中文版 | English
题名

基于密集台阵的近地表速度结构研究及其在滇西地区的应用

其他题名
STUDY ON NEAR-SURFACE VELOCITY STRUCTURE BASED ON DENSE ARRAY AND ITS APPLICATION IN WESTERN YUNNAN
姓名
姓名拼音
QIU Yuxin
学号
12132702
学位类型
硕士
学位专业
0708 地球物理学
学科门类/专业学位类别
07 理学
导师
宋真龙
导师单位
地球与空间科学系;地球与空间科学系
论文答辩日期
2024-05-13
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

近地表区域通常覆盖有较为松散的沉积物,一方面储藏着丰富的油气、矿产、水和地热资源,但另一方面也会放大地面震动幅度,从而加剧地震灾害并影响深部结构成像。因此,了解近地表精细结构,对区域资源开发、防震减灾和深部结构探测等方面都具有重要意义。 川滇地区构造运动强烈且地震活动频繁, 其构造形变在川滇块体东边界整体呈现连续变化, 而在西边界表现为区域性的连续形变且高应变区集中在川滇块体西边界中部地区。 前人通过联合反演构建了川滇地区的高分辨率三维速度模型,然而不同学者得到的模型在近地表存在显著差异。密集台阵探测技术是获得近地表结构的重要手段之一。近几年不少学者利用密集台阵观测开展了对川滇地区的近地表精细结构的研究, 但这些研究多聚焦于川滇块体的东边界,对其西边界关注相对较少。

本文基于本人所在课题组于 2021 年 1 月至同年 5 月布设在川滇块体西边界中部地区的 180 个短周期密集台站,利用接收函数方法、背景噪声成像和 H/V 谱比法三种各具优势的被动源探测方法,从多角度研究了该地区精细的近地表速度结构。我们的研究结果显示,川滇块体西边界中部地区的近地表速度结构存在明显的横向差异。 其中, 背景噪声成像结果显示,研究区域的高速特征主要沿断裂带分布,断裂带两侧则广泛分布低速区,最高速位于维西-乔后断裂带北段。接收函数方法对地表速度的刻画与背景噪声成像结果的总体趋势一致, 仅在部分低速区有差异, 得到的沉积层厚度分布在 0~1.6 km 之间,多数区域在 1 km 左右,断裂带及其附近普遍偏薄,北东部较厚。此外,我们还利用 H/V 谱比法探究了研究区域的沉积层分布。对比前两种方法的结果, H/V 谱比法得到的沉积厚度在数值上偏小,约为 0~0.25 km,推测由更浅的地表松散层所致,其分布趋势表现为地势较低处较厚,地势较高处偏薄。我们的研究结果不仅有助于该地区的地震危险性分析,同时也能为震源参数反演和深部结构探测等其他研究提供基础模型。

其他摘要

The near-surface areas are usually covered by loose sediments, which are rich in oil, gas, minerals, water and geothermal resources on one hand, but also amplify the amplitude of ground shaking on the other hand. This amplification can exacerbate seismic hazards and affecting the deep structure imaging. Therefore, understanding the fine structure of the near-surface area is significant for regional resource development, earthquake prevention and disaster mitigation, and deep structure detection. In the Sichuan-Yunnan region, crustal movement is strong and seismic activity is frequent. Structural deformation exhibits continuous change along the eastern boundary of the Sichuan-Yunnan block, whereas on the western side displays regional continuity with high strain concentrated in the middle part of the western border area. Previous studies have constructed high-resolution 3D velocity models of the Sichuan-Yunnan region through joint inversion techniques. However, these models obtained by different researchers vary significantly in the near-surface layers. Dense array exploration technology is one of the important methods for obtaining the near-surface structure. In recent years, many researchers have utilized dense array observations to investigate the fine structure of the near surface areas within the Sichuan-Yunnan region. Nevertheless, most of these studies have focused on the eastern boundary of the Sichuan-Yunnan block, with relatively less attention paid to the western border.
This study is based on 180 short-period dense stations deployed by our research group along the central part of the western boundary of the SichuanYunnan block from January to May 2021. We have explored the fine near-surface velocity structure of the region from multiple perspectives, employing three distinct and advantageous passive source imaging methods: the receiver function method, ambient noise tomography, and H/V spectral ratio analysis. Our results reveal obvious lateral differences in the near-surface velocity structure along the central part of the western boundary within the study region. The ambient noise imaging results indicate that the high-velocity features of the study region are mainly distributed along the fault zone, with widespread low-velocity areas on either side. The highest velocity is located in the northern segment of the WeixiQiaohou fault zone. The depiction of surface velocity distribution obtained by the receiver function method is consistent with the overall trend of the ambient noise tomography, except for some low-velocity areas. The sedimentary layer thickness varies from 0 to 1.6 km, with a prevalent thickness of approximately 1 km. Notably, the sedimentary layers are generally thinner around the fault zone and exhibit increased thickness in the northeastern part of the study area. Furthermore, the exploration into the sedimentary layer distribution via the H/V spectral ratio method revealed a significantly thinner sediment compared to the results from the two preceding methods, with thicknesses ranging from 0 to 0.25 km. The variance is presumed to be caused by the shallower surface loose layer, with a pattern of increasing thickness at lower terrain and decreasing thickness at higher elevations. In summary, our results not only enhance the seismic hazard analysis of the region, but also establish a foundational model for other studies such as inversion of seismic source parameters and the imaging of deep structural features.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] HALBOUTY M T. Salt domes, Gulf Region, United States & Mexico [M]. 2nd ed.:Gulf Pub. Co., Book Division, 1979.
[2] 刘池洋, 张复新, 高飞. 沉积盆地成藏(矿)系统 [J]. 中国地质, 2007, (03): 365-74.
[3] SOMERVILLE P. Emerging art: earthquake ground motion [J]. Geotechnical SpecialPublication, 1998, (75 I): 1-38.
[4] KAWASE H. The cause of the damage belt in Kobe:“The basin-edge effect,”constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves [J]. Seismological Research Letters, 1996, 67(5): 25 -34.
[5] ANDERSON J G, BODIN P, BRUNE J N, et al. Strong Ground Motion from the Michoacan, Mexico, Earthquake [J]. Science, 1986, 233(4768): 1043 -9.
[6] PITARKA A, IRIKURA K, IWATA T, SEKIGUCHI H. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake [J]. Bulletin of the Seismological Society of America, 1998, 88(2): 428-40.
[7] 张宇翔, 袁志祥. 汶川 8.0 级地震陕西灾区震害特征分析 [J]. 地震研究, 2010, 33(03): 329-35+54.
[8] STEIN S, WYSESSION M. An Introduction to Seismology, Earthquakes, and Earth Structure [M]. Blackwell Publishing, 2003.
[9] WALD D J, GRAVES R W. The seismic response of the Los Angeles basin, California [J]. Bulletin of the Seismological Society of America, 1998, 88(2): 337-56.
[10] YU Y, SONG J, LIU K H, GAO S S. Determining crustal structure beneath seismic stations overlying a low‐ velocity sedimentary layer using receiver functions [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3208 -18.
[11] 刘池洋. 沉积盆地动力学与盆地成藏(矿)系统 [J]. 地球科学与环境学报, 2008, (01): 1-23.
[12] 滕吉文, 李松岭, 张永谦, 等. 秦岭造山带与沉积盆地和结晶基底地震波场及动力学响应 [J]. 地球物理学报, 2014, 57(03): 770-88.
[13] 陈凌, 王旭, 王新, 等. 接收函数界面和波速成像研究进展与展望 [J]. 地球与行星物理论评, 2022, 53(06): 680-701.
[14] PHINNEY R A. Structure of the Earth's crust from spectral behavior of long -periodbody waves [J]. Journal of Geophysical Research, 1964, 69(14): 2997 -3017.
[15] VINNIK L P. Detection of waves converted from P to SV in the mantle [J]. Physics ofthe Earth and Planetary Interiors, 1977, 15(1): 39-45.
[16] LANGSTON C A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9): 4749-62.
[17] OWENS T J, ZANDT G, TAYLOR S R. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B9): 7783 -95.
[18] AMMON C J. The isolation of receiver effects from teleseismic P waveforms [J]. Bulletin of the Seismological Society of America, 1991, 81(6): 2504 -10.
[19] OWENS T J, CROSSON R S. Shallow structure effects on broadband teleseismic P waveforms [J]. Bulletin of the Seismological Society of America, 1988, 78(1): 96-108.
[20] 罗艳, 崇加军, 倪四道, 等. 首都圈地区莫霍面起伏及沉积层厚度 [J]. 地球物理学报, 2008, (04): 1135-45.
[21] WANG W, WU J, FANG L, et al. Sedimentary and crustal thicknesses and Poisson's ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays [J]. Earth and Planetary Science Letters, 2017, 462: 76 -85.
[22] 王旭, 陈凌, 凌媛, 等. 基于接收函数直达 P 波振幅研究地壳浅层 S 波速度结构新方法及在青藏高原东北缘的应用 [J]. 中国科学:地球科学, 2019, 49(11): 1788-800.
[23] 武岩, 丁志峰, 朱露培. 利用接收函数研究渤海湾盆地沉积层结构 [J]. 地震学报, 2014, 36(05): 837-49+981.
[24] SAIKIA S, CHOPRA S, BARUAH S, SINGH U K. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis [J]. Pure and Applied Geophysics, 2017, 174(1): 229-47.
[25] ZHENG T, ZHAO L, CHEN L. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin [J]. Physics of the Earth and Planetary Interiors, 2005, 152(3): 129-43.
[26] RHIE J, ROMANOWICZ B. Excitation of Earth's continuous free oscillations by atmosphere–ocean–seafloor coupling [J]. Nature, 2004, 431(7008): 552-6.
[27] HASSELMANN K. A statistical analysis of the generation of microseisms [J]. Reviews of Geophysics, 1963, 1(2): 177-210.
[28] LONGUET-HIGGINS M S, JEFFREYS H. A theory of the origin of microseisms [J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1950, 243(857): 1-35.
[29] TOKSöZ M N, LACOSS R T. Microseisms: Mode Structure and Sources [J]. Science, 1968, 159(3817): 872-3.
[30] VINNIK L P. Sources of microseismicP waves [J]. pure and applied geophysics, 1973, 103(1): 282-9.
[31] DUVALL T L, JEFFFERIES S M, HARVEY J W, POMERANTZ M A. Time–distance helioseismology [J]. Nature, 1993, 362(6419): 430-2.
[32] WEAVER R, LOBKIS O. On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons [J]. Ultrasonics, 2002, 40(1): 435-9.
[33] WEAVER R L, LOBKIS O I. Ultrasonics without a Source: Thermal Fluctuation Correlations at MHz Frequencies [J]. Physical Review Letters, 2001, 87(13): 134301.
[34] DERODE A, LAROSE E, TANTER M, et al. Recovering the Green’s function from field-field correlations in an open scattering medium (L) [J]. The Journal of the Acoustical Society of America, 2003, 113(6): 2973-6.
[35] SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise [J]. Geophysical Research Letters, 2004, 31(7).
[36] SÁNCHEZ-SESMA F J, CAMPILLO M. Retrieval of the Green’s Function from CrossCorrelation: The Canonical Elastic Problem [J]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-91.
[37] CAMPILLO M, PAUL A. Long-Range Correlations in the Diffuse Seismic Coda [J]. Science, 2003, 299(5606): 547-9.
[38] AKI K. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors [J]. Bulletin of the Earthquake Research Institute, 1957, 35(3): 415-56.
[39] YAO H, BEGHEIN C, VAN DER HILST R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and uppermantle structure [J]. Geophysical Journal International, 2008, 173(1): 205 -19.
[40] WANG K, YANG Y, BASINI P, et al. Refined crustal and uppermost mantle structure of southern California by ambient noise adjoint tomography [J]. Geophysical Journal International, 2018, 215(2): 844-63.
[41] HANED A, STUTZMANN E, SCHIMMEL M, et al. Global tomography using seismic hum [J]. Geophysical Journal International, 2015, 204(2): 1222 -36.
[42] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central Eurasia [J]. Bulletin of the Seismological Society of America, 1992, 82(6): 2464-93.
[43] LEVSHIN A L, RITZWOLLER M H. Automated Detection, Extraction, and Measurement of Regional Surface Waves [J]. Pure and Applied Geophysics, 2001, 158(8): 1531-45.
[44] EKSTRöM G, ABERS G A, WEBB S C. Determination of surface-wave phase velocities across USArray from noise and Aki's spectral formulation [J]. Geophysical Research Letters, 2009, 36(18).
[45] YAO H, VAN DER HILST R D, DE HOOP M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis — I. Phase velocity maps [J]. Geophysical Journal International, 2006, 166(2): 732 -44.
[46] WANG K, LU L, MAUPIN V, et al. Surface Wave Tomography of Northeastern Tibetan Plateau Using Beamforming of Seismic Noise at a Dense Array [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018416.
[47] NISHIDA K, KAWAKATSU H, OBARA K. Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi-net tiltmeters [J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B10).
[48] WANG J, WU G, CHEN X. Frequency-Bessel Transform Method for Effective Imaging of Higher-Mode Rayleigh Dispersion Curves From Ambient Seismic Noise Data [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708 -23.
[49] WU G-X, PAN L, WANG J-N, CHEN X. Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213.
[50] LIN F-C, RITZWOLLER M H, SNIEDER R. Eikonal tomography: surface wave tomography by phase front tracking across a regional broad -band seismic array [J]. Geophysical Journal International, 2009, 177(3): 1091-110.
[51] FANG H, YAO H, ZHANG H, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application [J]. Geophysical Journal International, 2015, 201(3): 1251 -63.
[52] WANG Y, LIN F-C, WARD K M. Ambient noise tomography across the Cascadia subduction zone using dense linear seismic arrays and double beamforming [J]. Geophysical Journal International, 2019, 217(3): 1668-80.
[53] TAPE C, LIU Q, MAGGI A, TROMP J. Adjoint Tomography of the Southern California Crust [J]. Science, 2009, 325(5943): 988-92.
[54] LIN F-C, LI D, CLAYTON R, HOLLIS D. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array [J]. GEOPHYSICS, 2013, 78: Q45-Q56.
[55] GU N, WANG K, GAO J, et al. Shallow Crustal Structure of the Tanlu Fault Zone Near Chao Lake in Eastern China by Direct Surface Wave Tomography from Local Dense Array Ambient Noise Analysis [J]. Pure and Applied Geophysics, 2019, 176(3): 1193-206.
[56] 吴晓阳, 谭俊卿, 郭震, 等. 密集台阵背景噪声双聚束成像化龙断裂精细结构 [J]. 地球物理学报, 2022, 65(05): 1701-11.
[57] 俞贵平, 徐涛, 刘俊彤, 等. 胶东地区晚中生代伸展构造与金成矿:短周期密集台阵背景噪声成像的启示 [J]. 地球物理学报, 2020, 63(05): 1878-93.
[58] BARD P-Y. Microtremor measurements: A tool for site effect estimation? [M]. 1999.
[59] NAKAMURA Y. A METHOD FOR DYNAMIC CHARACTERISTICS ESTIMATION OF SUBSURFACE USING MICROTREMOR ON THE GROUND SURFACE [J]. Quarterly Report of Rtri, 1989, 30.
[60] 张瑞青, 况春利, 张笑晗, 等. 沉积层结构被动源探测方法及其在典型盆地的应用 [J]. 地球与行星物理论评(中英文), 2023, 54(01): 12-26.
[61] NOGOSHI M, IGARASHI T. On the Amplitude Characteristics of Microtremor (Part 2) [J]. Journal of the Seismological Society of Japan, 1971, 24: 26 -40.
[62] NAKAMURA Y. CLEAR IDENTIFICATION OF FUNDAMENTAL IDEA OF NAKAMURA ' S TECHNIQUE AND ITS APPLICATIONS, F, 1999 [C].
[63] NAKAMURA Y. Basic Structure of QTS (HVSR) and Examples of Applications, F, 2009 [C].
[64] NAKAMURA Y. What Is the Nakamura Method? [J]. Seismological Research Letters, 2019, 90(4): 1437-43.
[65] BONNEFOY-CLAUDET S, CORNOU C, GUILLIER B, et al. Site Effects Assessment Using Ambient Excitations SESAME, F, 2004 [C].
[66] LACHET C, BARD P-Y. Theoretical Investigations on the Nakamura's Technique, F, 1995 [C].
[67] MALISCHEWSKY P G, SCHERBAUM F. Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves [J]. Wave Motion, 2004, 40(1): 57-67.
[68] ARAI H, TOKIMATSU K, ABE A. Comparison of Local Amplifications Estimated from Microtremor F-k Spectrum Analysis with Earthquake Records [M]. 1996.
[69] ARAI H, TOKIMATSU K. S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum [J]. Bulletin of the Seismological Society of America, 2004, 94(1): 53-63.
[70]LERMO J, CHáVEZ-GARCíA F J. Are microtremors useful in site response evaluation? [J]. Bulletin of the Seismological Society of America, 1994, 84(5): 1350-64.
[71] IBS-VON SEHT M, WOHLENBERG J. Microtremor measurements used to map thickness of soft sediments [J]. Bulletin of the Seismological Society of America, 1999, 89(1): 250-9.
[72] 彭菲, 王伟君, 熊仁伟, 等. 江苏省泗阳浅层沉积结构的微动 H/V 谱比法探测 [J]. 地震地质, 2022, 44(03): 561-77.
[73] VAN NOTEN K, LECOCQ T, GOFFIN C, et al. Brussels’ bedrock paleorelief from borehole-controlled power laws linking polarised H/V resonance frequencies and sediment thickness [J]. Journal of Seismology, 2022, 26(1): 35 -55.
[74] 田宝卿, 丁志峰. 微动探测方法研究进 展与展 望 [J]. 地球物理学进展, 2021, 36(03): 1306-16.
[75] MOSTAFANEJAD A, LANGSTON C A. Velocity Structure of the Northern Mississippi Embayment Sediments, Part I: Teleseismic P ‐ Wave Spectral Ratios Analysis [J]. Bulletin of the Seismological Society of America, 2016, 107(1): 97 -105.
[76] 王未来, 吴建平, 房立华. 利用地脉动信息约束沉积层区域台站下方速度结构反演 [J]. 地震学报, 2011, 33(01): 28-38+122.
[77] LI G, NIU F, YANG Y, TAO K. Joint Inversion of Rayleigh Wave Phase Velocity, Particle Motion, and Teleseismic Body Wave Data for Sedimentary Structures [J]. Geophysical Research Letters, 2019, 46(12): 6469-78.
[78] LI Z, PENG Z, HOLLIS D, et al. High-resolution seismic event detection using local similarity for Large-N arrays [J]. Scientific Reports, 2018, 8(1): 1646.
[79] BOWDEN D C, TSAI V C, LIN F C. Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA [J]. Geophysical Research Letters, 2015, 42(5): 1360-7.
[80] ROUX P, MOREAU L, LECOINTRE A, et al. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient - noise recordings at a spatially dense array [J]. Geophysical Journal International, 2016, 206(2): 980-92.
[81] LI Z, NI S, ROECKER S, et al. Seismic Imaging of Source Region in the 1976 Ms 7.8 Tangshan Earthquake Sequence and Its Implications for the Seismogenesis of Intraplate Earthquakes [J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1302-13.
[82] VILLA V, LI Y, CLAYTON R W, PERSAUD P. Three-Dimensional Basin Depth Map of the Northern Los Angeles Basins From Gravity and Seismic Measurements [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(7): e2022JB025425.
[83] WEI Y, TIAN X, DUAN Y, TIAN X. Imaging the Topography of Crust – Mantle Boundary from a High‐ Density Seismic Array beneath the Middle‐ Lower Yangtze River, Eastern China [J]. Seismological Research Letters, 2018, 89(5): 1690 -7.
[84] LIU Z, TIAN X, GAO R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array [J]. Earth and Planetary Science Letters, 2017, 480: 33-41.
[85] LI Z, NI S, ZHANG B, et al. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array [J]. Geophysical Research Letters, 2016, 43(10): 4954-61.
[86] 张培震, 王琪, 马宗晋. 中国大陆现今构造运动的 GPS 速度场与活动地块 [J]. 地学前缘, 2002, (02): 430-41.
[87] WANG M, SHEN Z-K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.
[88] 王敏, 沈正康. 中国大陆现今构造变形:三十年的 GPS 观测与研究 [J]. 中国地震, 2020, 36(04): 660-83.
[89] 徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源 [J]. 中国科学(D 辑:地球科学), 2003, (S1): 151-62.
[90] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块 [J]. 中国科学(D辑:地球科学), 2003, (S1): 12-20.
[91] 常祖峰, 常昊, 臧阳, 等. 维西—乔后断裂新活动特征及其与红河断裂的关系 [J]. 地质力学学报, 2016, 22(03): 517-30.
[92] BAO X, SONG X, LI J. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography [J]. Earth and Planetary Science Letters, 2015, 417: 132-41.
[93] LIU Y, YAO H, ZHANG H, FANG H. The Community Velocity Model V.1.0 of Southwest China, Constructed from Joint Body‐ and Surface‐ Wave Travel‐ Time Tomography [J]. Seismological Research Letters, 2021, 92(5): 2972 -87.
[94] 刘影, 于子叶, 张智奇, 等. 基于密集流动台阵构建的川滇地区高分辨率公共速度模型 2.0 版本 [J]. 中国科学:地球科学, 2023, 53(10): 2407-24.
[95] YANG X, LUO Y, JIANG C, et al. Crustal and Upper Mantle Velocity Structure of SE Tibet From Joint Inversion of Rayleigh Wave Phase Velocity and Teleseismic Body Wave Data [J]. Journal of Geophysical Research: Solid Earth, 2023, 128(7): e2022JB026162.
[96] 陈辛平, 李红谊, 张玉婷, 等. 基于短周期密集台阵的北川地区浅层地壳结构研究 [J]. 地球物理学报, 2022, 65(11): 4311-25.
[97] 吴萍萍, 李大虎, 詹艳, 等. 2021 年 9 月 16 日四川泸县 M_S6.0 地震震区三维 S 波精细速度结构 [J]. 地球物理学报, 2023, 66(06): 2386-403.
[98] 赵艳, 李俊伦, 徐健, 等. 鲜水河断裂带八美-康定段精细速度结构及强震孕震环境 [J]. 中国科学:地球科学, 2023, 53(09): 1982-2001.
[99] KIKUCHI M, KANAMORI H. Inversion of complex body waves [J]. Bulletin of theSeismological Society of America, 1982, 72(2): 491-506.
[100]LIGORRíA J P, AMMON C J. Iterative deconvolution and receiver-function estimation [J]. Bulletin of the Seismological Society of America, 1999, 89(5): 1395-400.
[101]GILBERT F, HELMBERGER D V. Generalized Ray Theory for a Layered Sphere [J]. Geophysical Journal of the Royal Astronomical Society, 1972, 27(1): 57 -80.
[102]KENNETT B L N, KERRY N J. Seismic waves in a stratified half space [J]. Geophysical Journal International, 1979, 57(3): 557-83.
[103]SPITZER K. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods [J]. Geophysical Journal International, 1995, 123(3): 903-14.
[104]FURUMURA T, KENNETT B L N, FURUMURA M. Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method [J]. Geophysical Journal International, 1998, 135(3): 845-60.
[105]KOMATITSCH D, RITSEMA J, TROMP J. The Spectral-Element Method, Beowulf Computing, and Global Seismology [J]. Science, 2002, 298(5599): 1737-42.
[106]FUCHS K, MüLLER G. Computation of Synthetic Seismograms with the ReflectivityMethod and Comparison with Observations [J]. Geophysical Journal International, 1971, 23(4): 417-33.
[107]KENNETT B L N. Reflections, rays, and reverberations [J]. Bulletin of the Seismological Society of America, 1974, 64(6): 1685-96.
[108]KENNETT B L N. Seismic Wave Propagation in Stratified Media [M]. Canberra: ANU Press, 2009.
[109]MULLER G. The reflectivity method: a tutorial [J]. Journal of Geophysics, 1985, 58(1-3): 153-74.
[110] BROCHER T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust [J]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-92.
[111] SNIEDER R, LAROSE E. Extracting Earth's Elastic Wave Response from Noise Measurements [J]. Annual Review of Earth and Planetary Sciences, 2013, 41(Volume 41, 2013): 183-206.
[112] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements [J]. Geophysical Journal International, 2007, 169(3): 1239-60.
[113] LI Z, ZHOU J, WU G, et al. CC‐ FJpy: A Python Package for Extracting Overtone Surface ‐ Wave Dispersion from Seismic Ambient ‐ Noise Cross Correlation [J]. Seismological Research Letters, 2021, 92(5): 3179-86.
[114]STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: the S transform [J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001.
[115]张功恒. 背景噪声多分量多阶频散曲线的提取与应用 ——以青藏高原东北缘及其邻区为例 [D], 2023.
[116] RAWLINSON N, SAMBRIDGE M. The Fast Marching Method: An Effective Tool for Tomographic Imaging and Tracking Multiple Phases in Complex Layered Media [J]. Exploration Geophysics, 2005, 36: 341 - 50.
[117] BAO F, LI Z, YUEN D A, et al. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method [J]. Physics ofthe Earth and Planetary Interiors, 2018, 281: 46-54.
[118] CHENG T, HALLAL M M, VANTASSEL J P, COX B R. Estimating Unbiased Statistics for Fundamental Site Frequency Using Spatially Distributed HVSR Measurements and Voronoi Tessellation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(8): 04021068.
[119] BARD P-Y, ACERRA C, AGUACIL G, et al. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation [J]. Bulletin of Earthquake Engineering, 2008, 6: 1-2.
[120]COX B R, CHENG T, VANTASSEL J P, MANUEL L. A statistical representation and frequency-domain window-rejection algorithm for single-station HVSR measurements [J]. Geophysical Journal International, 2020, 221(3): 2170-83.
[121]檀玉娟, 魏运浩, 冯建林, 等. 噪声谱比法研究洛阳盆地的沉积层厚度 [J]. 地质论评, 2019, 65(S1): 279-80.

所在学位评定分委会
地球物理学
国内图书分类号
P315.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765704
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
邱雨欣. 基于密集台阵的近地表速度结构研究及其在滇西地区的应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132702-邱雨欣-地球与空间科学(7209KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[邱雨欣]的文章
百度学术
百度学术中相似的文章
[邱雨欣]的文章
必应学术
必应学术中相似的文章
[邱雨欣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。