[1] 舒志乐, 刘保县, 刘新荣, 等. 探地雷达正反演理论与信号处理[M]. Beijing: 科学出版社, 2017.
[2] 覃谭, 赵永辉, 林国聪, 等. 探地雷达在上林湖越窑遗址水下考古中的应用[J]. 物探与化探, 2018, 42(3): 624–630.
[3] BANNAWAT L, BOONPOONGA A, AKKARAEKTHALIN P. Permittivity estimation of a shallow-layered medium using high-resolution ground-penetrating radar[J]. International Journal of Remote Sensing, 2020, 41(12): 4626–4643.
[4] BACHIRI T, KHAMLICHI A, BEZZAZI M. Detection of rebar corrosion in bridge deck by using gpr[J]. MATEC Web of Conferences, 2018, 191: 00009.
[5] HONG S, CHEN D, DONG B. Numerical simulation and mechanism analysis of gpr-based reinforcement corrosion detection[J]. Construction and Building Materials, 2022, 317: 125913.
[6] 俞海龙. 基于修正PRP共轭梯度法的探地雷达时间域全波形反演[D]. 吉林大学, 2019.
[7] 吴欣悦. 基于机器学习的探地雷达快速正演模拟及埋地目标探测[D]. 三峡大学, 2023.
[8] FENG D, LIU Y, WANG X, et al. Inspection and imaging of tree trunk defects using gpr multifrequency full-waveform dual-parameter inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–15.
[9] LIU Y, LIU M, XING J, et al. Dual-parameter simultaneous full waveform inversion of ground-penetrating radar for arctic sea ice[J]. Remote Sensing, 2023, 15(14): 3614.
[10] WARREN C, GIANNOPOULOS A, GIANNAKIS I. GprMax: open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170.
[11] 张洪熙. 探地雷达正演模拟与全波形反演成像[D]. 中国地质大学(北京), 2022.
[12] 李华, 鲁光银, 何现启, 等. 探地雷达的发展历程及其前景探讨[J]. 地球物理学进展, 2010, 25(4): 1492–1502.
[13] 槐楠. 多偏移距探地雷达数据的全波形反演方法研究与应用[D]. 吉林大学, 2020.
[14] COOK J C. Radar exploration through rock in advance of mining[J]. Trans. Soc. Min. Eng. AIME; (United States), 1976, 254.
[15] DOLPHIN L T, BEATTY W B, TANZI J D. Radar probing of victorio peak, new mexico[J]. GEOPHYSICS, 1978, 43(7): 1441–1448.
[16] ZENG X, MCMECHAN G A, CAI J, et al. Comparison of ray and fourier methods for modeling monostatic ground‐penetrating radar profiles[J]. GEOPHYSICS, 1995, 60(6): 1727–1734.
[17] FISHER E, MCMECHAN G A, ANNAN A P, et al. Examples of reverse‐time migration of single‐channel, ground‐penetrating radar profiles[J]. GEOPHYSICS, 1992, 57(4): 577–586.
[18] BANO M, MARQUIS G, NIVIÈRE B, et al. Investigating alluvial and tectonic features with ground-penetrating radar and analyzing diffractions patterns[J]. Journal of Applied Geophysics, 2000, 43(1): 33–41.
[19] SHI C, REN H, LI Z, et al. Calculation of normal and leaky modes for horizontal stratified models based on a semi-analytical spectral element method[J]. Geophysical Journal International, 2022, 230(3): 1928–1947.
[20] KRUK J, STREICH R, GREEN A. Properties of surface waveguides derived from separate and joint inversion of dispersive te and tm gpr data[J]. Geophysics, 2006, 71.
[21] ARCONE S A. Field observations of electromagnetic pulse propagation in dielectric slabs[J]. GEOPHYSICS, 1984, 49(10): 1763–1773.
[22] ARCONE S, PEAPPLES P, LIU L. Propagation of a ground-penetrating radar (gpr) pulse in a thin-surface waveguide[J]. Geophysics, 2003, 68.
[23] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi‐channel record[C]//SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998: 1377–1380.
[24] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45–57.
[25] VAN DER KRUK J. Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive gpr data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2908–2915.
[26] VAN DER KRUK J, ARCONE S A, LANBO LIU. Fundamental and higher mode inversion of dispersed gpr waves propagating in an ice layer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2483–2491.
[27] VAN DER KRUK J, STEELMAN C M, ENDRES A L, et al. Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides[J]. Geophysical Research Letters, 2009, 36(18).
[28] VAN DER KRUK J, DIAMANTI N, GIANNOPOULOS A, et al. Inversion of dispersive gpr pulse propagation in waveguides with heterogeneities and rough and dipping interfaces[J]. Journal of Applied Geophysics, 2012, 81: 88–96.
[29] STEELMAN C M, ENDRES A L, VAN DER KRUK J. Field observations of shallow freeze and thaw processes using high‐frequency ground‐penetrating radar[J]. Hydrological Processes, 2010, 24(14): 2022–2033. DOI:10.1002/hyp.7688.
[30] MANGEL A R, MOYSEY S M J, VAN DER KRUK J. Resolving precipitation induced water content profiles by inversion of dispersive gpr data: a numerical study[J]. Journal of Hydrology, 2015, 525: 496–505.
[31] MANGEL A R, MOYSEY S M J, VAN DER KRUK J. Resolving infiltration‐induced water content profiles by inversion of dispersive ground‐penetrating radar data[J]. Vadose Zone Journal, 2017, 16(10): 1–11.
[32] YU Y, KLOTZSCHE A, WEIHERMÜLLER L, et al. Measuring vertical soil water content profiles by combining horizontal borehole and dispersive surface ground penetrating radar data[J]. Near Surface Geophysics, 2020, 18(3): 275–294.
[33] VILLAIN G, IHAMOUTEN A, DU PLOOY R, et al. Use of electromagnetic non‐destructive techniques for monitoring water and chloride ingress into concrete[J]. Near Surface Geophysics, 2015, 13(3): 299–309.
[34] HE W, WAI-LOK LAI W, SUI X, et al. Delamination characterization in thin asphalt pavement structure using dispersive gpr data[J]. Construction and Building Materials, 2023, 402: 132834.
[35] KRUK J V D, WAPENAAR C P A, FOKKEMA J T, et al. Three‐dimensional imaging of multicomponent ground‐penetrating radar data[J]. GEOPHYSICS, 2003, 68(4): 1241–1254.
[36] GRASMUECK M. 3-d ground‐penetrating radar applied to fracture imaging in gneiss[J]. GEOPHYSICS, 1996, 61(4): 1050–1064.
[37] 朱尉强, 黄清华. 探地雷达衰减补偿逆时偏移成像方法[J]. 地球物理学报, 2016, 59(10): 3909–3916.
[38] 雷林林, 刘四新, 傅磊, 等. 基于全波形反演的探地雷达数据逆时偏移成像[J]. 地球物理学报, 2015, 58(9): 3346–3355.
[39] 王敏玲, 王洪华, 张智, 等. 基于激发振幅成像条件的探地雷达逆时偏移成像[J]. 地球物理学报, 2018, 61(8): 3435–3445.
[40] 王珣, 冯德山, 王向宇. 基于改进全变差正则化的GPR多尺度全波形双参数同步反演[J]. 地球物理学报, 2020, 63(12): 4485–4501.
[41] MA B, ZHU W, HUANG Q. Imaging shallow fault structures by three-dimensional reverse time migration of ground penetration radar data[J]. Journal of Applied Geophysics, 2021, 190: 104342.
[42] ZHU W, HUANG Q, LIU L, et al. Three-dimensional reverse time migration of ground-penetrating radar signals[J]. Pure and Applied Geophysics, 2020, 177(2): 853–865.
[43] GABRIELS P, SNIEDER R, NOLET G. IN situ measurements of shear‐wave velocity in sediments with higher‐mode rayleigh waves*[J]. Geophysical Prospecting, 1987, 35(2): 187–196.
[44] 邓乐翔. 瑞雷波场正演模拟及频散曲线的提取[D]. 长安大学, 2011.
[45] 熊治涛, 唐新功, 陈义群. 基于τ-p变换的瑞雷面波频散曲线提取方法研究[J]. 能源与环境, 2015(1): 9–10.
[46] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wave field transformation[J]. GEOPHYSICS, 1981, 46(6): 869–874.
[47] 陈淑珍, 刘怀林. 基于τ-p变换的频散曲线及其算法实现[J]. 武汉大学学报(自然科学版), 2000(1): 123–126.
[48] 王红丽, 吴时国, 张金陵. 数据重构提高τ-p变换的精度[J]. CT理论与应用研究, 2018, 27(4): 465–476.
[49] 陈春林. 基于频率—贝塞尔变换法的浅地表三维s波速度结构成像研究[D]. 吉林大学, 2023.
[50] WANG J, WU G, CHEN X. Frequency-bessel transform method for effective imaging of higher-mode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708–3723.
[51] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(vwtm)的多道rayleigh波分析方法[J]. 地球物理学报, 2019, 62(1): 298–305.
[52] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[53] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency–bessel method[J]. Bulletin of the Seismological Society of America, 2021, 112(1): 143–152.
[54] REN H, HUANG Q, CHEN X. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media[J]. Earthquake Science, 2010, 23(2): 167–176.
[55] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2): 391–409.
[56] 伍敦仕, 孙成禹, 林美言. 基于互相关相移的主动源地震面波频散成像方法[J]. 地球物理学进展, 2017, 32(4): 1693–1700.
[57] HASKELL N A. The dispersion of surface waves on multilayered media*[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17–34.
[58] LYSMER J. Lumped mass method for rayleigh waves[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 89–104.
[59] KNOPOFF L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 431–438.
[60] DENOLLE M A, DUNHAM E M, BEROZA G C. Solving the surface-wave eigenproblem with chebyshev spectral collocation[J]. Bulletin of the Seismological Society of America, 2012, 102(3): 1214–1223.
[61] HAWKINS R. A spectral element method for surface wave dispersion and adjoints[J]. Geophysical Journal International, 2018, 215(1): 267–302.
[62] GLYTSIS E N, ANEMOGIANNIS E. Simple derivative-free method of zero extraction by phase-based enclosure for determination of complex propagation constants in planar multilayer waveguides[J]. Applied Optics, 2018, 57(36): 10485.
[63] 史才旺. 泄漏模式频散曲线的正反演及其在地下结构成像中的应用[D]. 哈尔滨工业大学, 2022.
[64] 阳佳慧. 探地雷达层状介质参数反演算法研究[D]. 桂林电子科技大学, 2022.
[65] HAYASHI T, INOUE D. Calculation of leaky lamb waves with a semi-analytical finite element method[J]. Ultrasonics, 2014, 54(6): 1460–1469.
[66] KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3): 806–822.
[67] COLLIN R E. Field theory of guided waves[M]. Piscataway, NJ: IEEE Pr, 1991.
[68] HU J, MENYUK C R. Understanding leaky modes: slab waveguide revisited[J]. Advances in Optics and Photonics, 2009, 1(1): 58.
[69] 张文波, 魏文博, 景建恩, 等. 利用探地雷达的极化特性检测建筑物结构[J]. 吉林大学学报(地球科学版), 2008(1): 156–160.
[70] CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods in fluid dynamics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
[71] VALENCIANO J, CHAPLAIN M A J. A laguerre-legendre spectral-element method for the solution of partial differential equations on infinite domains: application to the diffusion of tumour angiogenesis factors[J]. Mathematical and Computer Modelling, 2005, 41(10): 1171–1192.
[72] FORBRIGER T. Inversion of shallow-seismic wavefields: i. wavefield transformation[J]. Geophysical Journal International, 2003, 153(3): 719–734.
修改评论