中文版 | English
题名

手性低维发光金属卤化物的制备及应用

其他题名
STUDY ON PREPARATION AND APPLICATION OF CHIRAL LOW- DIMENSIONAL LUMINESCENT METAL HALIDES
姓名
姓名拼音
LIU Yulian
学号
12031114
学位类型
博士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
权泽卫
导师单位
化学系
论文答辩日期
2024-05-10
论文提交日期
2024-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

有机-无机杂化金属卤化物材料由于其具有灵活的晶体结构、可调节的发光颜色和带隙、溶液可加工以及制备成本低廉的特点,被广泛用于太阳能电池、光电探测器、发光二极管(Light-Emitting Diode, LED)和非线性光学等诸多领域。组合不同尺寸的有机组分和多样化的无机组分,可以制备出结构多样、性质丰富的杂化金属卤化物。有机配体在调控杂化金属卤化物的结构和性质中发挥了关键作用。例如,通过调整有机配体的尺寸可以改变晶体的结构维度,而且随着结构维度的降低,材料的光致发光量子效率(Photoluminescence Quantum Yield, PLQY)逐渐提高;采用功能化的有机配体能够有针对性地设计和合成具有特定光学性质的材料;通过调控有机配体与无机组分间的氢键相互作用可以改善材料的光学性质。鉴于此,本论文以低维发光金属卤化物为研究对象,基于离子掺杂和有机配体的选择,研究了增强手性杂化金属卤化物圆偏振发光(Circularly Polarized Luminescence, CPL)的方法和提升手性杂化金属卤化物二次谐波(Second Harmonic Generation, SHG)强度的策略,揭示了手性杂化金属卤化物的晶体结构与CPL性能和SHG强度之间的关系,成功实现了兼具优异非线性和线性光学性质的手性Sb基金属卤化物的制备。主要研究内容和结果如下:

通过双配体策略,在手性0D杂化金属卤化物中实现了同时具有高PLQY和高发光不对称因子(glum)值的CPL。通过同时引入手性和非手性配体,成功构筑了3对对映体,包括(R/S-MBA)2(Gua)4(InCl6)2∙H2O(MBA=α-甲基苯甲基胺,Gua=胍)、(R/S-4MBA)(Gua)2InCl6∙H2O(4MBA=1-(4-甲基苯基)乙胺)和(R/S-NMBA)(Gua)2InCl6(NMBA=N-甲基苯乙胺)。通过掺杂Sb3+,这3对对映体的PLQY提升至接近100%,glum值高达1´10-2。实验结果表明,非手性Gua配体不仅是这些手性杂化In-Sb氯化物结晶获得高达100%的PLQY所必需的,而且大大增强了有机配体与无机单元间的手性诱导。此外,选择不同的手性配体可以改变这些手性0D杂化金属卤化物中手性配体与无机八面体间氢键相互作用的强度,从而使其glum值最大化。

通过增加无机八面体的偏心畸变程度,有效地增强了手性0D杂化In-Sb氯化物的CPL。基于双配体策略、通过改变非手性配体的尺寸和Sb3+掺杂浓度,制备了5对对映体,包括(R/S-MBA)2(2MA)In0.95Sb0.05Cl6(2MA=二甲胺)、(R/S-MBA)2(3MA)In0.95Sb0.05Cl6(3MA=三甲胺)、(R/S-MBA)2(3MA)In0.79Sb0.21Cl6、(R/S-MBA)2(3MA)In0.72Sb0.28Cl6和(R/S-MBA)2(3MA)In0.59Sb0.41Cl6,它们的PLQY都为100%。CPL的glum值随着无机八面体偏心畸变增加而增加,实现了PLQY高达100%、glum高达3.8´10-2的CPL性能。实验结果表明,非手性配体的类型决定无机八面体单元周围氢键的分布类型,Sb3+掺杂浓度决定氢键的强度。无机八面体周围不同的氢键分布类型和强度导致其具有不同程度的偏心畸变。这个研究揭示了手性0D杂化In-Sb氯化物发光材料的结构与CPL性能间的关系,为设计高glum值的CPL发光材料提供了指导。

揭示了手性0D Sb基杂化金属卤化物晶体结构与SHG强度间的关系。基于双配体策略,通过改变卤素(Cl、Br)的种类制备了3种不同偏心畸变程度的手性Sb基金属卤化物,研究了SHG强度与金属卤化物结构间的关系。研究发现SHG强度和响应范围与金属卤化物材料中无机八面体的偏心畸变程度成正比,具有最大偏心畸变程度的(R-MBA)2IASbCl6R-SbCl6,IA=咪唑)SHG强度是Y-cut石英晶体的143倍,此外,在R-SbCl6中实现了glum值高达3.8´10-2的CPL性能。在R-SbCl6中成功实现了兼具优异非线性和线性光学性质,将会扩展金属卤化物发光材料在非线性和线性光学领域的应用。

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2024-06
参考文献列表

[1] QUAN L N, RAND B P, FRIEND R H, et al. Perovskites for next-generation optical sources[J]. Chemical Reviews, 2019, 119(12): 7444-7477.
[2] SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 2019, 119(5): 3296-3348.
[3] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites[J]. Chemical Reviews, 2019, 119(5): 3104-3139.
[4] LIU X K, XU W D, BAI S, et al. Metal halide perovskites for light-emitting diodes[J]. Nature Materials, 2021, 20(1): 10-21.
[5] LEI L, DONG Q, GUNDOGDU K, et al. Metal halide perovskites for laser applications[J]. Advanced Functional Materials, 2021, 31(16): 2010144.
[6] ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Letters, 2021, 6(2): 739-768.
[7] LIN H R, ZHOU C K, TIAN Y, et al. Low-dimensional organometal halide perovskites[J]. ACS Energy Letters, 2018, 3(1): 54-62.
[8] ZHANG X Y, LI L N, SUN Z H, et al. Rational chemical doping of metal halide perovskites[J]. Chemical Society Reviews, 2019, 48(2): 517-539.
[9] MCCALL K M, MORAD V, BENIN B M, et al. Efficient lone-pair-driven luminescence: Structure−property relationships in emissive 5s2 metal halides[J]. ACS Materials Letters, 2020, 2(9): 1218-1232.
[10] LIN H R, ZHOU C K, CHAABAN M, et al. Bulk assembly of zero-dimensional organic lead bromide hybrid with efficient blue emission[J]. ACS Materials Letters, 2019, 1(6): 594-598.
[11] FU P F, SUN Y L, XIA Z G, et al. Photoluminescence behavior of zero-dimensional manganese halide tetrahedra embedded in conjugated organic matrices[J]. Journal of Physical Chemistry Letters, 2021, 12(31): 7394-7399.
[12] ZHOU C K, LIN H R, SHI H L, et al. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission[J]. Angewandte Chemie-International Edition, 2018, 57(4): 1021-1024.
[13] ZHOU L, LIAO J F, KUANG D B. An overview for zero-dimensional broadband emissive metal-halide single crystals[J]. Advanced Optical Materials, 2021, 9(17): 2100544.
[14] SAPAROV B, MITZI D B. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596.
[15] GONZALEZ-CARRERO S, GALIAN R E, PéREZ-PRIETO J. Organic-inorganic and all-inorganic lead halide nanoparticles [invited][J]. Optics Express, 2016, 24(2): A285-A301.
[16] GRANCINI G, NAZEERUDDIN M K. Dimensional tailoring of hybrid perovskites for photovoltaics[J]. Nature Reviews Materials, 2019, 4(1): 4-22.
[17] SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: The next big thing[J]. ACS Energy Letters, 2017, 2(4): 889-896.
[18] FAN L, LIU K, HE S, et al. Reversible mechanically induced on–off photoluminescence in hybrid metal halides[J]. Advanced Functional Materials, 2021, 32(13): 2110771.
[19] MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: Highly emissive singlet and triplet self-trapped excitons and X-ray scintillation[J]. Journal of the American Chemical Society, 2019, 141(25): 9764-9768.
[20] ZHOU C K, LEE S J, LIN H R, et al. Bulk assembly of multicomponent zero-dimensional metal halides with dual emission[J]. ACS Materials Letters, 2020, 2(4): 376-380.
[21] LI M Z, MOLOKEEV M S, ZHAO J, et al. Optical functional units in zero-dimensional metal halides as a paradigm of tunable photoluminescence and multicomponent chromophores[J]. Advanced Optical Materials, 2020, 8(8): 1902114.
[22] XU L J, LIN H R, LEE S J, et al. 0D and 2D: The cases of phenylethylammonium tin bromide hybrids[J]. Chemistry of Materials, 2020, 32(11): 4692-4698.
[23] FAN L B, LIU K J, ZENG Q D, et al. Efficiency-tunable single-component white-light emission realized in hybrid halides through metal co-occupation[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29835-29842.
[24] ZHOU C K, LIN H R, WORKU M, et al. Blue emitting single crystalline assembly of metal halide clusters[J]. Journal of the American Chemical Society, 2018, 140(41): 13181-13184.
[25] HU T, SMITH M D, DOHNER E R, et al. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites[J]. Journal of Physical Chemistry Letters, 2016, 7(12): 2258-2263.
[26] BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J]. Advanced Energy Materials, 2020, 10(26): 1903659.
[27] JIANG Y, WANG X, PAN A L. Properties of excitons and photogenerated charge carriers in metal halide perovskites[J]. Advanced Materials, 2019, 31(47): 1806671.
[28] YANG B, HAN K L. Charge-carrier dynamics of lead-free halide perovskite nanocrystals[J]. Accounts of Chemical Research, 2019, 52(11): 3188-3198.
[29] LI X, GAO X P, ZHANG X T, et al. Lead-free halide perovskites for light emission: Recent advances and perspectives[J]. Advanced Science, 2021, 8(4): 2003334.
[30] LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications[J]. Journal of Physical Chemistry Letters, 2019, 10(8): 1999-2007.
[31] DEY A, RICHTER A F, DEBNATH T, et al. Transfer of direct to indirect bound excitons by electron intervalley scattering in csagbibr double perovskite nanocrystals[J]. ACS Nano, 2020, 14(5): 5855-5861.
[32] FUJISAWA J, ISHIHARA T. Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic-organic layered lead iodide semiconductor[J]. Physical Review B, 2004, 70(20): 205330.
[33] IWANAGA M, AZUMA J, SHIRAI M, et al. Self-trapped electrons and holes in PbBr2 crystals[J]. Physical Review B, 2002, 65(21): 214306.
[34] WILLIAMS R T, SONG K S, FAUST W L, et al. Off-center self-trapped excitons and creation of lattice-defects in alkali-halide crystals[J]. Physical Review B, 1986, 33(10): 7232-7240.
[35] SCHOLZ R, KOBITSKI A Y, ZAHN D R T, et al. Investigation of molecular dimers in α-PTCDA byab initiomethods: Binding energies, gas-to-crystal shift, and self-trapped excitons[J]. Physical Review B, 2005, 72(24): 245208.
[36] YUAN Z, ZHOU C K, TIAN Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nature Communications, 2017, 8: 14051.
[37] ZHOU C K, TIAN Y, YUAN Z, et al. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44579-44583.
[38] WU G H, ZHOU C K, MING W M, et al. A one-dimensional organic lead chloride hybrid with excitation-dependent broadband emissions[J]. ACS Energy Letters, 2018, 3(6): 1443-1449.
[39] BARKAOUI H, ABID H, ZELEWSKI S, et al. Negative thermal quenching of efficient white-light emission in a 1D ladder-like organic/inorganic hybrid material[J]. Advanced Optical Materials, 2019, 7(20): 1900763.
[40] CUI B B, HAN Y, HUANG B L, et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement[J]. Nature Communications, 2019, 10(1): 5190.
[41] LIN H R, ZHOU C K, NEU J, et al. Bulk assembly of corrugated 1D metal halides with broadband yellow emission[J]. Advanced Optical Materials, 2019, 7(6): 1801474.
[42] JIANG Y L, FEI H H. Efficient and stable self-trapped blue emission from a 1D organolead chloride crystalline material[J]. Advanced Optical Materials, 2022, 10(5): 2102148.
[43] WANG Z P, ZHANG Z Z, TAO L Q, et al. Hybrid chloroantimonates(iii): Thermally induced triple-mode reversible luminescent switching and laser- printable rewritable luminescent paper[J]. Angewandte Chemie-International Edition, 2019, 58(29): 9974-9978.
[44] MORAD V, YAKUNIN S, KOVALENKO M V. Supramolecular approach for fine-tuning of the bright luminescence from zero-dimensional antimony(iii) halides[J]. ACS Materials Letters, 2020, 2(7): 845-852.
[45] SONG G M, LI M Z, ZHANG S Z, et al. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules[J]. Advanced Functional Materials, 2020, 30(32): 2002468.
[46] MORAD V, YAKUNIN S, BENIN B M, et al. Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography[J]. Advanced Materials, 2021, 33(9): e2007355.
[47] SONG K S, WILLIAMS R T. Self-trapped excitons[M]//SONG K S, WILLIAMS R T. Self-trapped excitons. Berlin, Heidelberg; Springer Berlin Heidelberg. 1996: 1-31.
[48] SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites[J]. Accounts of Chemical Research, 2018, 51(3): 619-627.
[49] MORAD V, CHERNINKH I, PöTTSCHACHER L, et al. Manganese(ii) in tetrahedral halide environment: Factors governing bright green luminescence[J]. Chemistry of Materials, 2019, 31(24): 10161-10169.
[50] QIN Y Y, SHE P F, HUANG X M, et al. Luminescent manganese(ii) complexes: Synthesis, properties and optoelectronic applications[J]. Coordination Chemistry Reviews, 2020, 416: 213331.
[51] MAO L L, GUO P J, WANG S X, et al. Design principles for enhancing photoluminescence quantum yield in hybrid manganese bromides[J]. Journal of the American Chemical Society, 2020, 142(31): 13582-13589.
[52] XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide[J]. Nature Communications, 2020, 11(1): 4329.
[53] XU L J, PLAVIAK A, LIN X S, et al. Metal halide regulated photophysical tuning of zero-dimensional organic metal halide hybrids: From efficient phosphorescence to ultralong afterglow[J]. Angewandte Chemie-International Edition, 2020, 59(51): 23067-23071.
[54] ZHOU G J, LIU Z Y, HUANG J L, et al. Unraveling the near-unity narrow-band green emission in zerodimensional Mn2+-based metal halides: A case study of (c10h16n)2zn1−xmnxbr4 solid solutions[J]. Journal of Physical Chemistry Letters, 2020, 11(15): 5956-5962.
[55] LIU H L, RU H Y, SUN M E, et al. Organic−inorganic manganese bromide hybrids with water‐triggered luminescence for rewritable paper[J]. Advanced Optical Materials, 2021, 10(4): 2101700.
[56] WANG S, FENG S, LI R, et al. Multiexciton generation from a 2D organic–inorganic hybrid perovskite with nearly 200% quantum yield of red phosphorescence[J]. Advanced Materials, 2023, 35(18): 2211992.
[57] ZHENG H N, GHOSH A, SWAMYNADHAN M J, et al. Electron spin decoherence dynamics in magnetic manganese hybrid organic-inorganic crystals: The effect of lattice dimensionality[J]. Journal of the American Chemical Society, 2023, 145(33): 18549-18559.
[58] JIANG T M, MA W B, ZHANG H, et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications[J]. Advanced Functional Materials, 2021, 31(14): 2009973.
[59] CHANG D, CHEN Y, WANG L, et al. Pressure‐induced dual‐emission of mn‐based metal halides (C5H6N)2MnBr4[J]. Advanced Optical Materials, 2023: 2302829.
[60] ZHOU J, LI M, NING L, et al. Broad-band emission in a zero-dimensional hybrid organic [PbBr6] trimer with intrinsic vacancies[J]. The Journal of Physical Chemistry Letters, 2019, 10(6): 1337-1341.
[61] TONGAY S, SUH J, ATACA C, et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons[J]. Scientific Reports, 2013, 3: 2657.
[62] WORKU M, TIAN Y, ZHOU C K, et al. Sunlike white-light-emitting diodes based on zero-dimensional organic metal halide hybrids[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30051-30057.
[63] XU L J, LEE S, LIN X S, et al. Multicomponent organic metal halide hybrid with white emissions[J]. Angewandte Chemie-International Edition, 2020, 59(33): 14120-14123.
[64] XU L J, SUN C Z, XIAO H, et al. Green-light-emitting diodes based on tetrabromide manganese(ii) complex through solution process[J]. Advanced Materials, 2017, 29(10): 1605739.
[65] ZHOU C, XU L J, LEE S, et al. Recent advances in luminescent zero‐dimensional organic metal halide hybrids[J]. Advanced Optical Materials, 2020, 9(18): 2001766.
[66] LIU H, SHONDE T B, GONZALEZ F, et al. Efficient red light emitting diodes based on a zero-dimensional organic antimony halide hybrid[J]. Advanced Materials, 2023, 35(9): 2209417.
[67] HE Q Q, ZHOU C K, XU L J, et al. Highly stable organic antimony halide crystals for X-ray scintillation[J]. ACS Materials Letters, 2020, 2(6): 633-638.
[68] YAKUNIN S, BENIN B M, SHYNKARENKO Y, et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites[J]. Nature Materials, 2019, 18(8): 846-852.
[69] LI M Z, ZHOU J, MOLOKEEV M S, et al. Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone[J]. Inorganic Chemistry, 2019, 58(19): 13464-13470.
[70] GAO W R, LENG M Y, HU Z X, et al. Reversible luminescent humidity chromism of organic–inorganic hybrid PEA2MnBr4 single crystals[J]. Dalton Transactions, 2020, 49(17): 5662-5668.
[71] LUO Z S, LIU Y J, LIU Y L, et al. Integrated afterglow and self-trapped exciton emissions in hybrid metal halides for anti-counterfeiting applications[J]. Advanced Materials, 2022, 34(18): 2200607.
[72] TAILOR N K, SATAPATHI S. Photosensitive dielectric and conductivity relaxation in lead-free Cs3Bi2Cl9 perovskite single crystals[J]. Journal of Physical Chemistry C, 2021, 125(9): 5243-5250.
[73] POGLITSCH A, WEBER D. Dynamic disorder in methylammoniumtrihalogenoplumbates(ii) observed by millimeter-wave spectroscopy[J]. Journal of Chemical Physics, 1987, 87(11): 6373-6378.
[74] DANG Y Y, LIU Y, SUN Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3[J]. CrystEngComm, 2015, 17(3): 665-670.
[75] ARYA S, MAHAJAN P, GUPTA R, et al. A comprehensive review on synthesis and applications of single crystal perovskite halides[J]. Progress in Solid State Chemistry, 2020, 60: 100286.
[76] LIAO W Q, ZHANG Y, HU C L, et al. A lead-halide perovskite molecular ferroelectric semiconductor[J]. Nature Communications, 2015, 6(1): 7338.
[77] ZHANG T Y, YANG M J, BENSON E E, et al. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1-xClx)[J]. Chemical Communications, 2015, 51(37): 7820-7823.
[78] MITZI D B. A layered solution crystal growth technique and the crystal structure of (C6H5C2NH3)2PbCl4[J]. Journal of Solid State Chemistry, 1999, 145(2): 694-704.
[79] CRASSOUS J, FUCHTER M J, FREEDMAN D E, et al. Materials for chiral light control[J]. Nature Reviews Materials, 2023, 8(6): 365-371.
[80] YANG X F, GAO X Q, ZHENG Y X, et al. Recent progress of circularly polarized luminescence materials from chinese perspectives[J]. CCS Chemistry, 2023, 5(12): 2760-2789.
[81] PIETROPAOLO A, MATTONI A, PICA G, et al. Rationalizing the design and implementation of chiral hybrid perovskites[J]. Chem, 2022, 8(5): 1231-1253.
[82] SHERSON J F, KRAUTER H, OLSSON R K, et al. Quantum teleportation between light and matter[J]. Nature, 2006, 443(7111): 557-560.
[83] ZHAO H R, LI D P, REN X M, et al. Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3]∞ chains directed organic cations aggregation to kagome´-shaped tubular architecture[J]. Journal of the American Chemical Society, 2010, 132(1): 18-19.
[84] SHI Y H, DUAN P F, HUO S W, et al. Endowing perovskite nanocrystals with circularly polarized luminescence[J]. Advanced Materials, 2018, 30(12): 1705011.
[85] SUI LI L, JUAN WEI W, QIANG GAO H, et al. Molecular disorder induces an unusual phase transition in a potential 2D chiral ferroelectric perovskite[J]. Chemistry – A European Journal, 2021, 27(35): 9054-9059.
[86] LONG G K, SABATINI R, SAIDAMINOV M I, et al. Chiral-perovskite optoelectronics[J]. Nature Reviews Materials, 2020, 5(6): 423-439.
[87] CHEN C, GAO L, GAO W R, et al. Circularly polarized light detection using chiral hybrid perovskite[J]. Nature Communications, 2019, 10(1): 1927.
[88] MA J Q, FANG C, CHEN C, et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence[J]. ACS Nano, 2019, 13(3): 3659-3665.
[89] WANG L, XUE Y X, CUI M H, et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector[J]. Angewandte Chemie-International Edition, 2020, 59(16): 6442-6450.
[90] LU H P, VARDENY Z V, BEARD M C. Control of light, spin and charge with chiral metal halide semiconductors[J]. Nature Reviews Chemistry, 2022, 6(7): 470-485.
[91] HAO J, LU H P, MAO L L, et al. Direct detection of circularly polarized light using chiral copper chloride-carbon nanotube heterostructures[J]. ACS Nano, 2021, 15(4): 7608-7617.
[92] LONG G K, JIANG C Y, SABATINI R, et al. Spin control in reduced-dimensional chiral perovskites[J]. Nature Photonics, 2018, 12(9): 528-533.
[93] YUAN C Q, LI X Y, SEMIN S, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics[J]. Nano Letters, 2018, 18(9): 5411-5417.
[94] ZHOU C K, LIN H R, NEU J, et al. Green emitting single-crystalline bulk assembly of metal halide clusters with near-unity photoluminescence quantum efficiency[J]. ACS Energy Letters, 2019, 4(7): 1579-1583.
[95] JING Y Y, LIU Y, JIANG X X, et al. Sb3+ dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals[J]. Chemistry of Materials, 2020, 32(12): 5327-5334.
[96] CHENG X, LI R, ZHENG W, et al. Tailoring the broadband emission in all‐inorganic lead‐free 0D In‐based halides through Sb3+ doping[J]. Advanced Optical Materials, 2021, 9(12): 2100434.
[97] WEI J H, LIAO J F, ZHOU L, et al. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting[J]. Science Advances, 2021, 7(34): eabg3989.
[98] MA S, AHN J, MOON J. Chiral perovskites for next-generation photonics: From chirality transfer to chiroptical activity[J]. Advanced Materials, 2021, 33(47): 2005760.
[99] BILLING D G, LEMMERER A. Bis[(s)-β-phenethylammonium] tribromoplumbate(ii)[J]. Acta Crystallographica Section E-Structure Reports Online, 2003, 59(6): M381-M383.
[100] BILLING D G, LEMMERER A. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group[J]. CrystEngComm, 2006, 8(9): 686-695.
[101] AHN J, MA S, KIM J Y, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range[J]. Journal of the American Chemical Society, 2020, 142(9): 4206-4212.
[102] JIN K H, ZHANG Y, LI K J, et al. Enantiomorphic single crystals of linear lead(ii) bromide perovskitoids with white circularly polarized emission[J]. Angewandte Chemie-International Edition, 2022, 61(30): e202205317.
[103] XUAN H L, LI J L, XU L J, et al. Circularly polarized luminescence based on 0D lead-free antimony (iii) halide hybrids[J]. Advanced Optical Materials, 2022, 10(16): 2200591.
[104] WEI Y, LI C, LI Y W, et al. Circularly polarized luminescence from zero-dimensional hybrid lead-tin bromide with near-unity photoluminescence quantum yield[J]. Angewandte Chemie-International Edition, 2022, 61(51): e202212685.
[105] DAVYDOVA M P, MENG L Q, RAKHMANOVA M I, et al. Highly emissive chiral Mn(ii) bromide hybrids for UV-pumped circularly polarized LEDs and scintillator image applications[J]. Advanced Optical Materials, 2023, 11(8): 2202811.
[106] GUO Z, LI J, WANG C, et al. Giant optical activity and second harmonic generation in 2D hybrid copper halides[J]. Angewandte Chemie International Edition, 2021, 60(15): 8441-8445.
[107] ZHENG H Z, LI W R, LI W, et al. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications[J]. Advanced Materials, 2018, 30(13): 1705948.
[108] LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides[J]. Chemical Society Reviews, 2021, 50(4): 2626-2662.
[109] AHN J, LEE E, TAN J, et al. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic-inorganic hybrid perovskites[J]. Materials Horizons, 2017, 4(5): 851-856.
[110] ISHII A, MIYASAKA T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode[J]. Science Advances, 2020, 6(46): eabd3274.
[111] LI D, LIU X T, WU W T, et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection[J]. Angewandte Chemie-International Edition, 2021, 60(15): 8415-8418.
[112] YAN L, JANA M K, SERCEL P C, et al. Alkyl-aryl cation mixing in chiral 2D perovskites[J]. Journal of the American Chemical Society, 2021, 143(43): 18114-18120.
[113] LIU H L, RU H Y, SUN M E, et al. Mixed-cation chiral perovskites displaying warm-white circularly polarized luminescence[J]. Science China-Chemistry, 2023, 66(5): 1425-1434.
[114] SU B B, LI M Z, SONG E H, et al. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission[J]. Advanced Functional Materials, 2021, 31(40): 2105316.
[115] DOLOMANOV O V, BOURHIS L J, GILDEA R J, et al. Olex2: A complete structure solution, refinement and analysis program[J]. Journal of Applied Crystallography, 2009, 42(2): 339-341.
[116] SHELDRICK G M. Shelxt-integrated space-group and crystal-structure determination[J]. Acta Crystallographica a-Foundation and Advances, 2015, 71(1): 3-8.
[117] LI D Y, SONG J H, CHENG Y, et al. Ultra-sensitive, selective and repeatable fluorescence sensor for methanol based on a highly emissive 0D hybrid lead-free perovskite[J]. Angewandte Chemie-International Edition, 2022, 61(35): e202206437.
[118] YU H, GONG H, HUA Z R, et al. Ultra-long room temperature phosphorescence of indium-based organic inorganic metal halides for naked-eye-visible afterglow[J]. Science China-Chemistry, 2023, 66(9): 2576-2582.
[119] WU Y, SHI C M, XU L J, et al. Reversible luminescent vapochromism of a zero-dimensional Sb3+ doped organic−inorganic hybrid[J]. Journal of Physical Chemistry Letters, 2021, 12(13): 3288-3294.
[120] FATTAL H, CREASON T D, DELZER C J, et al. Zero-dimensional hybrid organic-inorganic indium bromide with blue emission[J]. Inorganic Chemistry, 2021, 60(2): 1046-1055.
[121] LI Z Y, SONG G M, LI Y, et al. Realizing tunable white light emission in lead-free indium(iii) bromine hybrid single crystals through antimony(iii) cation doping[J]. Journal of Physical Chemistry Letters, 2020, 11(23): 10164-10172.
[122] CHEN D, HAO S Q, ZHOU G J, et al. Lead-free broadband orange-emitting zero-dimensional hybrid (PMA)3InBr6 with direct band gap[J]. Inorganic Chemistry, 2019, 58(22): 15602-15609.
[123] ARFIN H, KSHIRSAGAR A S, KAUR J, et al. Ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives[J]. Chemistry of Materials, 2020, 32(24): 10255-10267.
[124] SU B B, ZHOU G J, HUANG J L, et al. Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application[J]. Laser & Photonics Reviews, 2021, 15(1): 2000334.
[125] JING Y Y, LIU Y, LI M Z, et al. Photoluminescence of singlet/triplet self-trapped excitons in Sb3+-based metal halides[J]. Advanced Optical Materials, 2021, 9(8): 2002213.
[126] ZHANG M Y, WANG X M, YANG B, et al. Metal halide scintillators with fast and self-absorption-free defect-bound excitonic radioluminescence for dynamic X-ray imaging[J]. Advanced Functional Materials, 2021, 31(9): 2007921.
[127] CHEN B, GUO Y, WANG Y, et al. Multiexcitonic emission in zero-dimensional Cs2ZrCl6:Sb3+ perovskite crystals[J]. Journal of the American Chemical Society, 2021, 143(42): 17599-17606.
[128] CHEN J, ZHANG S, PAN X, et al. Structural origin of enhanced circularly polarized luminescence in hybrid manganese bromides[J]. Angewandte Chemie-International Edition, 2022, 61(30): e202205906.
[129] WANG Z, WANG X, CHEN Z, et al. Turn‐on circularly polarized luminescence in chiral indium chlorides by 5s2 metal centers[J]. Angewandte Chemie International Edition, 2023, 62(17): e202215206.
[130] PENG Y, WANG X, LI L N, et al. Moisture-resistant chiral perovskites for white-light circularly polarized photoluminescence[J]. Advanced Optical Materials, 2023, 11(1): 2201888.
[131] CHAI C Y, ZHANG Q K, JING C Q, et al. Single-component white circularly polarized luminescence in chiral 1D double-chain perovskites[J]. Advanced Optical Materials, 2023, 11(4): 2201996.
[132] ZHANG M, GUO Q, LI Z, et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging[J]. Science Advances, 2023, 9(43): eadi9944.
[133] ZHAN X Q, XU F F, ZHOU Z H, et al. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays[J]. Advanced Materials, 2021, 33(37): 2104418.
[134] BERRY H G, GABRIELSE G, LIVINGSTON A E. Measurement of the stokes parameters of light[J]. Applied Optics, 1977, 16(12): 3200-3205.
[135] LU H P, XIAO C X, SONG R Y, et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport[J]. Journal of the American Chemical Society, 2020, 142(30): 13030-13040.
[136] KIM Y H, ZHAI Y X, LU H P, et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode[J]. Science, 2021, 371(6534): 1129-1133.
[137] MA J Q, WANG H Z, LI D H. Recent progress of chiral perovskites: Materials, synthesis, and properties[J]. Advanced Materials, 2021, 33(26): e2008785.
[138] PENG Y, LIU X T, LI L N, et al. Realization of vis-NIR dual-modal circularly polarized light detection in chiral perovskite bulk crystals[J]. Journal of the American Chemical Society, 2021, 143(35): 14077-14082.
[139] GAO J X, ZHANG W Y, WU Z G, et al. Enantiomorphic perovskite ferroelectrics with circularly polarized luminescence[J]. Journal of the American Chemical Society, 2020, 142(10): 4756-4761.
[140] DI NUZZO D, CUI L, GREENFIELD J L, et al. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature[J]. ACS Nano, 2020, 14(6): 7610-7616.
[141] YAO L, NIU G D, LI J Z, et al. Circularly polarized luminescence from chiral tetranuclear copper(i) iodide clusters[J]. Journal of Physical Chemistry Letters, 2020, 11(4): 1255-1260.
[142] LIN J T, CHEN D G, YANG L S, et al. Tuning the circular dichroism and circular polarized luminescence intensities of chiral 2D hybrid organic-inorganic perovskites through halogenation of the organic ions[J]. Angewandte Chemie-International Edition, 2021, 60(39): 21434-21440.
[143] JI X Q, GENG S N, ZHANG S, et al. Chiral 2D Cu(I) halide frameworks[J]. Chemistry of Materials, 2022, 34: 8262-8270.
[144] GUAN J J, ZHENG Y S, CHENG P X, et al. Free halogen substitution of chiral hybrid metal halides for activating the linear and nonlinear chiroptical properties[J]. Journal of the American Chemical Society, 2023, 145(49): 26833-26842.
[145] SON J, MA S, JUNG Y K, et al. Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite[J]. Nature Communications, 2023, 14(1): 3124.
[146] JANA M K, SONG R Y, LIU H L, et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on rashba-dresselhaus spin-orbit coupling[J]. Nature Communications, 2020, 11(1): 4699.
[147] LIU Y L, LUO Z S, WEI Y, et al. Integrating achiral and chiral organic ligands in zero-dimensional hybrid metal halides to boost circularly polarized luminescence[J]. Angewandte Chemie-International Edition, 2023, 62(37): e202306821.
[148] Lü X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites[J]. National Science Review, 2021, 8(9): nwaa288.
[149] HUANG J L, CHANG T, ZENG R S, et al. Controlled structural transformation in Sb-doped indium halides A3InCl6 and A2InCl5∙H2O yields reversible green-to-yellow emission switch[J]. Advanced Optical Materials, 2021, 9(13): 2002267.
[150] LUFASO M W, WOODWARD P M. Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites[J]. Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials, 2004, 60(1): 10-20.
[151] ALONSO J A, MARTíNEZ-LOPE M J, CASAIS M T, et al. Evolution of the Jahn−Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): A neutron diffraction study[J]. Inorganic Chemistry, 2000, 39(5): 917-923.
[152] ROBINSON K, GIBBS G V, RIBBE P H. Quadratic elongation: A quantitative measure of distortion in coordination polyhedra[J]. Science, 1971, 172(3983): 567-570.
[153] MA S, JUNG Y K, AHN J, et al. Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth[J]. Nature Communications, 2022, 13(1): 3259.
[154] CHEN W Q, ZHANG F, WANG C, et al. Nonlinear photonics using low-dimensional metal-halide perovskites: Recent advances and future challenges[J]. Advanced Materials, 2021, 33(11): e2004446.
[155] WANG Z X, ZHANG Y, TANG Y Y, et al. Fluoridation achieved antiperovskite molecular ferroelectric in [(CH3)2(F-CH2CH2)NH]3(CdCl3)(CdCl4)[J]. Journal of the American Chemical Society, 2019, 141(10): 4372-4378.
[156] MA̧CZKA M, GAGOR A, ZARȨBA J K, et al. Three-dimensional perovskite methylhydrazinium lead chloride with two polar phases and unusual second-harmonic generation bistability above room temperature[J]. Chemistry of Materials, 2020, 32(9): 4072-4082.
[157] CHEN D, HAO S, FAN L, et al. Broad photoluminescence and second-harmonic generation in the noncentrosymmetric organic–inorganic hybrid halide (C6H5(CH2)4NH3)4MX7·H2O (M = Bi, In, X = Br or I)[J]. Chemistry of Materials, 2021, 33(20): 8106-8111.
[158] STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137(21): 6804-6819.
[159] HALASYAMANI P S. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals[J]. Chemistry of Materials, 2004, 16(19): 3586-3592.
[160] ZHANG Y, PARSONNET E, FERNANDEZ A, et al. Ferroelectricity in a semiconducting all-inorganic halide perovskite[J]. Science Advances, 2022, 8(6): eabj5881.
[161] DUIM H, LOI M A. Chiral hybrid organic-inorganic metal halides: A route toward direct detection and emission of polarized light[J]. Matter, 2021, 4(12): 3835-3851.
[162] ZHENG Y, XU J, BU X H. 1D chiral lead halide perovskites with superior second‐order optical nonlinearity[J]. Advanced Optical Materials, 2021, 10(1): 2101545.
[163] CHENG J, YI G J, ZHANG Z Z, et al. In situ chiral template approach to synthesize homochiral lead iodides for second-harmonic generation[J]. Angewandte Chemie-International Edition, 2024, 63(6): e202318385.

所在学位评定分委会
化学
国内图书分类号
O612.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/765709
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
刘玉莲. 手性低维发光金属卤化物的制备及应用[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12031114-刘玉莲-化学系.pdf(19742KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘玉莲]的文章
百度学术
百度学术中相似的文章
[刘玉莲]的文章
必应学术
必应学术中相似的文章
[刘玉莲]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。