中文版 | English
题名

基于谱元法的层状介质探地雷达频散曲线正演模拟研究

其他题名
RESEARCH ON FORWARD MODELING OF DISPERSION CURVE OF LAYERED MEDIUM GROUND PENETRATING RADAR BASED ON SPECTRAL ELEMENT METHOD
姓名
姓名拼音
WANG Tao
学号
12132706
学位类型
硕士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
任恒鑫
导师单位
地球与空间科学系
论文答辩日期
2024-04-30
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

探地雷达激发的电磁波在层状波导结构中传播时会产生频散现象,其频散曲线包含了地层的电性结构信息,通过反演其频散曲线可以获得地层的介电常数和层厚。目前针对探地雷达频散的研究较少且存在一些局限,已有的频散曲线理论计算方法忽略了电导率,即把地层看成无损介质来简化计算。并且,前人研究中并没有对频散模式进行细致的研究和区分。探地雷达频散和地震波频散具有相似性,因此本文将基于谱元法的地震波频散曲线理论计算方法推广到探地雷达频散研究中,得到了一套考虑电导率的探地雷达频散曲线计算新方法。该方法通过透射边界条件和半无限元法处理电磁波场的边界条件,得到了易于求解的线性特征值问题,因而可以直接利用特征值分解高效地计算频散曲线。

本文针对水平层状模型进行了数值实验,对于经典的低速波导模型和高速波导模型,通过与前人算法的对比,验证了本文方法在求解经典模型时的准确性。对于无损介质模型和有损介质模型,通过模式分析,将探地雷达频散分为导波模式和泄漏模式两种,并将不同频率下的导波模式和泄漏模式频散点与频散函数进行对比,证明了计算的不同模式频散点的准确性。对合成的探地雷达道集记录进行的频散分析表明,道集记录同时包含了导波模式和泄漏模式,并且其频散能量谱与本文方法计算的频散曲线高度一致,这证明本文方法可以成为研究探地雷达频散的有效手段。

其他摘要

Dispersion occurs when electromagnetic waves excited by ground penetrating radar (GPR) propagate in a layered waveguide. The dispersion curves contain information about the electrical structure of the formation. By inverting the dispersion curves, the dielectric constant and layer thickness of the formation can be obtained. At present, there is relatively limited research on the dispersion of GPR and there are some limitations. The existing theoretical calculation methods for dispersion curves ignore conductivity, considering the medium as non-conductive to simplify calculations. Moreover, previous studies have not conducted detailed research and classification on dispersion modes. The dispersion of GPR is similar to that of seismic wave. Therefore, this article utilizes the theoretical calculation method of seismic wave dispersion curves based on the spectral element method (SEM) and extends it to the study of GPR dispersion. We introduce a new method for calculating GPR dispersion curves while considering conductivity. This method addresses the boundary conditions of electromagnetic wave fields by utilizing transmission boundary conditions and the semi-infinite element method. It results in a linear eigenvalue problem that is easily solvable. Therefore, the dispersion curves can be efficiently calculated directly using eigenvalue decomposition.

This article presents numerical experiments conducted on horizontal layered models. We compare the accuracy of our method in solving the classical low-speed waveguide model and high-speed waveguide model with previous algorithms. For both lossless and lossy media models, GPR dispersion is divided into guided wave mode and leaky mode through mode analysis. The dispersion points of guided mode and leaky mode at different frequencies are compared with the dispersion function, demonstrating the precision of the calculated dispersion points for different modes. The dispersion analysis of the synthesized GPR gathers reveals the presence of both guided modes and leaky modes. In addition, the dispersion spectra of synthesized GPR gathers are found to be highly consistent with the calculated dispersion curves, which proves the effectiveness of the proposed method.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2024-06
参考文献列表

[1] 舒志乐, 刘保县, 刘新荣, 等. 探地雷达正反演理论与信号处理[M]. Beijing: 科学出版社, 2017.
[2] 覃谭, 赵永辉, 林国聪, 等. 探地雷达在上林湖越窑遗址水下考古中的应用[J]. 物探与化探, 2018, 42(3): 624–630.
[3] BANNAWAT L, BOONPOONGA A, AKKARAEKTHALIN P. Permittivity estimation of a shallow-layered medium using high-resolution ground-penetrating radar[J]. International Journal of Remote Sensing, 2020, 41(12): 4626–4643.
[4] BACHIRI T, KHAMLICHI A, BEZZAZI M. Detection of rebar corrosion in bridge deck by using gpr[J]. MATEC Web of Conferences, 2018, 191: 00009.
[5] HONG S, CHEN D, DONG B. Numerical simulation and mechanism analysis of gpr-based reinforcement corrosion detection[J]. Construction and Building Materials, 2022, 317: 125913.
[6] 俞海龙. 基于修正PRP共轭梯度法的探地雷达时间域全波形反演[D]. 吉林大学, 2019.
[7] 吴欣悦. 基于机器学习的探地雷达快速正演模拟及埋地目标探测[D]. 三峡大学, 2023.
[8] FENG D, LIU Y, WANG X, et al. Inspection and imaging of tree trunk defects using gpr multifrequency full-waveform dual-parameter inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1–15.
[9] LIU Y, LIU M, XING J, et al. Dual-parameter simultaneous full waveform inversion of ground-penetrating radar for arctic sea ice[J]. Remote Sensing, 2023, 15(14): 3614.
[10] WARREN C, GIANNOPOULOS A, GIANNAKIS I. GprMax: open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications, 2016, 209: 163–170.
[11] 张洪熙. 探地雷达正演模拟与全波形反演成像[D]. 中国地质大学(北京), 2022.
[12] 李华, 鲁光银, 何现启, 等. 探地雷达的发展历程及其前景探讨[J]. 地球物理学进展, 2010, 25(4): 1492–1502.
[13] 槐楠. 多偏移距探地雷达数据的全波形反演方法研究与应用[D]. 吉林大学, 2020.
[14] COOK J C. Radar exploration through rock in advance of mining[J]. Trans. Soc. Min. Eng. AIME; (United States), 1976, 254.
[15] DOLPHIN L T, BEATTY W B, TANZI J D. Radar probing of victorio peak, new mexico[J]. GEOPHYSICS, 1978, 43(7): 1441–1448.
[16] ZENG X, MCMECHAN G A, CAI J, et al. Comparison of ray and fourier methods for modeling monostatic ground‐penetrating radar profiles[J]. GEOPHYSICS, 1995, 60(6): 1727–1734.
[17] FISHER E, MCMECHAN G A, ANNAN A P, et al. Examples of reverse‐time migration of single‐channel, ground‐penetrating radar profiles[J]. GEOPHYSICS, 1992, 57(4): 577–586.
[18] BANO M, MARQUIS G, NIVIÈRE B, et al. Investigating alluvial and tectonic features with ground-penetrating radar and analyzing diffractions patterns[J]. Journal of Applied Geophysics, 2000, 43(1): 33–41.
[19] SHI C, REN H, LI Z, et al. Calculation of normal and leaky modes for horizontal stratified models based on a semi-analytical spectral element method[J]. Geophysical Journal International, 2022, 230(3): 1928–1947.
[20] KRUK J, STREICH R, GREEN A. Properties of surface waveguides derived from separate and joint inversion of dispersive te and tm gpr data[J]. Geophysics, 2006, 71.
[21] ARCONE S A. Field observations of electromagnetic pulse propagation in dielectric slabs[J]. GEOPHYSICS, 1984, 49(10): 1763–1773.
[22] ARCONE S, PEAPPLES P, LIU L. Propagation of a ground-penetrating radar (gpr) pulse in a thin-surface waveguide[J]. Geophysics, 2003, 68.
[23] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi‐channel record[C]//SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998: 1377–1380.
[24] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45–57.
[25] VAN DER KRUK J. Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive gpr data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2908–2915.
[26] VAN DER KRUK J, ARCONE S A, LANBO LIU. Fundamental and higher mode inversion of dispersed gpr waves propagating in an ice layer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2483–2491.
[27] VAN DER KRUK J, STEELMAN C M, ENDRES A L, et al. Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides[J]. Geophysical Research Letters, 2009, 36(18).
[28] VAN DER KRUK J, DIAMANTI N, GIANNOPOULOS A, et al. Inversion of dispersive gpr pulse propagation in waveguides with heterogeneities and rough and dipping interfaces[J]. Journal of Applied Geophysics, 2012, 81: 88–96.
[29] STEELMAN C M, ENDRES A L, VAN DER KRUK J. Field observations of shallow freeze and thaw processes using high‐frequency ground‐penetrating radar[J]. Hydrological Processes, 2010, 24(14): 2022–2033. DOI:10.1002/hyp.7688.
[30] MANGEL A R, MOYSEY S M J, VAN DER KRUK J. Resolving precipitation induced water content profiles by inversion of dispersive gpr data: a numerical study[J]. Journal of Hydrology, 2015, 525: 496–505.
[31] MANGEL A R, MOYSEY S M J, VAN DER KRUK J. Resolving infiltration‐induced water content profiles by inversion of dispersive ground‐penetrating radar data[J]. Vadose Zone Journal, 2017, 16(10): 1–11.
[32] YU Y, KLOTZSCHE A, WEIHERMÜLLER L, et al. Measuring vertical soil water content profiles by combining horizontal borehole and dispersive surface ground penetrating radar data[J]. Near Surface Geophysics, 2020, 18(3): 275–294.
[33] VILLAIN G, IHAMOUTEN A, DU PLOOY R, et al. Use of electromagnetic non‐destructive techniques for monitoring water and chloride ingress into concrete[J]. Near Surface Geophysics, 2015, 13(3): 299–309.
[34] HE W, WAI-LOK LAI W, SUI X, et al. Delamination characterization in thin asphalt pavement structure using dispersive gpr data[J]. Construction and Building Materials, 2023, 402: 132834.
[35] KRUK J V D, WAPENAAR C P A, FOKKEMA J T, et al. Three‐dimensional imaging of multicomponent ground‐penetrating radar data[J]. GEOPHYSICS, 2003, 68(4): 1241–1254.
[36] GRASMUECK M. 3-d ground‐penetrating radar applied to fracture imaging in gneiss[J]. GEOPHYSICS, 1996, 61(4): 1050–1064.
[37] 朱尉强, 黄清华. 探地雷达衰减补偿逆时偏移成像方法[J]. 地球物理学报, 2016, 59(10): 3909–3916.
[38] 雷林林, 刘四新, 傅磊, 等. 基于全波形反演的探地雷达数据逆时偏移成像[J]. 地球物理学报, 2015, 58(9): 3346–3355.
[39] 王敏玲, 王洪华, 张智, 等. 基于激发振幅成像条件的探地雷达逆时偏移成像[J]. 地球物理学报, 2018, 61(8): 3435–3445.
[40] 王珣, 冯德山, 王向宇. 基于改进全变差正则化的GPR多尺度全波形双参数同步反演[J]. 地球物理学报, 2020, 63(12): 4485–4501.
[41] MA B, ZHU W, HUANG Q. Imaging shallow fault structures by three-dimensional reverse time migration of ground penetration radar data[J]. Journal of Applied Geophysics, 2021, 190: 104342.
[42] ZHU W, HUANG Q, LIU L, et al. Three-dimensional reverse time migration of ground-penetrating radar signals[J]. Pure and Applied Geophysics, 2020, 177(2): 853–865.
[43] GABRIELS P, SNIEDER R, NOLET G. IN situ measurements of shear‐wave velocity in sediments with higher‐mode rayleigh waves*[J]. Geophysical Prospecting, 1987, 35(2): 187–196.
[44] 邓乐翔. 瑞雷波场正演模拟及频散曲线的提取[D]. 长安大学, 2011.
[45] 熊治涛, 唐新功, 陈义群. 基于τ-p变换的瑞雷面波频散曲线提取方法研究[J]. 能源与环境, 2015(1): 9–10.
[46] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wave field transformation[J]. GEOPHYSICS, 1981, 46(6): 869–874.
[47] 陈淑珍, 刘怀林. 基于τ-p变换的频散曲线及其算法实现[J]. 武汉大学学报(自然科学版), 2000(1): 123–126.
[48] 王红丽, 吴时国, 张金陵. 数据重构提高τ-p变换的精度[J]. CT理论与应用研究, 2018, 27(4): 465–476.
[49] 陈春林. 基于频率—贝塞尔变换法的浅地表三维s波速度结构成像研究[D]. 吉林大学, 2023.
[50] WANG J, WU G, CHEN X. Frequency-bessel transform method for effective imaging of higher-mode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708–3723.
[51] 杨振涛, 陈晓非, 潘磊, 等. 基于矢量波数变换法(vwtm)的多道rayleigh波分析方法[J]. 地球物理学报, 2019, 62(1): 298–305.
[52] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[53] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency–bessel method[J]. Bulletin of the Seismological Society of America, 2021, 112(1): 143–152.
[54] REN H, HUANG Q, CHEN X. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media[J]. Earthquake Science, 2010, 23(2): 167–176.
[55] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2): 391–409.
[56] 伍敦仕, 孙成禹, 林美言. 基于互相关相移的主动源地震面波频散成像方法[J]. 地球物理学进展, 2017, 32(4): 1693–1700.
[57] HASKELL N A. The dispersion of surface waves on multilayered media*[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17–34.
[58] LYSMER J. Lumped mass method for rayleigh waves[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 89–104.
[59] KNOPOFF L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 431–438.
[60] DENOLLE M A, DUNHAM E M, BEROZA G C. Solving the surface-wave eigenproblem with chebyshev spectral collocation[J]. Bulletin of the Seismological Society of America, 2012, 102(3): 1214–1223.
[61] HAWKINS R. A spectral element method for surface wave dispersion and adjoints[J]. Geophysical Journal International, 2018, 215(1): 267–302.
[62] GLYTSIS E N, ANEMOGIANNIS E. Simple derivative-free method of zero extraction by phase-based enclosure for determination of complex propagation constants in planar multilayer waveguides[J]. Applied Optics, 2018, 57(36): 10485.
[63] 史才旺. 泄漏模式频散曲线的正反演及其在地下结构成像中的应用[D]. 哈尔滨工业大学, 2022.
[64] 阳佳慧. 探地雷达层状介质参数反演算法研究[D]. 桂林电子科技大学, 2022.
[65] HAYASHI T, INOUE D. Calculation of leaky lamb waves with a semi-analytical finite element method[J]. Ultrasonics, 2014, 54(6): 1460–1469.
[66] KOMATITSCH D, TROMP J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3): 806–822.
[67] COLLIN R E. Field theory of guided waves[M]. Piscataway, NJ: IEEE Pr, 1991.
[68] HU J, MENYUK C R. Understanding leaky modes: slab waveguide revisited[J]. Advances in Optics and Photonics, 2009, 1(1): 58.
[69] 张文波, 魏文博, 景建恩, 等. 利用探地雷达的极化特性检测建筑物结构[J]. 吉林大学学报(地球科学版), 2008(1): 156–160.
[70] CANUTO C, HUSSAINI M Y, QUARTERONI A, et al. Spectral methods in fluid dynamics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.
[71] VALENCIANO J, CHAPLAIN M A J. A laguerre-legendre spectral-element method for the solution of partial differential equations on infinite domains: application to the diffusion of tumour angiogenesis factors[J]. Mathematical and Computer Modelling, 2005, 41(10): 1171–1192.
[72] FORBRIGER T. Inversion of shallow-seismic wavefields: i. wavefield transformation[J]. Geophysical Journal International, 2003, 153(3): 719–734.

所在学位评定分委会
力学
国内图书分类号
P31
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765706
专题南方科技大学
理学院_地球与空间科学系
推荐引用方式
GB/T 7714
王涛. 基于谱元法的层状介质探地雷达频散曲线正演模拟研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132706-王涛-地球与空间科学系(10034KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王涛]的文章
百度学术
百度学术中相似的文章
[王涛]的文章
必应学术
必应学术中相似的文章
[王涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。