110(9): 1380-1400. DOI: 10.1109/JPROC.2022.3170656.
[37] HAN Y, LI N, LIU Y, et al. Artificial Noise Aided Secure NOMA Communications in STARRIS Networks[J/OL]. IEEE Wireless Communications Letters, 2022, 11(6): 1191-1195. DOI: 10.1109/LWC.2022.3161020.
[38] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead [J/OL]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450-2525. DOI: 10.1109/JSAC.2020.3007211.
[39] HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication[J/OL]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157-4170. DOI: 10.1109/TWC.2019.2922609.
[40] WU Q, ZHANG R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network[J/OL]. IEEE Communications Magazine, 2020, 58(1): 106- 112. DOI: 10.1109/MCOM.001.1900107.
[41] GUO H, LIANG Y C, CHEN J, et al. Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks[J/OL]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064-3076. DOI: 10.1109/TWC.2020.2970061.
[42] WU Q, ZHANG R. Joint Active and Passive Beamforming Optimization for Intelligent Reflecting Surface Assisted SWIPT Under QoS Constraints[J/OL]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735-1748. DOI: 10.1109/JSAC.2020.3000807.
[43] PAN C, REN H, WANG K, et al. Intelligent Reflecting Surface Aided MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer[J/OL]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719-1734. DOI: 10.1109/JSAC.2020.3000802.
[44] CUI M, ZHANG G, ZHANG R. Secure Wireless Communication via Intelligent Reflecting Surface[J/OL]. IEEE Wireless Communications Letters, 2019, 8(5): 1410-1414. DOI: 10.110 9/LWC.2019.2919685.
[45] LONG R, LIANG Y C, PEI Y, et al. Active Reconfigurable Intelligent Surface-Aided Wireless Communications[J/OL]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4962- 4975. DOI: 10.1109/TWC.2021.3064024.
[46] CHENG H V, YU W. Multiplexing Gain of Modulating Phases Through Reconfigurable Intelligent Surface[C/OL]//Proc. IEEE Int. Symp. Inf. Theory (ISIT). 2021: 2346-2351. DOI: 10.1109/ISIT45174.2021.9517711.
[47] CHENG H V, YU W. Degree-of-Freedom of Modulating Information in the Phases of Reconfigurable Intelligent Surface[J/OL]. IEEE Transactions on Information Theory, 2024, 70(1): 170-188. DOI: 10.1109/TIT.2023.3332425.
[48] SEDDIK K G. On the Degrees of Freedom of IRS-Assisted Non-Coherent MIMO Communications[J/OL]. IEEE Communications Letters, 2022, 26(5): 1175-1179. DOI: 10.1109/LCOM M.2022.3153556.
[49] NAFEA M, YENER A. Secure Communication in a Multi-antenna Wiretap Channel with a Reconfigurable Intelligent Surface[C/OL]//Proc. 17th Int. Symp. Wireless Commun. Syst. (ISWCS). 2021: 1-6. DOI: 10.1109/ISWCS49558.2021.9562188.
[50] BAFGHI A H A, JAMALI V, NASIRI-KENARI M, et al. Degrees of Freedom of the K-User Interference Channel Assisted by Active and Passive IRSs[J/OL]. IEEE Transactions on Communications, 2022, 70(5): 3063-3080. DOI: 10.1109/TCOMM.2022.3159658.
[51] CHAE S H, LEE K. Cooperative Communication for the Rank-Deficient MIMO Interference Channel with a Reconfigurable Intelligent Surface[J/OL]. IEEE Transactions on Wireless Communications, 2022: 1-1. DOI: 10.1109/TWC.2022.3208881.
[52] JAFAR S A, FAKHEREDDIN M J. Degrees of Freedom for the MIMO Interference Channel [J/OL]. IEEE Transactions on Information Theory, 2007, 53(7): 2637-2642. DOI: 10.1109/TI T.2007.899557.
[53] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge university press, 2004.
[54] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity[J/OL]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168-2181. DOI: 10.1109/TSP.2015.2505667.
[55] AHMED A, ZHANG Y D, HIMED B. Multi-user dual-function radar-communications exploiting sidelobe control and waveform diversity[C/OL]//2018 IEEE Radar Conference (Radar- Conf18). 2018: 0698-0702. DOI: 10.1109/RADAR.2018.8378644.
[56] TSE D. Fundamentals of Wireless Communication[J]. Cambridge University Press google schola, 2005, 2: 614-624.
[57] SHI Q, RAZAVIYAYN M, LUO Z Q, et al. An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel[J/OL]. IEEE Transactions on Signal Processing, 2011, 59(9): 4331-4340. DOI: 10.1109TSP.2011.2147784.
[58] CUI Y, LIU F, JING X, et al. Integrating Sensing and Communications for Ubiquitous IoT: Applications, Trends, and Challenges[J/OL]. IEEE Network, 2021, 35(5): 158-167. DOI: 10.1109/MNET.010.2100152.
[59] MEALEY R M. A Method for Calculating Error Probabilities in a Radar Communication System[J/OL]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37-42. DOI: 10.1109/TSET.1963.4337601.
[60] LIU F, CUI Y, MASOUROS C, et al. Integrated Sensing and Communications Toward Dual- Functional Wireless Networks for 6G and Beyond[J/OL]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728-1767. DOI: 10.1109JSAC.2022.3156632.
[61] MOZAFFARI M, SAAD W, BENNIS M, et al. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems[J/OL]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334-2360. DOI: 10.1109/COMST.2019.2902862.
[62] GARCIA M H C, MOLINA-GALAN A, BOBAN M, et al. A Tutorial on 5G NR V2X Communications[J/OL]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1972-2026. DOI: 10.1109/COMST.2021.3057017.
[63] DOKHANCHI S H, MYSORE B S, MISHRA K V, et al. A mmWave Automotive Joint Radar- Communications System[J/OL]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1241-1260. DOI: 10.1109TAES.2019.2899797.
[64] SUN H, CHIA L G, RAZUL S G. Through-Wall Human Sensing With WiFi Passive Radar [J/OL]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2135-2148. DOI: 10.1109/TAES.2021.3069767.
[65] MESSER H, ZINEVICH A, ALPERT P. Environmental Monitoring by Wireless Communication Networks[J/OL]. Science, 2006, 312(5774): 713-713. https://www.science.org/doi/abs/10 .1126/science.1120034.
[66] RAPPAPORT T S, SUN S, MAYZUS R, et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work![J/OL]. IEEE Access, 2013, 1: 335-349. DOI: 10.1109/ACCESS.2 013.2260813.
[67] 中国联通官方号. 浙江联通打造“5G-A”多维能力网络助力“数智浙江”新发展[EB/OL]. (2023-09-07). https://baijiahao.baidu.com/s?id=1776298736740721506&wfr=spider&for=pc.
[68] 陈珂. 再突破!山东移动5G-A 技术应用迈上新台阶[N/OL]. 人民邮电报, 2024-02-17. https://www.cnii.com.cn/rmydb/202402/t20240217_544017.html.
[69] 吴凡, 沈燕妮. 首个5G-A 通感一体化基站试点在深圳福田开通[N/OL]. 深圳特区报, 2023-07-08. https://www.sohu.com/a/695817360_121384255.
[70] 东南网. 全球首个“5G-A 通感一体低空协同组网”于厦门成功试点[EB/OL]. (2023-12- 28). https://baijiahao.baidu.com/s?id=1786487279044594108&wfr=spider&for=pc.
[71] 徐冠英. 我省积极探索5G-A 技术试点——一体覆盖“空天地”锻造物联“加速器” [N/OL]. 新华日报, 2023-11-12. https://xh.xhby.net/pc/con/202311/12/content_1261802.html.
[72] LIU F, MASOUROS C, PETROPULU A P, et al. Joint Radar and Communication Design Applications, State-of-the-Art, and the Road Ahead[J/OL]. IEEE Transactions on Communications, 2020, 68(6): 3834-3862. DOI: 10.1109TCOMM.2020.2973976.
[73] SCHMIDT R. Multiple emitter location and signal parameter estimation[J/OL]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. DOI: 10.1109/TAP.1986.1143830.
[74] ZHANG L, WANG H. Device-Free Tracking via Joint Velocity and AOA Estimation With Commodity WiFi[J/OL]. IEEE Sensors Journal, 2019, 19(22): 10662-10673. DOI: 10.1109/JS EN.2019.2929580.
[75] ZHANG D, WU D, NIU K, et al. Practical Issues and Challenges in CSI-based Integrated Sensing and Communication[C/OL]//Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops). 2022: 836-841. DOI: 10.1109/ICCWorkshops53468.2022.9814523.
[76] CHENG X, DUAN D, GAO S, et al. Integrated Sensing and Communications (ISAC) for Vehicular Communication Networks (VCN)[J/OL]. IEEE Internet of Things Journal, 2022, 9 (23): 23441-23451. DOI: 10.1109/JIOT.2022.3191386.
[77] LIU A, HUANG Z, LI M, et al. A Survey on Fundamental Limits of Integrated Sensing and Communication[J/OL]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994-1034. DOI: 10.1109/COMST.2022.3149272.
[78] BEN-TAL A, NEMIROVSKI A. Lectures on modern convex optimization: analysis, algorithms, and engineering applications[M]. SIAM, 2001.
[79] 陈路漫, 陈跃, 王姝. 亚运有我| 亚运场馆5G 不够用?一张薄板让信号增强10 倍[N/OL]. 科技金融时报, 2023-09-14. https://news.sohu.com/a/720519923_121777418.
[80] 无线电管理局. 辽宁省工业和信息化厅开展电磁兼容分析助力通信新技术发展[EB/OL]. (2024-02-08). https://www.miit.gov.cn/jgsj/wgj/dfjx/art/2024/art_607620de543945acbd77d27 5c3a5ece1.html.
修改评论